Cooperative valence dynamics in Anderson Lattices observed by resonant inelastic x-ray scattering Marein Rahn Los Alamos National Laboratory

Fermi Liquid ? Kondo Chain ?

LANL

Eric Bauer Darrin Byler Jianxin Zhu Jon Lawrence Filip Ronning Marc Janoschek (→PSI)

ARPES

Jonathan Denlinger (ALS) Donghui Lu (SSRL) Makoto Hashimoto (SSRL) Fanny Rodolakis Simoes (APS) Jessica McChesney (APS) Emile Rienks (HZB)

RIXS

Kurt Kummer (ESRF) Andrea Amorese (U Cologne)

REXS

Daniel Mazzone (BNL)

see P. Coleman in "PWA90" (World Scientific)

"What you really have here is a **lattice full of these objects that fluctuate back and forth from one valence to another**. There are the phonons, there is the fact that the electrons fluctuate by tossing electrons into the d level on the next site which can then go down into the f levels on yet another site. So the **things which toss the valence back and forth are definitely coupled between one site and another**. (...) This is an extremely hard problem. "

- P. W. Anderson Rochester Conference on Mixed Valence (1976) n Lattices scattering /arein Rahn I Laboratory

W.NFO

RIXS

Kurt Kummer (ESRF) Andrea Amorese (U Cologne)

REXS

Daniel Mazzone (BNL)

Eric Bauer Darrin Byler Jianxin Zhu Jon Lawrence

LANL

Filip Ronning

Marc Janoschek (→PSI)

ARPES

Jonathan Denlinger (ALS) Donghui Lu (SSRL) Makoto Hashimoto (SSRL) Fanny Rodolakis Simoes (APS) Jessica McChesney (APS) Emile Rienks (HZB) D.I. Khomskii, Cambridge University Press (2010)

Questions

What is the microscopic mechanism of the quantum coherent state? (relevance of inter-site fluctuations, phonons, ... ?)

How do the relevant energy scales arise?

 $(T_K T_{coh} T_{RKKY})$

How are elementary excitations (charge, spin) being renormalized?

How does this break down when magnetism is approached?

(How) are the resulting quantum fluctuations driving emergent phases?

theory

need to take into account electronic and magnetic, local and itinerant degrees of freedom, on disparate energy scales:

- on-site correlation
- inter-site correlation
- lattice coupling (?)

Challenges

experiment

Interest:

- *f* level energies
- widths and splitting
- occupation numbers

 character and dispersion of quasiparticle states
time- and length scale
of the probe must match

often... not directly measured by bulk methods, not well resolved by spectroscopy

Dürer/Grover (CNLS 2019)

Kondo lattice properties

P. Coleman, *Heavy Fermions* (2007) Dordevič *et al.*, PRL 86,684 (2001) Burch et al., PRB 75, 054523 (2007)

J. Lawrence, Rep. Prog. Phys. 44 (1981)

Experimental probes *local* vs. *lattice properties*

Universality of AIM: Lawrence, PRB 63, 054427 (2001)

IV DMFT: Goremychkin, Science 359, 186 (2018)

Fanelli, J. Phys.: Cond. Mat. 26 (2014)

(H, 0.5, 0)

(H, 0.5, 0.5)

(H, 1, 0)

(H, 1.5, 0)

(H, 0.5, 1)

•

0

 \triangle

٥

Coherent quasiparticle excitations in CePd₃

Neutron scattering

Resonant X-ray Scattering (RIXS/REXS)

interaction Hamiltonian: movement of an electron in an electromagnetic field

$$\mathcal{H}_{\text{int}} = \sum_{i=1}^{N} \underbrace{\frac{e^2}{2mc^2} \mathbf{A}^2}_{\mathcal{H}_1} \underbrace{\underbrace{-\frac{e}{mc} \mathbf{p}_i \cdot \mathbf{A}}_{\mathcal{H}_2}}_{\mathcal{H}_2} \underbrace{-\frac{e\hbar}{mc} \mathbf{s}_i \cdot (\nabla \times \mathbf{A})}_{\mathcal{H}_3} \underbrace{+ \frac{e\hbar}{2m^2c^3} \mathbf{s}_i \cdot \left[\left(\frac{\partial}{\partial t} \mathbf{A}\right) \times \left(\mathbf{p}_i - \frac{e}{c} \mathbf{A}\right)\right]}_{\mathcal{H}_4}$$

scattering amplitude in 2nd order perturbation theory: *Kramers-Heisenberg relation*

$$\mathcal{W}_{\text{res}} = \frac{2\pi}{\hbar} \sum_{f} \left| \sum_{n} \frac{\langle f | \mathcal{H}_{2} | n \rangle \langle n | \mathcal{H}_{2} | i \rangle}{E_{i} - E_{n} + \hbar \omega_{k_{i}} + i \Gamma_{n} / 2} \right|^{2} \delta(\hbar \omega_{Q} - (E_{f} - E_{i}))$$

implies strong resonant enhancement at x-ray absorption edges

access to a wide range inelastic processes:

- magnons
- phonons
- charge-density wave excitations
- inter-band transitions
- ...

M-edge RIXS for localized Ce:

15

10

5

400

$$G^{3}(\omega_{1},\omega_{2}) = \left\langle \psi_{i} \middle| T_{1}^{\dagger} \frac{1}{\omega_{1} - H_{1} - i\Gamma/2} T_{2}^{\dagger} \frac{1}{\omega_{2} - H_{2} + i\Gamma/2} T_{2} \frac{1}{\omega_{1} - H_{1} + i\Gamma/2} T_{1} \middle| \psi_{i} \right\rangle$$

CeRh₂Si₂ T_{K} = 2.6 K $\ll E_{CEF}$ = 350~600 K Amorese, PRB 97, 245130 (2018)

multiplet (i.e. single ion) calculations using 3rd order Green's-function (*Quanty* algorithm, M. Haverkort)

CePd₃ *M*-edge XAS & RIXS

Murani et al., PRB 65, 095616 (2002)

CePd₃ *M*-edge RIXS

quasiparticle interband excitations

CePd₃ RIXS momentum dependence

Thank You! Marein Rahn, rahn@lanl.gov

Alexander von Humboldt Stiftung/Foundation

fast

•

•

tiny samples

no phonons

wide E-range

ionic specificity

- high-resolution soft-x-ray RIXS is an emerging technique which is well suited to probe excitations across hybridization gaps in valence fluctuating materials, as a function of energyand momentum transfer as well as polarization
- RIXS is complementary to other spectroscopies (XAS, INS, ARPES) and offers a number of experimental advantages
- the data provides a benchmark for computational methods in terms of ab-initio calculations of correlated *f*-electronic bands, as well as calculations of the RIXS cross section for excitations between interacting itinerant states

LANL	ARPES
Eric Bauer	Jonathan Denlinger (ALS)
Darrin Byler	Donghui Lu (SSRL)
Jianxin Zhu	Makoto Hashimoto (SSRL)
Jon Lawrence	Fanny Rodolakis Simoes (APS)
Filip Ronning	Jessica McChesney (APS)
Marc Janoschek	Emile Rienks (HZB)

RIXS

Kurt Kummer (ESRF) Andrea Amorese (U Cologne)

REXS

Daniel Mazzone (BNL)