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The Power Flow Equations

* Model the relationship between the voltage phasors
and the power injections

Polar voltage coordinates: Vi = |V;|Z4,

— H |Z H 3 ‘ i1 COS (9; — 0, ) + B, sin (H; — 9,))

Q: = |V; |Z\m i sin (6 — 6;) — Biy. cos (6 — 6;))

* Central to many power system optimization and
control problems

— Optimal power flow, unit commitment, voltage stability,
contingency analysis, transmission switching, etc.
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DC Power Flow Approximation

* Linearization of the power flow equations

1 1 0 (6/{ — 61)
P =ﬁ| Z%l %g COS (9,{, — 9,) + B ‘f(gﬁ. —0; }
= _ mmp P = ZB,A (6 — 6,)
Q:i=1Vil| Y |Vk sieST '] — By cos (6, — 6;))

* Advantages:
— Fast and reliable solution using linear programming

* Disadvantages:

— No consideration of voltage magnitudes or reactive power

— Approximation error
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DC Power Flow Accuracy

* Many studies of DC power flow accuracy:

— [Yan & Sekar ' 02], [Liu & Gross ' 02], [Baldick ’ 04], [Overbye,
Cheng, & Sun " 04], [Baldick, Dixit & Overbye ’ 05], [Purchala,

Meeus,
Van Dommelen & Belmans ’ 05], [Van Hertem, Verboomen,

Purchala, Belmans & Kling ’ 06], [Li & Bo " 07], [Duthaler, Emery,
Andersson, & Kurzidem ’ 08], [Stott, Jardim & Alsac ‘09], [Qi, Shi &
Tylavsky " 12], [Coffrin, Van Hentenryck & Bent " 12]

* Accuracy depends on the application and test case

“At no stage in the tests were we able to discern any
statistical pattern in the dc-flow error scatters. This
defeated all our attempts to find concise, meaningful
iIndices with which to characterize and display
dc-model accuracies.” [Stott, Jardim & Alsac ‘09]
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Problem Formulation
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Assessing DC Power Flow Accuracy

* Goal: bound the worst-case error in the active power
injections between the DC and AC power flow models

In

\/‘81? 9%3

DC Power Flow

Formulation

\

\
— \;uture \No\‘ l Error
ower Flow | | ,fzzm }wa | “
low low
PAP=| W Zm | GG gosd @6 4:9;)
k=11
+BBisitf(or £1),))
Q=Y Wi (Ga sisitf o £b;)
2
-Bpgosdlior 28,))
Piiowi = Vil [Vil (Gix cos (6; — 61 .
+Bisin (6; — 61)) — |Vil* G

5/19



Worst-Case Error Formulation

max Maximize
V1@ Error

st |V <V
6;7}31;1 < 32 . 6]17 < 6;7}3(11‘
PZ”‘m < PzA C' < PZna;r.
(2 ;nin S (21 S (2 ;na;r.

P’¢ = ]"Bi.(e._ej) DC Power
i Flow

AC = Vi Y Vil (Gig cos (65 — 6:) + By sin (65 — 6,))
k=1

maxr
< |V

ional

Non- ints

Qi = |V Z |Vi| (Gigsin (6. — 6;) — Big cos (6, — 6;))
Formulation k=1
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Handling the Objective Function

* Maximize the infinity norm by solving 2n
optimization problems:

max HP be™_ pAc H —P max <4 max |P,-[ ©_ P,A(' |
V|, 6 o (e{l....n} | |V|].0 |

/

Foreach ( =1,..., nand 0 ={—1,1},

solve (in parallel):

max o - ( p/DC _ P/A(,)
|L/r|39 ' '

Select the largest absolute value among
all the solutions
Formulation
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Handling the Power Flow Equations
via Convex Relaxations

* Formulating the DC power flow requires a representation
of the voltage angles: 7" =) Bi:(6i — )
k=1

e (QC Relaxation to the rescue! [Coffrin, Hijazi & Van Hentenryck ‘15]
sin (6), — 6;) cos (0 — 6)

i -60 -40 -20 0 20 40 60 . -60 40 -éo ) (I) )
Formulation 61{ — 6-1? ‘91; — ‘9-17
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Further Tightening the Relaxation

* Augment the QC relaxation with

— A Semidefinite Programming Relaxation of the power flow
equations in rectangular coordinates [Lavaei & Low ‘12]

— Lifted Nonlinear Cuts implied by the angle difference and voltage

magnitude limits [Coffrin, Hijazi & Van Hentenryck ‘15], [Chen, Atamturk &
Oren ‘15]

— Arctangent Envelopes [Kocuk, Dey & Sun ‘16]

* Apply a bound tightening algorithm to improve upon the

specified operational limits [kocuk, Dey & Sun “15],
[Chen, Atamturk & Oren ‘15],
[Coffrin, Hijazi & Van Hentenryck ‘16]
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Semidefinite Relaxation of the
Power Flow Equations

- Write power flow equations as 2" A; z = ¢;
where z = [Vi ... V,]" with voltage phasors VV € C”

. Define matrix W = 2z

trace (A, W) = ¢,
Rewrite as rank (W) =1 and
W >0
Relaxation: |
Do not enforce rank (W) =1 [Lavaei & Low'12]

— A solution with rank (W) = 1 implies zero relaxation gap
and recovery of the globally optimal voltage profile. This is
not necessary for our problem: we only require a lower bound.
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Arctangent Envelopes

* Enclose the arctangent function using linear
inequalities [Kocuk, Dey, & Sun *16]

Lower Inequalities Upper Inequalities
1+ 1
0.8 - 0.8
2 06— 0.6
iz 0.4
== 04—
! n 0.2
T I 0.2
S 0
= (O
@ -0.2
-
b 0.2
= -0.4
0.4 0.6 .|
1.5
-O.g gW1.5 1 0.4
: 0.4 0.2 0o . P P 02 0 -0.2 -0.
o 02 0.5 cos () cos (@) 05 o6 0.4 T
sin (B ) sin { By )
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Formulation Summary

Foreach / =1,....,n and 0 = {—1,1}, solve (in parallel):

max o - ( PD(]’ B PA(]‘) Maximize the absolute
N ; : value of the error at

- . each bus
St ‘ /r mi n.‘ S H;‘ S ‘I/,.trwl.(t.l.‘
emm < 0 . 8 In(tl
g Bound-tightened

pmn < pAC < P.Z-" e operational

| :m o . (é ) constraints
QI < Q) < Qe
PP = "By (6 — 6)) DC Power Flow

QC Relaxation

PAY =1, V| (Gig cos (Br — 6;) + By, sin (=", -
' |;1 i (Gix cos (0 — 6:) + Businlbe=T)) SDP Relaxation

o + Lifted Nonlinear Cuts

Qi =V IZ Vil (Gsin (6 = 0) = Bucosthe=tl)) 4 Arctangent Envelopes
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Results for the IEEE Test Cases




Results
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Maximum Power Injection Error (MW

Results
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Conclusion
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Conclusions

* We proposed an algorithm that uses convex relaxations
to bound the worst-case error of the DC power flow

e Results for several IEEE test cases show:
— The bound is reasonably tight

— The DC power flow can have large errors for some operating
conditions

* Next steps:
— Application to other linear approximations and test cases

— Comparison with other error bounds

— Determination of physical explanations for large errors

— Design of new linearizations informed by the worst-case error
Conclusion
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