Error Bounds on the DC-Power, Flow, Approximation: A Convex Relaxation Approach

Krishnamurthy Dvijotham Pacific Northwest National Laboratory Daniel Molzahn Argonne National Laboratory

Santa Fe Winter School and Conference January 13, 2017

The Power Flow Equations

 Model the relationship between the voltage phasors and the power injections

Polar voltage coordinates:
$$V_i = |V_i| \angle \theta_i$$

 $P_i = |V_i| \sum_{k=1}^n |V_k| \; (\mathbf{G}_{ik} \cos(\theta_k - \theta_i) + \mathbf{B}_{ik} \sin(\theta_k - \theta_i))$
 $Q_i = |V_i| \sum_{k=1}^n |V_k| \; (\mathbf{G}_{ik} \sin(\theta_k - \theta_i) - \mathbf{B}_{ik} \cos(\theta_k - \theta_i))$

- Central to many power system optimization and control problems
 - Optimal power flow, unit commitment, voltage stability, contingency analysis, transmission switching, etc.

DC Power Flow Approximation

• Linearization of the power flow equations

$$P_{i} = |V_{i}| \sum_{k=1}^{n} |V_{k}| \quad (\mathbf{G}_{ik} \cos (\theta_{k} - \theta_{i}) + \mathbf{B}_{ik} \sin (\theta_{k} - \theta_{i}))$$

$$Q_{i} = |V_{i}| \sum_{k=1}^{n} |V_{k}| \quad (\mathbf{G}_{ik} \sin (\theta_{k} - \theta_{i}) - \mathbf{B}_{ik} \cos (\theta_{k} - \theta_{i}))$$

$$P_{i}^{DC} = \sum_{k=1}^{n} \mathbf{B}_{ik} (\theta_{k} - \theta_{i})$$

• Advantages:

- Fast and reliable solution using linear programming

- Disadvantages:
 - No consideration of voltage magnitudes or reactive power

Approximation error

Introduction

DC Power Flow Accuracy

- Many studies of DC power flow accuracy:
 - [Yan & Sekar '02], [Liu & Gross '02], [Baldick '04], [Overbye, Cheng, & Sun '04], [Baldick, Dixit & Overbye '05], [Purchala, Meeus,
 Van Dommelen & Belmans '05], [Van Hertem, Verboomen, Purchala, Belmans & Kling '06], [Li & Bo '07], [Duthaler, Emery,
 - Andersson, & Kurzidem '08], [Stott, Jardim & Alsac '09], [Qi, Shi & Tylavsky '12], [Coffrin, Van Hentenryck & Bent '12]
- Accuracy depends on the application and test case

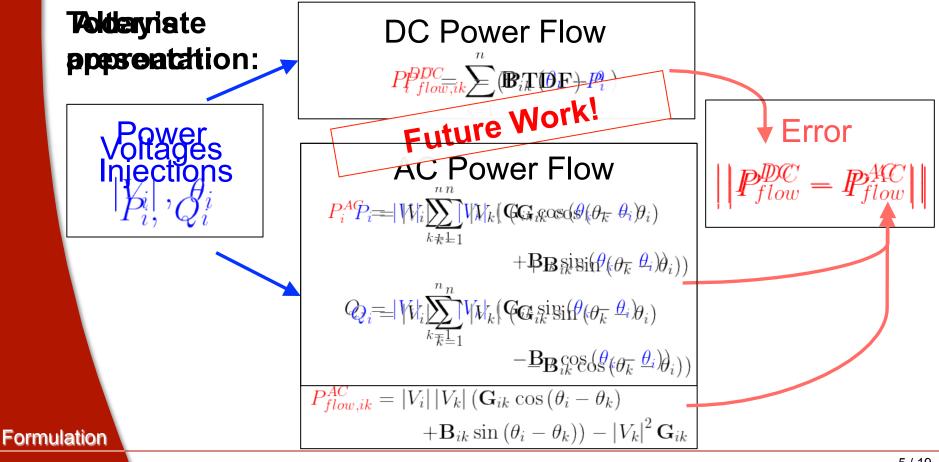
"At no stage in the tests were we able to discern any statistical pattern in the dc-flow error scatters. This defeated all our attempts to find concise, meaningful indices with which to characterize and display dc-model accuracies." [Stott, Jardim & Alsac '09]

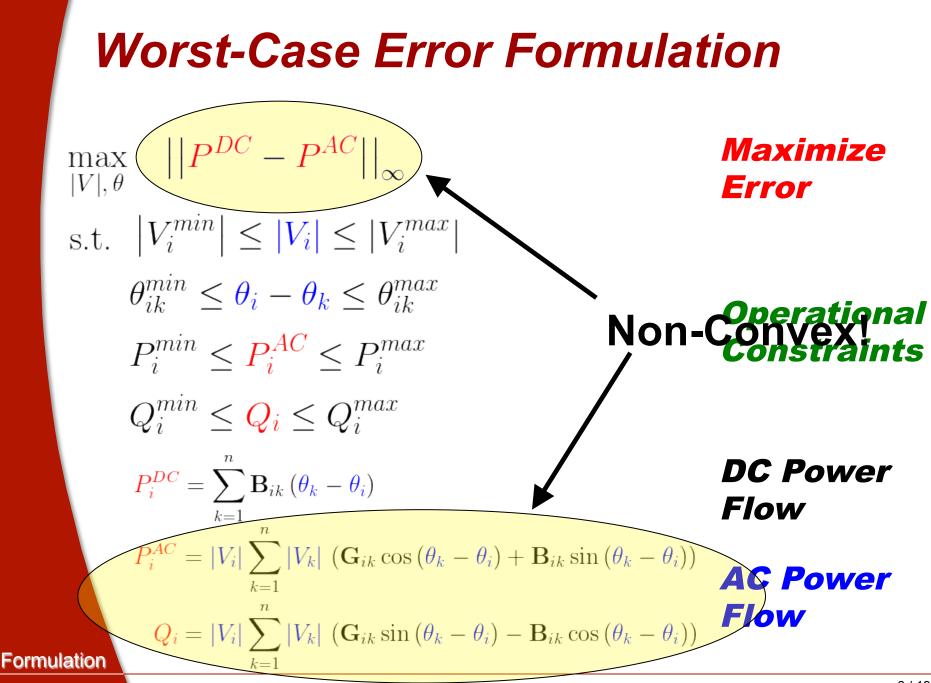
Introduction

Problem Formulation

Assessing DC Power Flow Accuracy

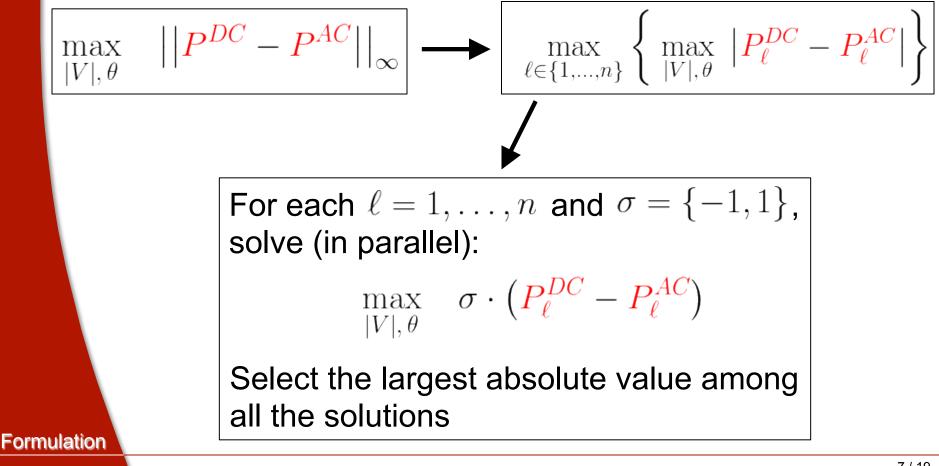
• Goal: bound the worst-case error in the active power injections between the DC and AC power flow models





Handling the Objective Function

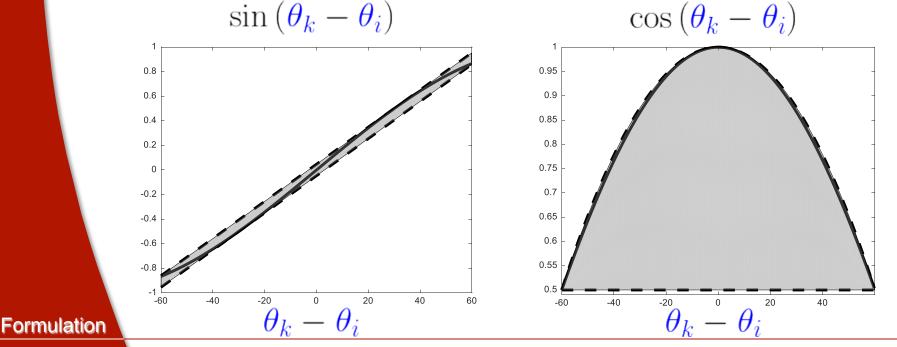
• Maximize the infinity norm by solving 2n optimization problems:



Handling the Power Flow Equations via Convex Relaxations

• Formulating the DC power flow requires a representation of the voltage angles: $P_i^{DC} = \sum_{k=1}^{n} \mathbf{B}_{ik} (\theta_k - \theta_i)$

• QC Relaxation to the rescue! [Coffrin, Hijazi & Van Hentenryck '15]



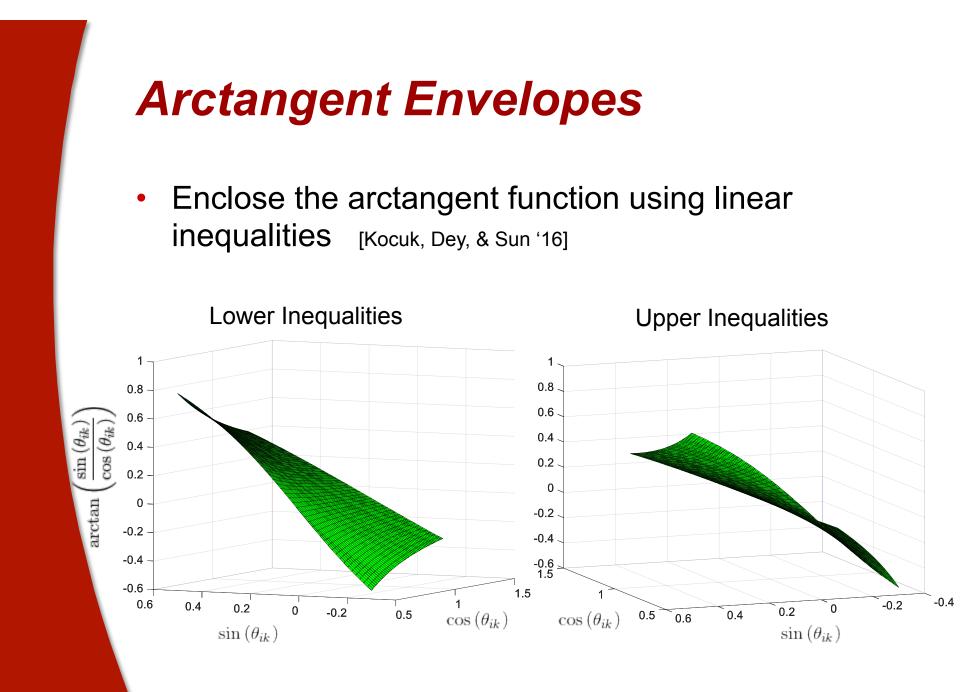
Further Tightening the Relaxation

- Augment the QC relaxation with
 - A Semidefinite Programming Relaxation of the power flow equations in rectangular coordinates [Lavaei & Low '12]
 - Lifted Nonlinear Cuts implied by the angle difference and voltage magnitude limits [Coffrin, Hijazi & Van Hentenryck '15], [Chen, Atamturk & Oren '15]
 - Arctangent Envelopes [Kocuk, Dey & Sun '16]
- Apply a bound tightening algorithm to improve upon the specified operational limits [Kocuk, Dey & Sun '15], [Chen, Atamturk & Oren '15], [Coffrin, Hijazi & Van Hentenryck '16]

Formulation

Semidefinite Relaxation of the **Power Flow Equations**

- Write power flow equations as $z^H \mathbf{A}_i z = c_i$ where $z = \begin{bmatrix} V_1 & \dots & V_n \end{bmatrix}^{\mathsf{T}}$ with voltage phasors $V \in \mathbb{C}^n$
- Define matrix $\mathbf{W} = zz^H$ Rewrite as rank $(\mathbf{W}) = 1$ and $\begin{cases} \operatorname{trace} (\mathbf{A}_i \mathbf{W}) = c_i \\ \mathbf{W} \succeq 0 \end{cases}$
- Relaxation: Do not enforce $\operatorname{rank}(\mathbf{W}) = 1$ [Lavaei & Low '12]
 - A solution with $rank(\mathbf{W}) = 1$ implies zero relaxation gap and recovery of the globally optimal voltage profile. This is not necessary for our problem: we only require a lower bound.



Formulation

Formulation Summary

For each $\ell = 1, \ldots, n$ and $\sigma = \{-1, 1\}$, solve (in parallel):

max $\sigma \cdot \left(P_{\ell}^{DC} - P_{\ell}^{AC} \right)$ $|V|, \theta$ s.t. $|V_i^{min}| \leq |V_i| \leq |V_i^{max}|$ $\theta_{ik}^{min} \leq \theta_i - \theta_k \leq \theta_{ik}^{max}$ $P_i^{min} \leq P_i^{AC} \leq P_i^{max}$ $Q_i^{min} < Q_i \leq Q_i^{max}$ $P_i^{DC} = \sum \mathbf{B}_{ik} \left(\theta_k - \theta_i \right)$ $P_i^{AC} = |V_i| \sum_{k=1} |V_k| \left(\mathbf{G}_{ik} \cos\left(\theta_k - \theta_i\right) + \mathbf{B}_{ik} \sin\left(\theta_k - \theta_i\right) \right)$ $Q_i = |V_i| \sum |V_k| \left(\mathbf{G}_{ik} \sin \left(\theta_k - \theta_i \right) - \mathbf{B}_{ik} \cos \left(\theta_k - \theta_i \right) \right)$

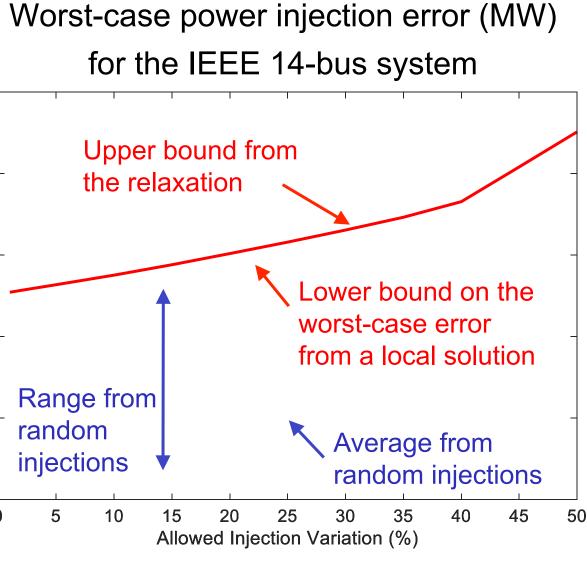
Maximize the absolute value of the error at each bus

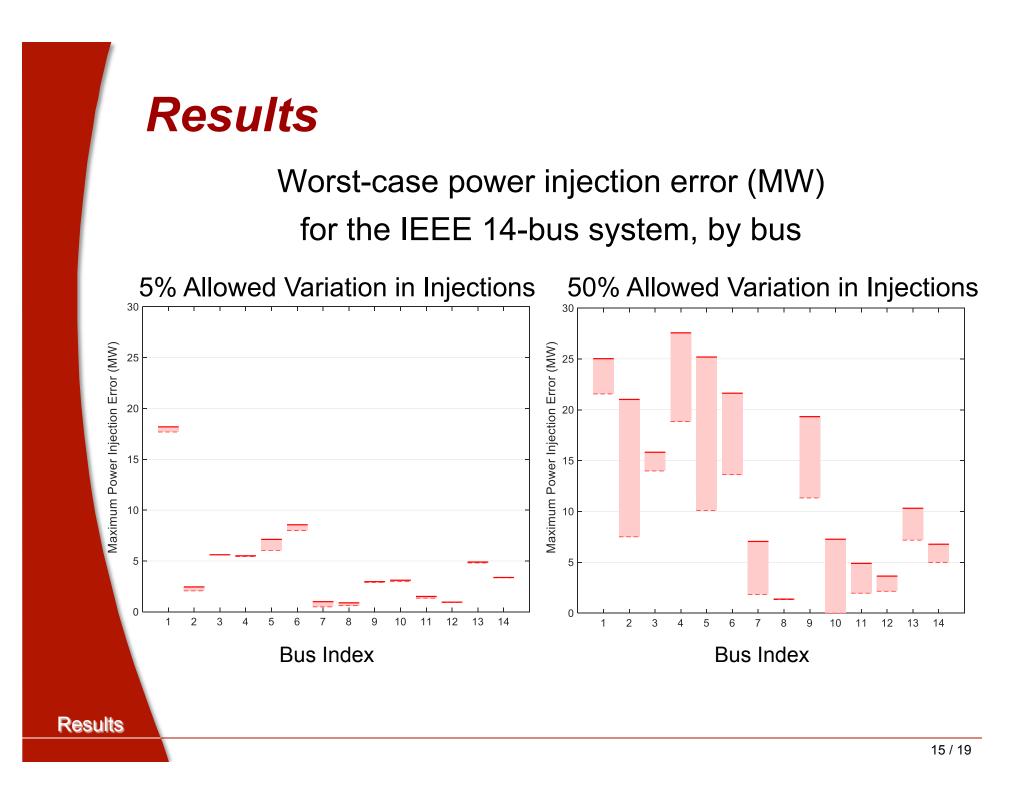
Bound-tightened operational constraints

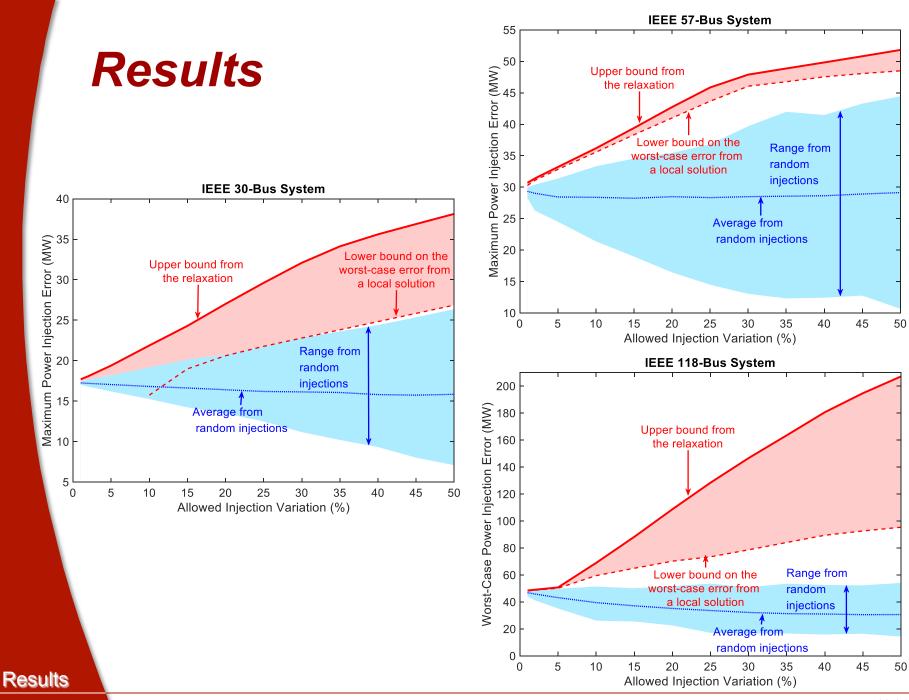
Formulation

Results for the IEEE Test Cases

Results 30 15 Range from 10 random injections 5 5 15 10 0 Results







Conclusion

Conclusions

- We proposed an algorithm that uses convex relaxations to bound the worst-case error of the DC power flow
- Results for several IEEE test cases show:
 - The bound is reasonably tight
 - The DC power flow can have large errors for some operating conditions
- Next steps:
 - Application to other linear approximations and test cases
 - Comparison with other error bounds
 - Determination of physical explanations for large errors
 - Design of new linearizations informed by the worst-case error

Conclusion

K. Dvijotham and D.K. Molzahn, "Error Bounds on the DC Power Flow Approximation: A Convex Relaxation Approach," *IEEE 55th Annual Conference on Decision and Control (CDC)*, December 12-14, 2016.