Possible Kitaev spin liquid physics and topological transitions in α-RuCl₃

Stephen Nagler Oak Ridge National Laboratory

Outline

I. Kitaev's model

- Quick reminder of possible relevance to materials
- Basics of α -RuCl₃
- II. Some inelastic neutron scattering
 - Magnons and fractional excitations in INS
 - Inelastic neutron scattering in α-RuCl₃

III. Recent results

- Higher fields and 3rd dimension
- Magnetocaloric effect and T- B phase diagram

Neutron Scattering Collaborators:

A. Banerjee, A. Aczel, <u>C. Balz</u>, C. Batista, S. Bhattacharjee, C. Bridges, H. Cao, B. Chakoumakos, G. Ehlers, O. Garlea, G. Granroth, Y. Kamiya, J. Knolle, D. Kovrizhin, P. Lampen-Kelley, L. Li, Y. Liu, Z. Lu, M. Lumsden, D. Mandrus, R. Moessner, M. Stone, D, Pajerowski, A. Samarakoon, D. A. Tennant, B. Winn, J.-Q. Yan, Y. Yiu, S. Zhang.

Christian Balz

arXiv:1903.00056

Additional collaborators: X. Hu, S. M. Yadav, Y. Takano

Outline

I. Kitaev's model

- Quick reminder of possible relevance to materials
- Basics of α -RuCl₃

Kitaev's model on honeycomb lattice – a special QSL

Available online at www.sciencedirect.com

ANNALS of PHYSICS

Annals of Physics 321 (2006) 2-111

www.elsevier.com/locate/aop

Anyons in an exactly solved model and beyond

Alexei Kitaev *

California Institute of Technology, Pasadena, CA 91125, USA

Received 21 October 2005; accepted 25 October 2005

Kitaev's model on honeycomb lattice – a special QSL

- Kitaev interaction: Bond-directional dependent Ising coupling
- Exactly solvable Hamiltonian
- \rightarrow *quantum spin liquid* ground state

Fig. 3. Three types of links in the honeycomb lattice.

Dynamics of Kitaev QSL

Kitaev interactions in materials

PRL 102, 017205 (2009)

PHYSICAL REVIEW LETTERS

week ending 9 JANUARY 2009

See also: H. Takagi *et al.*, Nature Reviews Physics 1, (2019)

Mott Insulators in the Strong Spin-Orbit Coupling Limit: From Heisenberg to a Quantum Compass and Kitaev Models

G. Jackeli1,* and G. Khaliullin1

d⁵ in low spin octahedral configuration

edge-sharing octahedra

Heisenberg – Kitaev Phase Diagram

Effect of additional interactions

α -RuCl₃ : quasi - 2D honeycomb material

- Honeycomb lattice
- Ru³⁺ in octahedral low spin
- $J_{1/2} \rightarrow J_{3/2}$ transition $\approx 200 \text{ meV}$

No. 4898 September 14, 1963

NATURE

CHEMISTRY

Anhydrous Ruthenium Chlorides

NATUR

J. M. FLETCHER W. E. GARDNER

- E. W. HOOPER
- K. R. Hyde
- F. H. MOORE

J. L. WOODHEAD

Transition to zig-zag order at $T_N = 7 \text{ K}$

Field dependence of T_N

 $B_C \approx 7.3 \text{ T}$

Additional ordered phase 6 – 7.3 T

Evidence of fractionalization from thermal Hall ?

Majorana quantization and half-integer thermal quantum Hall effect in a Kitaev spin liquid

Y. Kasahara¹, T. Ohnishi¹, N. Kurita², H. Tanaka², J. Nasu², Y. Motome³, T. Shibauchi⁴, and Y. Matsuda¹

 κ_{xy}^{2D} reaches a quantum plateau as a function of applied magnetic field. That is, κ_{xy}^{2D}/T attains a quantization value of $(\pi/12)(k_B^2/\hbar)$, which is exactly half of κ_{xy}^{2D}/T in the integer QHE. This halfinteger thermal Hall conductance observed in a bulk material is a direct signature of topologically protected chiral edge currents of charge neutral Majorana fermions, particles that are their own antiparticles, which possess half degrees of freedom of conventional fermions [13–16]. These signatures demonstrate the fractionalization of spins into itinerant Majorana fermions and Z_2 fluxes predicted in a Kitaev QSL [1, 3]. Above

Nature 559, 227–231 (2018)

Outline

- II. Some inelastic neutron scattering
 - Magnons and fractional excitations in INS
 - Inelastic neutron scattering in α -RuCl₃

KCuF₃ – a one dimensional S=1/2 HAFC

- •Tetragonal structure
- •Chains of Cu^{2+} ions along c axis
- •"Orbitally ordered"

- Heisenberg AF chains of S=1/2 Cu²⁺ ions
- Inter-chain coupling leads to 3D AF order at $T_N = 39$ K
- Above T_N the response follows that expected for the isolated S=1/2 chain

 which is much different from that predicted for classical spins

Energy dependence of the response below T_N

Expectations for spin waves in a zigzag state

- Dispersion minima at ordering wavevectors (M points)
- Low energy constant E slices show cone shaped dispersion surfaces around the M points
- Less general, but true for Heisenberg-Kitaev model:

 Γ points show flat modes sharp in energy

α -RuCl₃ single crystal - INS

Experiment: Γ point signal inconsistent with SW

- At $T_N \approx 7$ K the spin waves disappear throughout the Brillouin zone
- Above T_N the continuum near the Γ point persists

Q,T dependence of the continuum scattering

- circular column centered on H=K=0, extending to higher energies
- at low T, moderate energy SW peaks and column merge and scattering resembles a six pointed star
- scattering persists to high T

How does field affect the magnetic excitations?

Npj Quantum Materials 3, 8 (2018).

Outline

III. Recent results

- Higher fields and 3rd dimension
- Magnetocaloric effect and T- B phase diagram

C. Balz et al., arXiv:1903.00056

FLEXX triple-axis-spectrometer

K. Habicht et al., EPJ Web of Conferences 83, 03007 (2015)

Constant Q scans, zero field

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Constant Q scans, B > 7.3 T

Constant Q scans, B > 9 T

Dispersion along L

Takeaway:

L dependence consistent with antiferromagnetic interlayer interaction (unit cell has 3 layers)

Recall B dependence of line shape

B dependence of Γ point gap from INS

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Magnetocaloric Effect

Y. Takano group

Actional Laboratory REACTOR SOURCE

31

More complete phase diagram

Comparison with Kasahara et al. phase diagram

Some conclusions

- Inelastic neutron scattering in α-RuCl₃ is consistent with fractional excitations
- An external magnetic field applied in-plane leads to a magnetically disordered state, with a higher field transition to a state that seems to be partially polarized and supports magnons
- The intermediate field state is consistent with a QSL

References on α -RuCl₃

Neutron scattering experiments:

- A. Banerjee et al. Nature Materials 15, 733(2016).
- H. Cao, A. Banerjee *et al.* PRB **93**, 134423 (2016).
- A. Banerjee *et al.* SCIENCE **356**, 1055 (2017).
- P. Lampen–Kelley et al. PRL 119, 237203, (2017).
- A. Banerjee et. al., Npj Quantum Materials 3, 8 (2018).
- C. Balz et al., arXiv:1903.00056

Others:

- M. Ziatdinov et al. Nat. Comm. 7, 13774 (2016).
- A. Samarakoon et al. PRB 96, 134408 (2017).
- A. Little et al. PRL 119, 227201 (2017).
- A. N. Ponomaryov et al., PRB 96, 241107(R), (2017).
- R. Hentrich et al., PRL 120, 117204 (2018).

