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Double-(Q) state (magnetic
bubble lattice) in CeAuSb,

Marcus et al. PRL (2018)
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Helix and skyrmions in thin films

Helical Skyrmion crystal
H + SkX _SKX FM + SX

* Lorentz transmission electron microscopy;
measure the in-plane component of spin.

* Materials: Fey sCog 551

X. Z.Yu et al. Nature 465, 901 (2010).
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Multiple-Q spin
texture

Building block of life
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Single-Q helix vs
double-Q helix

1Q state (helix or spiral)

—
M2 «mﬁﬁ

W Tfffr..bs‘w y ‘,.qmm

2Q state

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA



Current driven domain wall motion
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Concept of racetrack memory Current driven motion of helix

Iwasaki et al., Nature Communications (2013
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* Band folding

* Open a gap

* Berry phase due to the non-
coplanar spin texture

e (Conduction electrons Hamiltonian

2 )
St = fdra"\ i hyT g — H] with H = — vl vy - Jsta ny
Zm
e Large Hund’s coupling (adiabatic limit) Jy;>>EF

2
S, = [dridifing' j + ed, - L v =AY iV = C A g1 T (Vi + J,S
¢ 2m c c 8m
* Emergent electromagnetic fields
(VxA) =B =@[n-(8 nxd m)], V4 :Ezz[n-(ana n)
7 2e ! g 2e :

* For skyrmion size 10 nm, B ~ 100 T !!!
* Longitudinal and topological Hall conductivity

ept 1 _epT 0T

7,0, =
m l+(w.7) m 1+(w.7)
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Topological Hall effect induced by spin texture
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Question: What is the effect of spin
textures on the electronic wave functions?

» The motion of the spin texture is described by dynamics of the phason mode
¢(r,t) of the spin texture lattice.

» Sine-Gordon equation
02¢p — 07 ¢ — singp = F,

» The dynamics of motion of spin texture is slow compared to the dynamics of
electrons. For instance, spin texture with lattice parameter a = 1 nm moving at
a velocity 1 m/s, the frequency w = 1 GHz. Therefore we can use adiabatic
approximation.
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The ferromagnetic Kondo lattice/double exchange model

D=1
(a)

H=-tY cde-13ds oe, "

) :

0.0

« The magnetic order S; can be derived for a given .

filling.
* Here we assume S; are determined by other 2 i
magnetic interactions specified by F(S;). S )

« We consider the classical limit |S;>>1 and one

PS(AF-FM |
dimension System. 00, 5708 06 04 02 00%%.00 095 090 085
« For ease of discussion, we parametrize the spin Phase diagram from self-
texture by consistent calculations
S = (0’ b Sin(Q i + (p) ’ COS(Q [ + ¢)) Yunoki et al., PRL (1998)
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1D model

For incommensurate helix, irrational Q, ¢ is a Goldstone mode
corresponding to the translation of the helix.

How does the spectrum depend on ¢?

The spectra 1
do not
change /
& non-trivial
topology & ° oE
" | Nevertheless, it is
| true only for the bulk
spectra
51 3 ;¢ L . N
PBC -
Spectrum depends on ¢, E(k,¢) | OBC ¢
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Connection to the integer Quantum Hall effect

When b=0, the KLM is the same as the Hofstadter model (with two fold
degeneracy), which describes the IQHE.

Landau gauge A= (0,Bia,0)
+ e .. 2Nt
H =tcihqjcj+t exp(EB ta”)cjqcij +H.C
Fourier transform in the y direction, ¢; ; - Ci,kyexp(i kyja)
H = tci-l:l-l,kyci,ky + 2t cos(Qi + kya)c{fkyci,ky + H.C.

Q = 2nBa”e/hc
Corresponding to one-half of the KLM model with S = (0,0,cos(Q i + ¢))

?{:—tZC?Cj—JZCj—Si-O'Ci, ]:2tand¢:kya
(@) i
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2Z Chern insulator in the k, and ¢ space

Chern number

c= L ” dk f " dgTr (U |0, U.0,U|).
0 (

2mi )

with (L[(k’ ¢) = ZE,,<EF hﬁn(k’ ¢)> <¢n(k9 ¢)|

Features:

(1) The spectrum is invariant when ¢
is shifted by mt.

(2) All the Chern numbers are even.

(3) The spectrum is symmetric at
zero energy and Q = .

(4) The Chern number changes sign
with respectto E=0and Q = mt.

2'n

O -
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Charge transport

P = W@xIw@) = 5= | dk*(uild,)

BZ .
AP(¢) = P(¢) — min(P). Explicitly calculated current when ¢ = wt
1 g0.04-
(a) §0.02
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Magnetic version of Archimedes pump

n
when the phason mode is excited. ¢

The number of pump charge is just the
Chern number

2 1
N = [ dpAP(P) = —$A-dk=C
Thouless, PRB 27, 6083 (1983).
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Dimension of the momentum space is increased

In the presence of moving multiple-Q spin texture
Si — ZA/;/t(Qv’ri+¢v)é,u ¢y > Py, + Q- vt
\4

The electronic spectrum depends on crystal momentum k and ¢,,,
E(k, ¢,) = E(k, ¢p,, + 2m). The dimension of momentum space is increased.

Semi-classical dynamics of electron wave packet with momentum k = k @ ¢,
and position r

()= =W _p o
= 2 (K).
hok,

where Q#Y (k) is the Berry curvature in the hybrid momentum space. Generally
0#v(k) # 0 in the presence of spin textures
In the absence of physical EM fields

k=0

(i)v = Wy
\Can be regarded as an effective electric
field in the hybrid momentum space.
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Electric current

The current induced by the motion of the spin texture is

d’k OE,
_er — J (En EF)(hak wvﬂlrfy),

When the Fermi energy is in the spectra gap, the transported charge

_ _eNM Z fzn d¢ ﬂa) Q’uv eN'uva/fv
0

el A 472 W,

\4 1 %

The first Chern number C|’ = ~5 Z fdk#dgbVQ‘,i,
EnSEF

The translational motion of multiple-Q spin texture transports
electric charge.

The dimension of hybrid momentum space d = D + d4 can be d = 4. This allows
for the higher topological order defined by the second Chern number. How?

A: We need to couple the dynamics of ¢, to r
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-

Shearing the spin texture

-

Consider double-Q spin texture (square lattice of
magnetic bubble) and apply shear to the crystal, such

that Qv - Qv + Q{/ I
by =w, +Q,  F = w, + B, i*,

Shear strain generates an effective magnetic field BW

normal to the vu plane.

n

Equation of motion up to the second order in w,, and B,

OE 1) OE
= no VQIZV_ no szlé _ n v Qzé ’ Q,;tv,
hok, (hak7 W Rk, Q™| Orton
The transported charge in one period
e} [T A’k s
¢ =qy+ dg, f—FZ‘ "w,Q]
"7 Jwyl Jo EZE 472 "
y eL’*‘C‘z‘W‘sva’yd second Chern number
~ g, +
0 o) Y | %
o] o 472;% f dh,dey,dk,dss
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Mapping to the high-dimensional Hofstadter model

For the collinear spin texture in physical 2D described by the ansatz

N
Si = [0.0. Z cos(Q,, - ri + c[),,)].

n=1

Double-Q state Triple-Q state
0 = (2£,0),0, = (0, 23, 0= (-57) 0= (-5 -"7) 0= (%.0)

The double-exchange model can be mapped to higher dimensional Hofstadter model

/= t i Ancillary dimensions
7-{ =1 Z (Cx_i_l,y,kz’cx’y’kz’ T Cx,y+1,kz,cx’y,kz, + H'C') W
x,y.k, kody ks ko, sk N
Ky Ky , ,
coS(By;x + By;y + k)
—2t Z + cos(By,x + Bywy + k,)|c y b Cxvkes y
xyk, |+ COS(Byx + Byyy + k) [ kuk ki Ky x
ko K R

with the correspondence the effective crystal momenta Physical dimensions
= Ql ’ B = Ql ’ B = Q2 ’ 7 7 7
* NyZ Y ..,XW * kz = ¢1’ kW = ¢2, kv = ¢3’

=0y, Bw =03, By =03, Their time derivatives become effective electric field.

This exact mapping shows explicitly the dimension of the momentum space is increased. ‘
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Double-Q state maps to 4D and triple-Q maps to 5D systems, ## =
(x,y,z,w,v).

Energy spectrum 2Q 3Q
’ D <
7 0 7 0 _ =
2 -2 -
s s - <,
41 o —
-A

Topological protected edge state

2Q state: ¢ = ¢’ = 2, ¢,””" = —2 and others are zero.
3Q state: €% = ¢V = - = ¢ = -2, ¢;”*" = —2 and others are zero.
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Numerically calculated current 0a. (@) Un-sheared 2Q spi ‘ texture |
induced by the motion of spin | l
texture 0.2 W
O‘O} : - .
(b) haaned 2Q spin texture
0.2
< 00
)
& 08 (c) n-sheared 3Q spin texture
S
O
0.4
0.0' it : :
81 (d) Sheared [3Q spin texture
0.4
0.0
Current response 0 200 400 600 800 1000
time

E,é? e’
o= ' d*k + ——CY"°E, B,
J (27)2h EZ;F f (27)2h ¥é

The transported charge is consistent with the theory using the Chern number
calculated from the Bloch wave function.
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Realistic spin texture from spin Hamiltonian

Spin-Hamiltonian supporting multiple-Q state Hayami, Ying and SZL (2019)

H=2) |-J{a(SyS*, +S5,8",)+8; 8°
Model 1 ZV:[ { O 0" -0y Oy Qv}

% X QX y gV Z Q2 2 )2
+R (53,57, + 59,576+ 55,5%,) } -4 Z(Si) ’

Model2 | H = ZJ,-,S,- ' Sj—HZS;-"—AZ(S?)z,

(i,)) i
D (c)

Spin textures obtained by
Monte Carlo simulation of
~—— = spin Hamiltonian
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Discussions and conclusions

It is necessary to increase the dimension of the momentum space in the presence
of moving spin texture.

In the higher dimensional hybrid momentum space, the electronic wave functions
are topological nontrivial, which is generated dynamically.

As a consequence, the motion of spin textures induces electric charge transport in
magnetic insulators.

The magnets with multiple-Q spin texture provide a platform to explore higher
dimensional topological physics.

Physical 2D magnets with double-Q spin texture =» 4D quantum Hall systems

The dynamically generated topology does not require noncoplanar spin texture, cf.
real Berry phase.

The high dimensional topological index can be accessed by measurement of
current in low dimensional systems.

The Berry curvature in the hybrid momentum space also affects the electronic
properties, i.e. thermoelectric coefficient and conductivity, in metallic magnets.

S. Ying and SZL, PRB 98, 235116 (2018)
S.Ying, S. Hayami and SZL, arXiv:1904.05473
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