## Error Bounds on the DC-Power, Flow, Approximation: A Convex Relaxation Approach

Krishnamurthy Dvijotham Pacific Northwest National Laboratory Daniel Molzahn Argonne National Laboratory

Santa Fe Winter School and Conference January 13, 2017

## **The Power Flow Equations**

 Model the relationship between the voltage phasors and the power injections

Polar voltage coordinates: 
$$V_i = |V_i| \angle \theta_i$$
  
 $P_i = |V_i| \sum_{k=1}^n |V_k| \; (\mathbf{G}_{ik} \cos(\theta_k - \theta_i) + \mathbf{B}_{ik} \sin(\theta_k - \theta_i))$   
 $Q_i = |V_i| \sum_{k=1}^n |V_k| \; (\mathbf{G}_{ik} \sin(\theta_k - \theta_i) - \mathbf{B}_{ik} \cos(\theta_k - \theta_i))$ 

- Central to many power system optimization and control problems
  - Optimal power flow, unit commitment, voltage stability, contingency analysis, transmission switching, etc.

#### **DC Power Flow Approximation**

• Linearization of the power flow equations

$$P_{i} = |V_{i}| \sum_{k=1}^{n} |V_{k}| \quad (\mathbf{G}_{ik} \cos (\theta_{k} - \theta_{i}) + \mathbf{B}_{ik} \sin (\theta_{k} - \theta_{i}))$$

$$Q_{i} = |V_{i}| \sum_{k=1}^{n} |V_{k}| \quad (\mathbf{G}_{ik} \sin (\theta_{k} - \theta_{i}) - \mathbf{B}_{ik} \cos (\theta_{k} - \theta_{i}))$$

$$P_{i}^{DC} = \sum_{k=1}^{n} \mathbf{B}_{ik} (\theta_{k} - \theta_{i})$$

• Advantages:

- Fast and reliable solution using linear programming

- Disadvantages:
  - No consideration of voltage magnitudes or reactive power

#### Approximation error

Introduction

#### **DC Power Flow Accuracy**

- Many studies of DC power flow accuracy:
  - [Yan & Sekar '02], [Liu & Gross '02], [Baldick '04], [Overbye, Cheng, & Sun '04], [Baldick, Dixit & Overbye '05], [Purchala, Meeus,
     Van Dommelen & Belmans '05], [Van Hertem, Verboomen, Purchala, Belmans & Kling '06], [Li & Bo '07], [Duthaler, Emery,
    - Andersson, & Kurzidem '08], [Stott, Jardim & Alsac '09], [Qi, Shi & Tylavsky '12], [Coffrin, Van Hentenryck & Bent '12]
- Accuracy depends on the application and test case

"At no stage in the tests were we able to discern any statistical pattern in the dc-flow error scatters. This defeated all our attempts to find concise, meaningful indices with which to characterize and display dc-model accuracies." [Stott, Jardim & Alsac '09]

Introduction

#### **Problem Formulation**

#### Assessing DC Power Flow Accuracy

• Goal: bound the worst-case error in the active power injections between the DC and AC power flow models





### Handling the Objective Function

• Maximize the infinity norm by solving 2n optimization problems:



# Handling the Power Flow Equations via Convex Relaxations

• Formulating the DC power flow requires a representation of the voltage angles:  $P_i^{DC} = \sum_{k=1}^{n} \mathbf{B}_{ik} (\theta_k - \theta_i)$ 

• QC Relaxation to the rescue! [Coffrin, Hijazi & Van Hentenryck '15]



#### Further Tightening the Relaxation

- Augment the QC relaxation with
  - A Semidefinite Programming Relaxation of the power flow equations in rectangular coordinates [Lavaei & Low '12]
  - Lifted Nonlinear Cuts implied by the angle difference and voltage magnitude limits [Coffrin, Hijazi & Van Hentenryck '15], [Chen, Atamturk & Oren '15]
  - Arctangent Envelopes [Kocuk, Dey & Sun '16]
- Apply a bound tightening algorithm to improve upon the specified operational limits [Kocuk, Dey & Sun '15], [Chen, Atamturk & Oren '15], [Coffrin, Hijazi & Van Hentenryck '16]

#### Formulation

## Semidefinite Relaxation of the **Power Flow Equations**

- Write power flow equations as  $z^H \mathbf{A}_i z = c_i$ where  $z = \begin{bmatrix} V_1 & \dots & V_n \end{bmatrix}^{\mathsf{T}}$  with voltage phasors  $V \in \mathbb{C}^n$
- Define matrix  $\mathbf{W} = zz^H$  Rewrite as rank  $(\mathbf{W}) = 1$  and  $\begin{cases} \operatorname{trace} (\mathbf{A}_i \mathbf{W}) = c_i \\ \mathbf{W} \succeq 0 \end{cases}$
- Relaxation: Do not enforce  $\operatorname{rank}(\mathbf{W}) = 1$ [Lavaei & Low '12]
  - A solution with  $rank(\mathbf{W}) = 1$  implies zero relaxation gap and recovery of the globally optimal voltage profile. This is not necessary for our problem: we only require a lower bound.





Formulation

#### **Formulation Summary**

For each  $\ell = 1, \ldots, n$  and  $\sigma = \{-1, 1\}$ , solve (in parallel):

max  $\sigma \cdot \left( P_{\ell}^{DC} - P_{\ell}^{AC} \right)$  $|V|, \theta$ s.t.  $|V_i^{min}| \leq |V_i| \leq |V_i^{max}|$  $\theta_{ik}^{min} \leq \theta_i - \theta_k \leq \theta_{ik}^{max}$  $P_i^{min} \leq P_i^{AC} \leq P_i^{max}$  $Q_i^{min} < Q_i \leq Q_i^{max}$  $P_i^{DC} = \sum \mathbf{B}_{ik} \left( \theta_k - \theta_i \right)$  $P_i^{AC} = |V_i| \sum_{k=1} |V_k| \left( \mathbf{G}_{ik} \cos\left(\theta_k - \theta_i\right) + \mathbf{B}_{ik} \sin\left(\theta_k - \theta_i\right) \right)$  $Q_i = |V_i| \sum |V_k| \left( \mathbf{G}_{ik} \sin \left( \theta_k - \theta_i \right) - \mathbf{B}_{ik} \cos \left( \theta_k - \theta_i \right) \right)$ 

Maximize the absolute value of the error at each bus

**Bound-tightened** operational constraints



Formulation

#### **Results for the IEEE Test Cases**

#### Results 30 15 Range from 10 random injections 5 5 15 10 0 Results







#### Conclusion



#### Conclusions

- We proposed an algorithm that uses convex relaxations to bound the worst-case error of the DC power flow
- Results for several IEEE test cases show:
  - The bound is reasonably tight
  - The DC power flow can have large errors for some operating conditions
- Next steps:
  - Application to other linear approximations and test cases
  - Comparison with other error bounds
  - Determination of physical explanations for large errors
  - Design of new linearizations informed by the worst-case error

#### Conclusion



K. Dvijotham and D.K. Molzahn, "Error Bounds on the DC Power Flow Approximation: A Convex Relaxation Approach," *IEEE 55th Annual Conference on Decision and Control (CDC)*, December 12-14, 2016.