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Four talks this morning

• Steve Nagler - Possible Kitaev spin liquid physics and topological 
transitions in RuCl3

• Rajiv Singh - Entropy plateaus in Spin-S Kitaev Models

• Hide Takagi - Spin-orbital entangled quantum liquid on the 
honeycomb lattice

• Gang Chen - Topological thermal Hall effect from induced internal 
gauge flux in a U(1) spin liquid



The context
• quantum spin liquids

• challenges of their experimental and 
theoretical understanding

• thermal Hall effect: an important probe

• Kitaev honeycomb model

• candidates: RuCl3

• beyond the “pure” model and materials
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What are QSLs, and why 
are they interesting?

• insulating states of quantum magnets (no free electrons)

• Essentially the most quantum state of magnets

• They are quantum superpositions of very many product states, which 
cannot be adiabatically deformed to a product state

note: interactions (the Hamiltonian) are local H ⇠
X

x

H(x)



What are QSLs, and why 
are they interesting?

• insulating states of quantum magnets (no free electrons)

• Essentially the most quantum state of magnets

• They are quantum superpositions of very many product states, which 
cannot be adiabatically deformed to a product state

• lead to emergent gauge fields, fractional particles

fractional particles:

electrons

spin flips |#i |"i q=0, s=1
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} “integer particles”
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Example
Anderson’s idea (1973): “Resonating valence bonds”
Chapter 1. Introduction
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Figure 1.11: (a) Separation of two spinons to infinity in a valence bond solid (VBS) state, and
(b) resonating valence bond (RVB) state. In (a), the final state contains a string of changed
dimers (in orange). In (b), the “final state” of the VBS is contained in the superposition of the
states forming the RVB.

tum spin liquid might be expected. Except for a few exceptions –and while it is not in any way

obvious that a gauge structure is absolutely always necessary– all involve gauge fields, with the

associated “matter fields” being the “fractional excitations” mentioned above.9 Conveniently,

as alluded to above, such a formulation also allows for a simple description of phase transi-

tions, through Higgs (condensation) transitions, much like U(1) gauge symmetry breaking is

seen to describe the BCS transition in conventional superconductors. These Higgs transitions
9The latter correspond to the matter fields of the gauge theory and are the modern signature of quantum spin

liquid states. One can further ask about their statistics and mutual statistics. The combination of both gives the
universal properties of the phases. Such a characterization is often used in the context of classification of QSLs,
which attempts to sort phases into categories depending only on a small set of requirements.
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as alluded to above, such a formulation also allows for a simple description of phase transi-

tions, through Higgs (condensation) transitions, much like U(1) gauge symmetry breaking is

seen to describe the BCS transition in conventional superconductors. These Higgs transitions
9The latter correspond to the matter fields of the gauge theory and are the modern signature of quantum spin

liquid states. One can further ask about their statistics and mutual statistics. The combination of both gives the
universal properties of the phases. Such a characterization is often used in the context of classification of QSLs,
which attempts to sort phases into categories depending only on a small set of requirements.
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quasiparticles are 
“deconfined”| QSLi =

entangled state
RVB

valence bond solid



Important points
• Very stable states: perturbations keep you in the 

phase -- might need phase transition

• Obtained from local interactions

• Characteristic features typically stem from 
nonlocal properties => hard to understand 
theoretically, and hard to probe experimentally!

• There is no one single sharp indicator of a QSL

• Experimentally, no definitive proof yet, but...



Kitaev spin liquids
Dr. Alexei Kitaev, KITP & Microsoft (KITP Colloquium 11-09-05) Anyons in an Exactly Solved Model and Beyond Page 4

Dr. Alexei Kitaev, KITP & Microsoft (KITP Colloquium 11-09-05) Anyons in an Exactly Solved Model and Beyond Page 6
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Non-local excitations

Majorana Flux

In Kitaev’s model:
• Majorana’s dispersion ~ K and Dirac-like
• Fluxes are localized and gapped

" e,m



Kitaev spin liquids
• 3 types:

• gapless  (minimal model)

• gapped  (minimal model with one larger 
interaction constant)

• chiral (in TR breaking Hamiltonian)

Kitaev Ann. Phys. Jackeli & Khaliullin PRL

“Ising 
anyon 
phase”

gapped non-
abelian bulk Majorana 

edge state

Steve in zero field
Hide?

Steve in magnetic field

half-quantized 
thermal Hall 
conductivity{

H =
⇡cT

6



Kitaev spin liquids
• 3 types:

• gapless  (minimal model)

• gapped  (minimal model with one larger 
interaction constant)

• chiral (in TR breaking Hamiltonian)

Kitaev Ann. Phys. Jackeli & Khaliullin PRL

“Ising 
anyon 
phase”

gapped non-
abelian bulk

Steve in zero field
Hide?

Steve in magnetic field

half-quantized thermal Hall conductivity{ H =
⇡cT
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Kasahara et al. 2018

but κxx ≫ κH, see Ye et al., Winkler-Aviv et al.



Which materials?

α-Na2IrO3, 
(α,β,ɣ)-Li2IrO3
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α-RuCl3

all order in zero field so far (they contain extra interactions --
Heisenberg, out-of-plane, etc.)

 but…
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FIG. 1: (color online). (a) Phase diagram of the Kitaev-
Heisenberg model containing 2 spin-liquid and 4 spin-ordered
phases. The transition points (open dots on ϕ-circle) are ob-
tained by an exact diagonalization. The gray lines inside the
circle connect the points related by the exact mapping (see
text). Open/solid circles in the insets indicate up/down spins.
The rectangular box in zigzag pattern (top-left) shows the
magnetic unit cell. (b) Groundstate energy EGS of 24-site
cluster and its second derivative −d2EGS/dϕ2 revealing the
phase transitions.

and J̃ = −J , revealing a hidden SU(2) symmetry of the
model at K = −J (where the Kitaev term K̃ vanishes).
For the angles, the mapping reads as tan ϕ̃ = − tanϕ−1.
Phase diagram.– In its full parameter space, the KH

model accommodates 6 different phases, best visualized
using the phase-angle ϕ as in Fig. 1(a). In addition to
the previously discussed [16, 21, 22] Néel-AF, stripy-AF,
and SL states near ϕ = 0, −π

4 , and −π
2 , respectively, we

observe 3 more states. First one is “AF” (K > 0) Ki-
taev spin-liquid near ϕ = π

2 . Second, FM phase broadly
extending over the third quadrant of the ϕ-circle. The
FM and stripy-AF states are connected [see Fig. 1(a)] by
the 4-sublattice transformation, which implies their iden-
tical dynamics. Finally, near ϕ = 3

4π, the most wanted
phase, zigzag-AF, appears occupying almost a quarter
of the phase space. Thanks to the above mapping, it is

understood that the zigzag and Néel states are isomor-
phic, too. In particular, the ϕ = 3

4π zigzag is identical to
Heisenberg-AF of the fictitious spins.
To obtain the phase boundaries, we have diagonal-

ized the model numerically, using a hexagonal 24-site
cluster with periodic boundary conditions. The clus-
ter is compatible with the above 4-sublattice transfor-
mation and ϕ ↔ ϕ̃ mapping. As seen in Fig. 1(b),
the second derivative of the GS energy EGS with re-
spect to ϕ well detects the phase transitions. Three
pairs of linked transition points are found: (87.7◦, 92.2◦)
and (−76.1◦,−108.2◦) for the spin liquid/order transi-
tions around ±π

2 , and (161.7◦,−33.8◦) for the transitions
between ordered phases.
The transitions from zigzag-AF to FM, and from

stripy-AF to Néel-AF are of first order by symmetry;
see very sharp peaks in Fig. 1(b). The spin liquid/order
transitions near ϕ = −π

2 lead to wider and much less
pronounced peaks, suggesting a second (or weakly first)
order transition [16]. On the contrary, liquid/order tran-
sitions around ϕ = π

2 show up as very narrow peaks; on
the finite cluster studied, they correspond to real level
crossings. Nature of these quantum phase transitions re-
mains to be clarified.
While at J = 0 (i.e. ϕ = ±π

2 ) the sign of K is irrel-
evant [20], the stability of the AF- and FM-type Kitaev
spin-liquids against J-perturbation is very different: the
SL phase near π

2 (−π
2 ) is less (more) robust. This phase

behavior is related to a different nature of the competing
ordered phases: for the π

2 SL, these are highly quan-
tum zigzag and Néel states, while the SL near −π

2 is
sandwiched by more classical (FM and “fluctuation free”
stripy [16]) states which are energetically less favorable
than quantum SL state.
Exchange interactions in Na2IrO3.– Having fixed the

parameter space (K > 0, J < 0) for zigzag phase, we turn
now to the physical processes behind the model (1). In-
teractions between local moments in Mott insulators arise
due to virtual hoppings of electrons. This may happen
in many different ways, depending sensitively on chemi-
cal bonding, intra-ionic electron structure, etc. The case
of present interest (i.e., strong spin-orbit coupling, t52g
configuration, and 90◦-bonding geometry) has been ad-
dressed in several papers [8, 11, 16, 23]. There are fol-
lowing four physical processes that contribute to K and
J couplings.
Process 1: Direct hopping t′ between NN t2g orbitals.

Since no oxygen orbital is involved, 90◦-bonding is irrel-
evant; the resulting Hamiltonian is H1 = I1 Si ·Sj with
I1 ≃ (23 t

′)2/U [16]. Here, U is Coulomb repulsion be-
tween t2g electrons. Typically, one has t′/t < 1, when
compared to the indirect hopping t of t2g orbitals via
oxygen ions.
Process 2: Interorbital NN t2g − eg hopping t̃. This is

the dominant pathway in 90◦-bonding geometry since it
involves strong tpdσ overlap between oxygen-2p and eg or-

TT
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Kitaev physics - RuCl3
• Steve - one of the first leaders for RuCl3 - new 

results

• inelastic neutron scattering in field

39 SEN CNLS 2019

Β dependence of Γ point gap from INS

C. Balz et al., 
unpublished.

Nagler et al.

Γ point gap

“zigzag” (ordered) 
phase (gapped)
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Heisenberg model containing 2 spin-liquid and 4 spin-ordered
phases. The transition points (open dots on ϕ-circle) are ob-
tained by an exact diagonalization. The gray lines inside the
circle connect the points related by the exact mapping (see
text). Open/solid circles in the insets indicate up/down spins.
The rectangular box in zigzag pattern (top-left) shows the
magnetic unit cell. (b) Groundstate energy EGS of 24-site
cluster and its second derivative −d2EGS/dϕ2 revealing the
phase transitions.

and J̃ = −J , revealing a hidden SU(2) symmetry of the
model at K = −J (where the Kitaev term K̃ vanishes).
For the angles, the mapping reads as tan ϕ̃ = − tanϕ−1.
Phase diagram.– In its full parameter space, the KH

model accommodates 6 different phases, best visualized
using the phase-angle ϕ as in Fig. 1(a). In addition to
the previously discussed [16, 21, 22] Néel-AF, stripy-AF,
and SL states near ϕ = 0, −π

4 , and −π
2 , respectively, we

observe 3 more states. First one is “AF” (K > 0) Ki-
taev spin-liquid near ϕ = π

2 . Second, FM phase broadly
extending over the third quadrant of the ϕ-circle. The
FM and stripy-AF states are connected [see Fig. 1(a)] by
the 4-sublattice transformation, which implies their iden-
tical dynamics. Finally, near ϕ = 3

4π, the most wanted
phase, zigzag-AF, appears occupying almost a quarter
of the phase space. Thanks to the above mapping, it is

understood that the zigzag and Néel states are isomor-
phic, too. In particular, the ϕ = 3

4π zigzag is identical to
Heisenberg-AF of the fictitious spins.
To obtain the phase boundaries, we have diagonal-

ized the model numerically, using a hexagonal 24-site
cluster with periodic boundary conditions. The clus-
ter is compatible with the above 4-sublattice transfor-
mation and ϕ ↔ ϕ̃ mapping. As seen in Fig. 1(b),
the second derivative of the GS energy EGS with re-
spect to ϕ well detects the phase transitions. Three
pairs of linked transition points are found: (87.7◦, 92.2◦)
and (−76.1◦,−108.2◦) for the spin liquid/order transi-
tions around ±π

2 , and (161.7◦,−33.8◦) for the transitions
between ordered phases.
The transitions from zigzag-AF to FM, and from

stripy-AF to Néel-AF are of first order by symmetry;
see very sharp peaks in Fig. 1(b). The spin liquid/order
transitions near ϕ = −π

2 lead to wider and much less
pronounced peaks, suggesting a second (or weakly first)
order transition [16]. On the contrary, liquid/order tran-
sitions around ϕ = π

2 show up as very narrow peaks; on
the finite cluster studied, they correspond to real level
crossings. Nature of these quantum phase transitions re-
mains to be clarified.
While at J = 0 (i.e. ϕ = ±π

2 ) the sign of K is irrel-
evant [20], the stability of the AF- and FM-type Kitaev
spin-liquids against J-perturbation is very different: the
SL phase near π
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2 ) is less (more) robust. This phase

behavior is related to a different nature of the competing
ordered phases: for the π

2 SL, these are highly quan-
tum zigzag and Néel states, while the SL near −π

2 is
sandwiched by more classical (FM and “fluctuation free”
stripy [16]) states which are energetically less favorable
than quantum SL state.
Exchange interactions in Na2IrO3.– Having fixed the

parameter space (K > 0, J < 0) for zigzag phase, we turn
now to the physical processes behind the model (1). In-
teractions between local moments in Mott insulators arise
due to virtual hoppings of electrons. This may happen
in many different ways, depending sensitively on chemi-
cal bonding, intra-ionic electron structure, etc. The case
of present interest (i.e., strong spin-orbit coupling, t52g
configuration, and 90◦-bonding geometry) has been ad-
dressed in several papers [8, 11, 16, 23]. There are fol-
lowing four physical processes that contribute to K and
J couplings.
Process 1: Direct hopping t′ between NN t2g orbitals.

Since no oxygen orbital is involved, 90◦-bonding is irrel-
evant; the resulting Hamiltonian is H1 = I1 Si ·Sj with
I1 ≃ (23 t

′)2/U [16]. Here, U is Coulomb repulsion be-
tween t2g electrons. Typically, one has t′/t < 1, when
compared to the indirect hopping t of t2g orbitals via
oxygen ions.
Process 2: Interorbital NN t2g − eg hopping t̃. This is

the dominant pathway in 90◦-bonding geometry since it
involves strong tpdσ overlap between oxygen-2p and eg or-

Steve



RuCl3 in field - phase transitions

• magnetocaloric effect

phase 
transitions?41 SEN CNLS 2019

More complete phase diagram

LETTERRESEARCH

Fig. 2a, where H∥ = Hsinθ and H⊥ = Hcosθ are the field components 
parallel and perpendicular to the a axis, respectively, and θ is the angle 
between H and the c axis. In zero field, κxx exhibits a distinct kink at 
TN, as shown in Fig. 2a. Although this kink is observed in a perpendic-
ular field (θ = 0°) of 12 T at the same temperature, no such anomaly is 
observed in a parallel field11,12 (θ = 90°) of 7 T. In Fig. 2a, we also plot 
κxx in an applied magnetic field of 8 T, tilted away from the c axis 
(θ = 60°, µ0H∥ ≈ 7 T). As in the case of the parallel field, no kink is 

observed. Figure 1c displays the phase diagram of an α-RuCl3 sample 
in a tilted field of θ = 60°, where TN is plotted as a function of H∥. The 
inset of Fig. 2b shows TN plotted as a function of H∥ for θ = 45°, 60° and 
90°. For θ = 60°, TN agrees well with that for 90° and vanishes at the 
same critical field of µ0

∗H  ≈ 7 T, whereas for 45° TN vanishes at 
µ0H∥ ≈ 6 T. Although TN does not scale perfectly with H∥, these results 
demonstrate the quasi-2D nature of the magnetic properties. In stark 
contrast to the strong out-of-plane (a–c) anisotropy, the in-plane (a–b) 
anisotropy is very small (Extended Data Fig. 3a–c).

Above = ∗H H , where the AFM order melts, the presence of a pecu-
liar spin-liquid state has been suggested on the basis of nuclear mag-
netic resonance and neutron scattering measurements; the former show 
the presence of a spin gap25 and the latter reveal unusual continuous 
spin excitations26. These magnetic properties are consistent with those 
expected in a Kitaev-type spin-liquid state.

To study the thermal Hall effect in the spin-liquid state above 
= ∗H H , κxy is measured by sweeping fields in tilted directions and 

obtained by anti-symmetrizing the thermal response of the sample with 
respect to the field direction. In this configuration, the Hall response 
is determined by H⊥. Because the magnitude of κxy is extremely small 
compared to κxx in α-RuCl3, special care is taken to detect the intrinsic 
thermal Hall signal (see Methods). Figure 3a–d and Fig. 3e–h depict 
κxy/T at θ = 60° and 45°, respectively, plotted as a function of H⊥ above 

= ∗H H  at low temperatures. The experimental error in the detection 
of the temperature difference between Hall contacts becomes consid-
erable below 3.5 K, leading to unreliable determination of κxy in our 
setup.

In the AFM state, κxy/T is extremely small (see Extended Data Fig. 4). 
Upon entering the field-induced spin-liquid state, κxy/T, which is pos-
itive in sign, increases rapidly. The most striking feature is that κxy/T 
exhibits a plateau in the field range of 4.5 T < µ0H⊥ < 4.8–5.0 T for 
θ = 60° and 6.8 T < µ0H⊥ < 7.2–7.4 T for θ = 45°, as shown in Fig. 3a–c 
and Fig. 3e–g, respectively. The right axes represent κ /Txy

2D  in units of 
quantum thermal Hall conductance π/ k ħ( 6)( )B

2 , where κ κ= dxy xy
2D  with 

a layer distance21 of d = 5.72 Å. Remarkably, the plateau is very close to 
the half of the quantum thermal Hall conductance reported in the inte-
ger quantum Hall system27 within the error of 3%, demonstrating the 
emergence of a half-integer thermal Hall conductance plateau. Above 
µ0H⊥ ≈ 5.0 T for θ = 60° (7.4 T for θ = 45°), κ /Txy

2D  decreases rapidly 
and vanishes. We note that the half-integer quantized plateau is repro-
duced in crystal from different growth (Extended Data Fig. 5). 
Although the plateau behaviour seems to be preserved at 5.6 K, κ /Txy

2D  
slightly deviates from the quantized value. At higher temperatures, the 
plateau behaviour disappears (Fig. 3d, h).

The temperature dependence of κxy/T at magnetic fields where a 
plateau is observed is shown in Fig. 4. The half-integer thermal Hall 
conductance is observable up to about 5.5 K, above which κxy/T 
increases rapidly with T. As shown in the inset of Fig. 4, κxy/T decreases 
after reaching a maximum at around 15 K and nearly vanishes above 
about 60 K (see Extended Data Fig. 6). As the vanishing temperature 
of κxy/T is close to the Kitaev interaction, it is natural to consider that 
the finite thermal Hall signal reflects unusual quasiparticle excitations 
inherent to the spin-liquid state governed by the Kitaev interaction 
(see Methods for further discussion).

In equation (1), the coefficient q gives the chiral central charge of the 
gapless boundary modes, which propagate along one direction. The 
central charge represents a degree of freedom of one-dimensional gap-
less modes; it is unity for conventional fermions and 1/2 for Majorana 
fermions whose degrees of freedom are half of those of conventional 
fermions. An integer quantum Hall system with bulk Chern number 
ν has ν boundary modes with q = ν, whereas a Kitaev QSL with Chern 
number ν has ν Majorana boundary modes with q = ν/2. Thus, the 
observed half-integer thermal Hall conductance provides direct evi-
dence of chiral Majorana edge currents. We also note that the positive 
Hall sign is also consistent with that predicted in the Kitaev QSL1. In the 
pure Kitaev model, the excitation energy of the Z2 flux is estimated7 to 
be ∆F/kB ≈ 0.06JK/kB ≈ 5.5 K. Recent numerical results16 of the thermal 
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Fig. 1 | Chiral Majorana edge currents and temperature–magnetic field 
phase diagram of α-RuCl3. a, b, Schematic illustrations of heat 
conduction in the integer quantum Hall state of a 2D electron gas (a) and a 
Kitaev QSL state (b) in a magnetic field perpendicular to the sample plane 
(grey arrows). In the red (blue) area, the temperature is higher (lower), and 
the red and blue arrows represent thermal flow. In the quantum Hall state, 
the skipping orbits of electrons (green spheres) at the edge, which form 
one-dimensional edge channels, conduct heat and κxy is negative in sign. In 
the Kitaev QSL state, spins are fractionalized into Majorana fermions 
(yellow spheres) and Z2 fluxes (hexagons). The heat is carried by chiral 
edge currents of charge-neutral Majorana fermions and κxy is positive in 
sign. c, Phase diagram of α-RuCl3 in a field tilted at θ = 60° (see right inset, 
where green and blue arrows represent the magnetic field H and parallel 
field component H∥). Open and closed diamonds represent the onset 
temperature of AFM order with zigzag-type TN determined by the T and 
H dependences of κxx, respectively (see Fig. 2b and Extended Data Figs. 1 
and 2). Below T ≈ JK/kB ≈ 80 K, the spin-liquid (Kitaev paramagnetic) 
state appears. At µ ≈∗H 7 T0 , TN vanishes. A half-integer quantized plateau 
of the 2D thermal Hall conductance is observed in the red area. Open blue 
squares represent the fields where the thermal Hall response disappears. 
The red circle is the suggested topological phase-transition point that 
separates the non-trivial QSL state with topologically protected chiral 
Majorana edge currents from a trivial state, such as a non-topological spin 
liquid. The striped region denotes the region that was not accessible in the 
thermal Hall effect measurements. Error bars represent one standard 
deviation (error bars for the temperature are smaller than the symbols). 
The left inset shows the zigzag magnetic structure in the AFM state. The 
magnetic moments of Ru atoms represented by blue and green arrows are 
aligned antiparallel.

2 2 8  |  N A T U R E  |  V O L  5 5 9  |  1 2  J U L Y  2 0 1 8
© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

Kasahara et al. 2018 Nagler et al.

INS

shows several transitions

variation in magnetic field strength changes 
the magnetic contribution to the entropy

at fixed entropy measure temperature 
changes

Steve



Beyond the “early” 
materials

• Hide: “hydrogen-intercalated lithium 
iridate”: α-H3LiIr2O6”

a b
c c

a b

a-Li2IrO3 H3LiIr2O6

“out-of-plane 
compressed”

a b
c c

a b

a-Li2IrO3 H3LiIr2O6

can this help to remove the zero-field ordering?



Many probes

• insulator from resistivity

• no phase transition from C or χ 

• no magnetic order from NMR

• spin dynamics

• isotope effect

} consistent 
with QSL 

ground state, 
but, if so, 

which one?

Hide



Entropy plateaus in spin-s 
Kitaev models

• Classical models with large degeneracies show entropy plateaus 
at a function of T

e.g. classical spin ice

Ramirez et al 1999

expect plateau-like features with 
perturbations

classical Kitaev has large 
degeneracy

Applegate et al 2012

entropy plateaus in model with 
Heisenberg as well? quantum model?

Rajiv



Thermal Hall effect

• when quantized: smoking gun of 
fermionic edge modes

• otherwise: probes the nature of the 
state

cf. Kitaev in field

Topological thermal Hall effect from induced  
internal gauge flux in U(1) spin liquid

Topological thermal Hall e↵ect for topological excitations in spin liquid:
Emergent Lorentz force on the spinons

Yong Hao Gao1 and Gang Chen1,2⇤
1State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China and
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We study the origin of Lorentz force on the spinons in a U(1) spin liquid. We are inspired by
the previous observation of gauge field correlation in the pairwise spin correlation using the neutron
scattering measurement when the Dzyaloshinskii-Moriya interaction intertwines with the lattice
geometry. We extend this observation to the Lorentz force that exerts on the (neutral) spinons. The
external magnetic field, that polarizes the spins, e↵ectively generates an internal U(1) gauge flux
for the spinons and twists the spinon motion through the Dzyaloshinskii-Moriya interaction. Such a
mechanism for the emergent Lorentz force di↵ers fundamentally from the induction of the internal
U(1) gauge flux in the weak Mott insulating regime from the charge fluctuations. We apply this
understanding to the specific case of spinon metals on the kagome lattice. Our suggestion of emergent
Lorentz force generation and the resulting topological thermal Hall e↵ect may apply broadly to other
non-centrosymmetric spin liquids with Dzyaloshinskii-Moriya interaction. We discuss the relevance
with the thermal Hall transport in kagome materials volborthite and kapellasite.

Quantum spin liquid (QSL) is an exotic quantum state
of matter in which spins are highly entangled quantum
mechanically and remain disordered down to zero tem-
perature [1–3]. Experimental identification of QSLs is of
fundamental importance for our understanding of quan-
tum matter. Thermal transport represents one sensitive
experimental probe to unveil the nature of low-energy
itinerant excitations, because other localized degrees of
freedom, such as nuclear spins and defects, do not carry
nor transport heat. Any heat current in a Mott insulator
must be carried by the emergent and neutral quasipar-
ticles [4, 5]. In the QSL regime, the deconfined spinons
transport heat in the same way that the physical elec-
trons carry charge in an electrical conductor. However,
a major di�culty is that other excitations, most notably
phonons, may get involved in the longitudinal thermal
conductivity [6–14]. The quantitative contribution of
spin excitations may be di�cult to be extracted from the
total longitudinal thermal conductivity due to the spin-
phonon interaction, which is suggested to be present in
many materials, especially in the ones with strong spin-
orbit coupling. Thus, thermal Hall e↵ect may be a more
suitable probe to unveil the exotic excitations in QSLs
since phonons do not usually contribute to thermal Hall
transport.

There are three ways that thermal Hall e↵ect may be-
come signicant in a QSL. First, if the QSL is a two-
dimensional chiral spin liquid, there would be chiral edge
states that contribute a quantized thermal Hall response.
Second, if the external magnetic field comes to mod-
ify the spinon bands such that the reconstructed spinon
band develops edge states, the system would produce
a quantized thermal Hall e↵ect. A well-known exam-
ple is the quantized thermal Hall e↵ect in the Kitaev
model [15] where the external field generates a Chern

band for majorana spinons via high-order perturbations.
This case may be not quite distinct from the first one
except the first one is already a chiral spin liquid with-
out magnetic field. The third case is when the gauge
field of the QSLs is continuous. This includes, for ex-
ample, spinon Fermi surface U(1) QSL [16–21], U(1)
Dirac QSL [22–24], and pyrochlore ice U(1) QSL [25–
28]. For the spinon Fermi surface U(1) QSL that was
proposed for the weak Mott insulating organic materi-
als -(ET)2Cu2(CN)3 and EtMe3Sb[Pd(dmit)2]2, it was
suggested [18, 29] that the external magnetic field could
induce an internal U(1) gauge flux through the strong
charge fluctuation or the four-spin ring exchange (due
to the proximity to a Mott transition) [16]. From this
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FIG. 1. (a) Symmetry allowed Dzyaloshinskii-Moriya inter-
actions between first neighbors on the kagome lattice, where
Dz (Dk) is the z (in-plane) component. The black arrows on
the bonds specify the order of the cross product Si⇥Sj . The
sublattices are labelled by colors. (b) Schematic view of scalar
spin chirality for a non-collinear spin configuration, where �
is the corresponding gauge flux through the plaquette and ⌦
is the solid angle subtended by the three spins. (c) Internal
U(1) flux distribution induced on the kagome lattice.
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mechanism, the neutral spinons could experience the ex-
ternal field and contribute to the thermal Hall e↵ect [30],
and a fundamentally di↵erent mechanism is required to
understand the thermal Hall e↵ects in this regime. Ap-
parently, thermal Hall e↵ects have been observed in the
kagome magnets volborthite Cu3V2O7(OH)2 · 2H2O [31]
and kapellasite CaCu3(OH)6Cl2·0.6H2O [32], and the
pyrochlore spin ice Tb2Ti2O7 [33]. In this Letter, we
develop a theory of the topological thermal Hall e↵ect
(TTHE) for U(1) QSLs with spinon Fermi surfaces in
the strong Mott regime. We will explain the emergent
Lorentz force generation and TTHE for the pyrochlore
ice U(1) QSL in a forthcoming paper. In the end of this
Letter, we discuss the open questions in this topic.

In the strong Mott insulating U(1) QSLs, the spinons
carry emergent U(1) gauge charges and are minimally
coupled to the U(1) gauge field as the spinons hop on
the lattice. To twist the spinon motion, the external
magnetic field has to influence the internal U(1) gauge
field and then indirectly impacts on the spinon motion.
In the strong Mott regime, the magnetic field couples
to the spin through the usual Zeeman coupling. The
internal U(1) gauge flux is related to the scalar spin chi-
rality, Si · (Sj ⇥ Sk), that involves three spins [34–36].
It is not obvious how the linear Zeeman coupling enters
to modify the three-spin scalar chirality in a disordered
system, although both terms break the time reversal. A
crucial observation was made by Patrick Lee and Naoto
Nagaosa in the proposal [37] of detecting gauge fields
or scalar spin chirality fluctuations using neutron scat-
tering. They noticed that, with Dzyaloshinskii-Moriya
interaction, the Sz-Sz correlator contains a piece of the
correlator of scalar spin chirality. Although their obser-
vation was originally made for neutron scattering, it also
establishes the microscopic link between the Zeeman cou-
pling and the scalar spin chirality. In the following, we
implement this observation to understand the TTHE in
QSLs.

In Mott insulators where the bond centers are not in-
version centers, the Dzyaloshinskii-Moriya interaction is
generally allowed [38, 39]. This is a relativistic e↵ect and
is more important in the strong spin-orbit-coupled sys-
tems such as the hyperkagome material Na4Ir3O8 [40].
A representative spin model in the strong Mott insulator
has the form,

H =
X

i,j

JijSi · Sj +
X

i,j

Dij · Si ⇥ Sj �
X

i

BSz
i , (1)

where the direction of Dij is determined by the lattice
symmetry from the Moriya’s rule [39], and the field is
applied along z direction. For the kagome lattice that
is used below as an example to illustrate our thought,
the Dzyaloshinskii-Moriya vector for nearest neighbors
can have two components [41, 42] with one normal to
the kagome plane and the other in the kagome plane (see
Fig. 1(a)). This Hamiltonian with variant exchange cou-

plings on neighboring bonds has been proposed for sev-
eral kagome materials where spinon Fermi surface QSLs
were suggested for some materials [31, 43]. It has been
estimated that the out-of-plane Dzyaloshinskii-Moriya
term (Dz) is about 8% of the nearest-neighbor Heisen-
berg exchange for herbertsmithite [44]. Our purpose is
not to solve for the ground state of a specific Hamiltonian.
We assume that the system stabilizes a U(1) QSL with
a spinon Fermi surface and explain how the spinons ac-
quire an emergent Lorentz force from the Dzyaloshinskii-
Moriya interaction.
For the spinon Fermi surface U(1) QSL, the spinon-

gauge coupling is described by the following Lagrangian,

L =
X

i

f†
i�(@⌧ � ia0i � µ)fi� �

X

hiji

t eiaijf†
i�fj�

+

Z

dr

X

µ

1

g
(✏µ⌫�@⌫a�)

2, (2)

where the first line describes the spinon hopping on a
kagome lattice and minimally coupled to the dynamical
U(1) gauge field a, and the second line describes the fluc-
tuation of a. The combined e↵ect of the Dzyaloshinskii-
Moriya interaction and Zeeman coupling has not been
included at this stage. The connection between the emer-
gent spinon-gauge variables and the spin variables is es-
tablished from the usual Abrikovsov fermion construction
with Si ⌘ 1

2f
†
i↵�↵�fi� (↵,� =", #) and the Hilbert space

constraint
P

� f
†
i�fi� ⌘ 1. As a standard procedure, the

above spin-gauge coupling can be readily obtained by in-
troducing the gauge fluctuation to the mean-field ansatz
that generates the spinon Fermi surface state [16, 17, 19].
From Elitzur’s theorem, only gauge invariant variables
are related to the physical spins. The scalar spin chiral-
ity is related to the emergent U(1) gauge flux � via (see
Fig. 1(b))

sin� =
1

2
S1 · S2 ⇥ S3, (3)

where the plaquette for the flux is defined by connecting
the three spins.
For this U(1) QSL, we show below that the

Dzyaloshinskii-Moriya interaction and Zeeman coupling
together could generate a gauge flux distribution on the
kagome lattice. The Dzyaloshinskii-Moriya interaction in
the spin Hamiltonian generates a finite vector spin chiral-
ity hSi ⇥Sji. This immediately suggests the linear rela-
tionship between the scalar spin chirality and the vector
spin operator. The Zeeman coupling generates a finite
spin polarization. Thus, we have a finite scalar spin chi-
rality on the lattice. To be specific, for the kagome lattice
in Fig. 1, we have

hS2 ⇥ S3i = hS4 ⇥ S5i = �D23 = �D45, (4)

where � is a proportionality constant with � ⇠ O(J�1),
and J would be the largest exchange coupling. It is

The combination of Zeeman coupling and DMI generates  
an internal U(1) gauge flux distribution.  

This provides a way to control emergent D.O.F. with external probes.

hSi ⇥ Sj · Ski ⇠ hSi ⇥ Sji · hSki 6= 0
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Quantum spin liquid (QSL) is an exotic quantum state
of matter in which spins are highly entangled quantum
mechanically and remain disordered down to zero tem-
perature [1–3]. Experimental identification of QSLs is of
fundamental importance for our understanding of quan-
tum matter. Thermal transport represents one sensitive
experimental probe to unveil the nature of low-energy
itinerant excitations, because other localized degrees of
freedom, such as nuclear spins and defects, do not carry
nor transport heat. Any heat current in a Mott insulator
must be carried by the emergent and neutral quasipar-
ticles [4, 5]. In the QSL regime, the deconfined spinons
transport heat in the same way that the physical elec-
trons carry charge in an electrical conductor. However,
a major di�culty is that other excitations, most notably
phonons, may get involved in the longitudinal thermal
conductivity [6–14]. The quantitative contribution of
spin excitations may be di�cult to be extracted from the
total longitudinal thermal conductivity due to the spin-
phonon interaction, which is suggested to be present in
many materials, especially in the ones with strong spin-
orbit coupling. Thus, thermal Hall e↵ect may be a more
suitable probe to unveil the exotic excitations in QSLs
since phonons do not usually contribute to thermal Hall
transport.

There are three ways that thermal Hall e↵ect may be-
come signicant in a QSL. First, if the QSL is a two-
dimensional chiral spin liquid, there would be chiral edge
states that contribute a quantized thermal Hall response.
Second, if the external magnetic field comes to mod-
ify the spinon bands such that the reconstructed spinon
band develops edge states, the system would produce
a quantized thermal Hall e↵ect. A well-known exam-
ple is the quantized thermal Hall e↵ect in the Kitaev
model [15] where the external field generates a Chern

band for majorana spinons via high-order perturbations.
This case may be not quite distinct from the first one
except the first one is already a chiral spin liquid with-
out magnetic field. The third case is when the gauge
field of the QSLs is continuous. This includes, for ex-
ample, spinon Fermi surface U(1) QSL [16–21], U(1)
Dirac QSL [22–24], and pyrochlore ice U(1) QSL [25–
28]. For the spinon Fermi surface U(1) QSL that was
proposed for the weak Mott insulating organic materi-
als -(ET)2Cu2(CN)3 and EtMe3Sb[Pd(dmit)2]2, it was
suggested [18, 29] that the external magnetic field could
induce an internal U(1) gauge flux through the strong
charge fluctuation or the four-spin ring exchange (due
to the proximity to a Mott transition) [16]. From this
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mechanism, the neutral spinons could experience the ex-
ternal field and contribute to the thermal Hall e↵ect [30],
and a fundamentally di↵erent mechanism is required to
understand the thermal Hall e↵ects in this regime. Ap-
parently, thermal Hall e↵ects have been observed in the
kagome magnets volborthite Cu3V2O7(OH)2 · 2H2O [31]
and kapellasite CaCu3(OH)6Cl2·0.6H2O [32], and the
pyrochlore spin ice Tb2Ti2O7 [33]. In this Letter, we
develop a theory of the topological thermal Hall e↵ect
(TTHE) for U(1) QSLs with spinon Fermi surfaces in
the strong Mott regime. We will explain the emergent
Lorentz force generation and TTHE for the pyrochlore
ice U(1) QSL in a forthcoming paper. In the end of this
Letter, we discuss the open questions in this topic.

In the strong Mott insulating U(1) QSLs, the spinons
carry emergent U(1) gauge charges and are minimally
coupled to the U(1) gauge field as the spinons hop on
the lattice. To twist the spinon motion, the external
magnetic field has to influence the internal U(1) gauge
field and then indirectly impacts on the spinon motion.
In the strong Mott regime, the magnetic field couples
to the spin through the usual Zeeman coupling. The
internal U(1) gauge flux is related to the scalar spin chi-
rality, Si · (Sj ⇥ Sk), that involves three spins [34–36].
It is not obvious how the linear Zeeman coupling enters
to modify the three-spin scalar chirality in a disordered
system, although both terms break the time reversal. A
crucial observation was made by Patrick Lee and Naoto
Nagaosa in the proposal [37] of detecting gauge fields
or scalar spin chirality fluctuations using neutron scat-
tering. They noticed that, with Dzyaloshinskii-Moriya
interaction, the Sz-Sz correlator contains a piece of the
correlator of scalar spin chirality. Although their obser-
vation was originally made for neutron scattering, it also
establishes the microscopic link between the Zeeman cou-
pling and the scalar spin chirality. In the following, we
implement this observation to understand the TTHE in
QSLs.

In Mott insulators where the bond centers are not in-
version centers, the Dzyaloshinskii-Moriya interaction is
generally allowed [38, 39]. This is a relativistic e↵ect and
is more important in the strong spin-orbit-coupled sys-
tems such as the hyperkagome material Na4Ir3O8 [40].
A representative spin model in the strong Mott insulator
has the form,

H =
X

i,j

JijSi · Sj +
X

i,j

Dij · Si ⇥ Sj �
X

i

BSz
i , (1)

where the direction of Dij is determined by the lattice
symmetry from the Moriya’s rule [39], and the field is
applied along z direction. For the kagome lattice that
is used below as an example to illustrate our thought,
the Dzyaloshinskii-Moriya vector for nearest neighbors
can have two components [41, 42] with one normal to
the kagome plane and the other in the kagome plane (see
Fig. 1(a)). This Hamiltonian with variant exchange cou-

plings on neighboring bonds has been proposed for sev-
eral kagome materials where spinon Fermi surface QSLs
were suggested for some materials [31, 43]. It has been
estimated that the out-of-plane Dzyaloshinskii-Moriya
term (Dz) is about 8% of the nearest-neighbor Heisen-
berg exchange for herbertsmithite [44]. Our purpose is
not to solve for the ground state of a specific Hamiltonian.
We assume that the system stabilizes a U(1) QSL with
a spinon Fermi surface and explain how the spinons ac-
quire an emergent Lorentz force from the Dzyaloshinskii-
Moriya interaction.
For the spinon Fermi surface U(1) QSL, the spinon-

gauge coupling is described by the following Lagrangian,

L =
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t eiaijf†
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Z
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where the first line describes the spinon hopping on a
kagome lattice and minimally coupled to the dynamical
U(1) gauge field a, and the second line describes the fluc-
tuation of a. The combined e↵ect of the Dzyaloshinskii-
Moriya interaction and Zeeman coupling has not been
included at this stage. The connection between the emer-
gent spinon-gauge variables and the spin variables is es-
tablished from the usual Abrikovsov fermion construction
with Si ⌘ 1

2f
†
i↵�↵�fi� (↵,� =", #) and the Hilbert space

constraint
P

� f
†
i�fi� ⌘ 1. As a standard procedure, the

above spin-gauge coupling can be readily obtained by in-
troducing the gauge fluctuation to the mean-field ansatz
that generates the spinon Fermi surface state [16, 17, 19].
From Elitzur’s theorem, only gauge invariant variables
are related to the physical spins. The scalar spin chiral-
ity is related to the emergent U(1) gauge flux � via (see
Fig. 1(b))

sin� =
1

2
S1 · S2 ⇥ S3, (3)

where the plaquette for the flux is defined by connecting
the three spins.
For this U(1) QSL, we show below that the

Dzyaloshinskii-Moriya interaction and Zeeman coupling
together could generate a gauge flux distribution on the
kagome lattice. The Dzyaloshinskii-Moriya interaction in
the spin Hamiltonian generates a finite vector spin chiral-
ity hSi ⇥Sji. This immediately suggests the linear rela-
tionship between the scalar spin chirality and the vector
spin operator. The Zeeman coupling generates a finite
spin polarization. Thus, we have a finite scalar spin chi-
rality on the lattice. To be specific, for the kagome lattice
in Fig. 1, we have

hS2 ⇥ S3i = hS4 ⇥ S5i = �D23 = �D45, (4)

where � is a proportionality constant with � ⇠ O(J�1),
and J would be the largest exchange coupling. It is

The combination of Zeeman coupling and DMI generates  
an internal U(1) gauge flux distribution.  

This provides a way to control emergent D.O.F. with external probes.
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Quantum spin liquid (QSL) is an exotic quantum state
of matter in which spins are highly entangled quantum
mechanically and remain disordered down to zero tem-
perature [1–3]. Experimental identification of QSLs is of
fundamental importance for our understanding of quan-
tum matter. Thermal transport represents one sensitive
experimental probe to unveil the nature of low-energy
itinerant excitations, because other localized degrees of
freedom, such as nuclear spins and defects, do not carry
nor transport heat. Any heat current in a Mott insulator
must be carried by the emergent and neutral quasipar-
ticles [4, 5]. In the QSL regime, the deconfined spinons
transport heat in the same way that the physical elec-
trons carry charge in an electrical conductor. However,
a major di�culty is that other excitations, most notably
phonons, may get involved in the longitudinal thermal
conductivity [6–14]. The quantitative contribution of
spin excitations may be di�cult to be extracted from the
total longitudinal thermal conductivity due to the spin-
phonon interaction, which is suggested to be present in
many materials, especially in the ones with strong spin-
orbit coupling. Thus, thermal Hall e↵ect may be a more
suitable probe to unveil the exotic excitations in QSLs
since phonons do not usually contribute to thermal Hall
transport.

There are three ways that thermal Hall e↵ect may be-
come signicant in a QSL. First, if the QSL is a two-
dimensional chiral spin liquid, there would be chiral edge
states that contribute a quantized thermal Hall response.
Second, if the external magnetic field comes to mod-
ify the spinon bands such that the reconstructed spinon
band develops edge states, the system would produce
a quantized thermal Hall e↵ect. A well-known exam-
ple is the quantized thermal Hall e↵ect in the Kitaev
model [15] where the external field generates a Chern

band for majorana spinons via high-order perturbations.
This case may be not quite distinct from the first one
except the first one is already a chiral spin liquid with-
out magnetic field. The third case is when the gauge
field of the QSLs is continuous. This includes, for ex-
ample, spinon Fermi surface U(1) QSL [16–21], U(1)
Dirac QSL [22–24], and pyrochlore ice U(1) QSL [25–
28]. For the spinon Fermi surface U(1) QSL that was
proposed for the weak Mott insulating organic materi-
als -(ET)2Cu2(CN)3 and EtMe3Sb[Pd(dmit)2]2, it was
suggested [18, 29] that the external magnetic field could
induce an internal U(1) gauge flux through the strong
charge fluctuation or the four-spin ring exchange (due
to the proximity to a Mott transition) [16]. From this
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mechanism, the neutral spinons could experience the ex-
ternal field and contribute to the thermal Hall e↵ect [30],
and a fundamentally di↵erent mechanism is required to
understand the thermal Hall e↵ects in this regime. Ap-
parently, thermal Hall e↵ects have been observed in the
kagome magnets volborthite Cu3V2O7(OH)2 · 2H2O [31]
and kapellasite CaCu3(OH)6Cl2·0.6H2O [32], and the
pyrochlore spin ice Tb2Ti2O7 [33]. In this Letter, we
develop a theory of the topological thermal Hall e↵ect
(TTHE) for U(1) QSLs with spinon Fermi surfaces in
the strong Mott regime. We will explain the emergent
Lorentz force generation and TTHE for the pyrochlore
ice U(1) QSL in a forthcoming paper. In the end of this
Letter, we discuss the open questions in this topic.

In the strong Mott insulating U(1) QSLs, the spinons
carry emergent U(1) gauge charges and are minimally
coupled to the U(1) gauge field as the spinons hop on
the lattice. To twist the spinon motion, the external
magnetic field has to influence the internal U(1) gauge
field and then indirectly impacts on the spinon motion.
In the strong Mott regime, the magnetic field couples
to the spin through the usual Zeeman coupling. The
internal U(1) gauge flux is related to the scalar spin chi-
rality, Si · (Sj ⇥ Sk), that involves three spins [34–36].
It is not obvious how the linear Zeeman coupling enters
to modify the three-spin scalar chirality in a disordered
system, although both terms break the time reversal. A
crucial observation was made by Patrick Lee and Naoto
Nagaosa in the proposal [37] of detecting gauge fields
or scalar spin chirality fluctuations using neutron scat-
tering. They noticed that, with Dzyaloshinskii-Moriya
interaction, the Sz-Sz correlator contains a piece of the
correlator of scalar spin chirality. Although their obser-
vation was originally made for neutron scattering, it also
establishes the microscopic link between the Zeeman cou-
pling and the scalar spin chirality. In the following, we
implement this observation to understand the TTHE in
QSLs.

In Mott insulators where the bond centers are not in-
version centers, the Dzyaloshinskii-Moriya interaction is
generally allowed [38, 39]. This is a relativistic e↵ect and
is more important in the strong spin-orbit-coupled sys-
tems such as the hyperkagome material Na4Ir3O8 [40].
A representative spin model in the strong Mott insulator
has the form,

H =
X

i,j

JijSi · Sj +
X

i,j

Dij · Si ⇥ Sj �
X

i

BSz
i , (1)

where the direction of Dij is determined by the lattice
symmetry from the Moriya’s rule [39], and the field is
applied along z direction. For the kagome lattice that
is used below as an example to illustrate our thought,
the Dzyaloshinskii-Moriya vector for nearest neighbors
can have two components [41, 42] with one normal to
the kagome plane and the other in the kagome plane (see
Fig. 1(a)). This Hamiltonian with variant exchange cou-

plings on neighboring bonds has been proposed for sev-
eral kagome materials where spinon Fermi surface QSLs
were suggested for some materials [31, 43]. It has been
estimated that the out-of-plane Dzyaloshinskii-Moriya
term (Dz) is about 8% of the nearest-neighbor Heisen-
berg exchange for herbertsmithite [44]. Our purpose is
not to solve for the ground state of a specific Hamiltonian.
We assume that the system stabilizes a U(1) QSL with
a spinon Fermi surface and explain how the spinons ac-
quire an emergent Lorentz force from the Dzyaloshinskii-
Moriya interaction.
For the spinon Fermi surface U(1) QSL, the spinon-

gauge coupling is described by the following Lagrangian,

L =
X

i

f†
i�(@⌧ � ia0i � µ)fi� �

X

hiji

t eiaijf†
i�fj�

+

Z

dr

X

µ

1

g
(✏µ⌫�@⌫a�)

2, (2)

where the first line describes the spinon hopping on a
kagome lattice and minimally coupled to the dynamical
U(1) gauge field a, and the second line describes the fluc-
tuation of a. The combined e↵ect of the Dzyaloshinskii-
Moriya interaction and Zeeman coupling has not been
included at this stage. The connection between the emer-
gent spinon-gauge variables and the spin variables is es-
tablished from the usual Abrikovsov fermion construction
with Si ⌘ 1

2f
†
i↵�↵�fi� (↵,� =", #) and the Hilbert space

constraint
P

� f
†
i�fi� ⌘ 1. As a standard procedure, the

above spin-gauge coupling can be readily obtained by in-
troducing the gauge fluctuation to the mean-field ansatz
that generates the spinon Fermi surface state [16, 17, 19].
From Elitzur’s theorem, only gauge invariant variables
are related to the physical spins. The scalar spin chiral-
ity is related to the emergent U(1) gauge flux � via (see
Fig. 1(b))

sin� =
1

2
S1 · S2 ⇥ S3, (3)

where the plaquette for the flux is defined by connecting
the three spins.
For this U(1) QSL, we show below that the

Dzyaloshinskii-Moriya interaction and Zeeman coupling
together could generate a gauge flux distribution on the
kagome lattice. The Dzyaloshinskii-Moriya interaction in
the spin Hamiltonian generates a finite vector spin chiral-
ity hSi ⇥Sji. This immediately suggests the linear rela-
tionship between the scalar spin chirality and the vector
spin operator. The Zeeman coupling generates a finite
spin polarization. Thus, we have a finite scalar spin chi-
rality on the lattice. To be specific, for the kagome lattice
in Fig. 1, we have

hS2 ⇥ S3i = hS4 ⇥ S5i = �D23 = �D45, (4)

where � is a proportionality constant with � ⇠ O(J�1),
and J would be the largest exchange coupling. It is

The combination of Zeeman coupling and DMI generates  
an internal U(1) gauge flux distribution.  

This provides a way to control emergent D.O.F. with external probes.

hSi ⇥ Sj · Ski ⇠ hSi ⇥ Sji · hSki 6= 0
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