
Multipolar Order and  
Multipolar Kondo Effect

Yong Baek Kim
University of Toronto

CNLS Conference:
“Strongly Correlated 
Quantum Materials”

Santa Fe
May 1, 2019



Doniach Phase Diagram
(local spin moments coupled to conduction electrons)

Magnetic order Fermi liquid

6

Fermi surface (as measured by de-Haas van Alphen ex-
periments for instance) will have a small volume that is
determined by the conduction electrons alone.
In our previous work, we pointed out that the transi-

tion from a Z2 FL∗ phase to the heavy FL will generically
be preempted by superconductivity. This is due to the
pairing of spinons in the Z2 phase. In contrast, we ex-
pect that due to conservation of spinon number a direct
transition between the U(1) FL∗ and heavy FL phases
should be possible.

III. MEAN-FIELD THEORY

A simple mean-field theory allows a description both
of a U(1) FL∗ phase and its transition to the heavy FL.
Consider a three-dimensional Kondo-Heisenberg model,
for concreteness on a cubic lattice:

H =
∑

k

ϵkc
†
kαckα +

JK
2

∑

r

S⃗r · c†rασ⃗αα′crα′

+ JH
∑

⟨rr′⟩

S⃗r · S⃗r′ . (1)

Here ckα represent the conduction electrons and S⃗r the
spin-1/2 local moments on the sites of a cubic lattice,
summation over repeated spin indices α is implicit. We
use a fermionic “slave-particle” representation of the lo-
cal moments:

S⃗r =
1

2
f †
rασ⃗αα′frα′ (2)

where frα describes a spinful fermion destruction opera-
tor at site r.
Proceeding as usual, we consider a decoupling of both

the Kondo and Heisenberg exchange using two auxiliary
fields in the particle-hole channel. Treating the fluctua-
tions of these auxiliary fields by a saddle point approxi-
mation (formally justified for a large-N SU(N) general-
ization), we obtain the mean-field Hamiltonian

Hmf =
∑

k

ϵkc
†
kαckα − χ0

∑

⟨rr′⟩

(

f †
rαfr′α + h.c.

)

+ µf

∑

r

f †
rαfrα − b0

∑

k

(

c†kαfkα + h.c.
)

(3)

where we assumed χ0 and b to be real, and have dropped
additional constants to H . The mean-field parameters
b0,χ0, µf are determined by the conditions

1 = ⟨f †
rαfrα⟩ , (4)

2b0 = JK⟨c†rαfrα⟩ , (5)

2χ0 = JH⟨f †
rαfr′α⟩ . (6)

In the last equation r, r′ are nearest neighbors.
There are two qualitatively different zero-temperature

phases. First, there is the usual Fermi liquid (FL) phase

when b0,χ0, µf are all non-zero. (Note that b0 ̸= 0 im-
plies that χ0 ̸= 0). This phase is readily seen to have a
large Fermi surface as expected. Second, there is a phase
(FL∗) where the Kondo hybridization b0 = 0 but χ0 ̸= 0.
(In this phase µf = 0.) This mean-field state repre-
sents a situation where the conduction electrons are de-
coupled from the local moments and form a small Fermi
surface. The local-moment system is described as a spin
fluid with a Fermi surface of neutral spinons. We expect
that χ0 ∼ JH .
The transition between these two different states can

also be examined within the mean-field theory. Interest-
ingly, the transition is second order (despite the jump in
Fermi volume) and is described by b0 → 0 on approach-
ing it from the Fermi liquid side. How can a second order
transition be associated with a jump in the volume of
the electron Fermi surface? This can be understood by
examining the Fermi surfaces closely in this mean-field
theory.
The mean-field Hamiltonian is diagonalized by the

transformation

ckα = ukγkα+ + vkγkα−,

fkα = vkγkα+ − ukγkα−. (7)

Here γkα± are new fermionic operators in terms of which
the Hamiltonian takes the form

Hmf =
∑

kα

Ek+γ
†
kα+γkα+ + Ek−γ

†
kα−γkα−, (8)

with

Ek± =
ϵk + ϵkf

2
±

√

(

ϵk − ϵkf
2

)2

+ b20. (9)

Here ϵkf = µf − χ0
∑

a=1,2,3 cos(ka). The uk, vk intro-
duced above are determined by

uk = −
b0vk

Ek+ − ϵk
, u2

k + v2k = 1 . (10)

Consider first the FL∗ phase where b0 = 0 = µf , but
χ0 ̸= 0. The electron Fermi surface is determined by
the conduction electron dispersion ϵk and is small. The
spinon Fermi surface encloses one spinon per site and has
volume half that of the Brillouin zone. For concreteness,
we will consider the situation where the electron Fermi
surface does not intersect the spinon Fermi surface. We
will also assume that the conduction electron filling is
less than half.
Now consider the FL phase near the transition (small

b0). In this case, there are two bands corresponding to
Ek±: one derives from the c-electrons (with weak f char-
acter) while the other derives from the f -particles (with
weak c-character). We will call the former the c-band and
the latter the f -band. For small b0, both bands intersect
the Fermi energy so that the Fermi surface consists of
two sheets (see Fig. 3). The total volume is large, i.e,

JK
Jc
K



RKKY induced interactions between different multipolar 
degrees of freedom

Nematic Fermi surface, Weyl metal, anomalous Hall effect
Reconstruction of electronic structure:

Possible presence of novel quantum critical points

4f2 Pr3+ ionsQuadrupolar - time reversal even
Octupolar - time reversal odd

Purely multipolar moments (no dipole moment)

Unusual “Kondo” coupling between multipolar local moments 
and conduction electrons

Multipolar local moments in metallic systems



Multipolar local moments in metallic systems

“Hidden” Order” 

Classic example (~30 years old ! ): URu2Si2

Lots of theoretical proposals, but still controversial

Large specific heat anomaly at 17K

5f orbitals are quite extended: Significant hybridization ? 
Local v.s. Itinerant picture ?

What about 4f2 systems ?

More localized orbitals:

With pressure:

Clearer signatures of  
multipolar order ?

Controlling the hybridization !

Pr3+ cubic systems
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Pr(TM)2Al20

Quadrupolar Kondo e↵ect and superconductivity in rare-earth metallic compounds,

PrTM2(Al,Zn)20

SungBin Lee
(Dated: November 9, 2013)

I. EXPERIMENTAL SIGNATURE

We are interested in the experimental properties of rare-earth metallic compounds with a chemical formula
RETM

2

(Al,Zn)
20

. Table.I shows the magnetic properties of RETM
2

(Al,Zn)
20

depending on rare-earth (RE) and
transition metal (TM) ionic sites. As transition metal ionic radius decreases, the ordering temperature (T

N

/ T
Q

) also
decreases. Among these compounds, only PrTi

2

Al
20

shows superconductivity below T
c

= 0.2K, in the presence of
ferroquadrupolar oder (T

Q

= 2K). There is another rare-earth metallic compounds, PrIr
2

Zn
20

, which presents similar
behavior. In this case, antiferroquadrupolar order starts to develop at T<T

Q

= 0.2K and superconductivity at T<
T

c

= 0.05K. Based on the experimental observation, it is found that superconductivity in the presence of quadrupolar
order is special for Pr3+ which has non-Kramers doublets. It is also known that T

c

in PrTi
2

Al
20

increases up to 1K
in the presence of pressure (6GPa < P <10GPa). The nature of superconductivity in the presence of quadrupolar
order is yet unclear and we are interested in the understanding of those phenomena.

II. LATTICE STRUCTURE

RETM
2

X
20

belongs to the cubic space group Fd3̄m, where the RE3+ ion, with the local symmetry T
d

, is located
at the center of a perfect Friauf polyhedron (or called as a Frank Kasper cage) with the coordination number 16,
occupied by X ions. Rare-earth ions form a diamond lattice, whereas, transition metal ions form a pyrochlore lattice,
surrounded by 12 neighboring X ions. A rare earth ionic site is known to have well defined valence RE3+, but the
valence for TM and X ions is unclear. Ref.J. Phys. Soc. Jpn. 81 (2012) 124707 by Z. Hiroi et al shows the band
structure calculation of Al

x

V
2

Al
20

. Based on their LDA calculation, both Al and V significantly contribute to DOS
near Fermi level, it is reasonable to consider the itinerant electrons coming from both TM and X ions. Fig.1 shows a
lattice structure, where blue and green spheres represent TM ions (form a pyrochlore lattice) and X ions respectively.
Yellow shaded cage represents a Frank Kasper cage formed with 16 X ions and RE ion is located its center of each
cage forming a diamond lattice.

A. Crystalline electric field

When RE is Pr (i.e. PrTi
2

Al
20

and PrIr
2

Zn
20

), inelastic neutron scattering study by S. Nakatsuji et al indicates
that the non-Kramers �

3

doublets exist as a ground state well separated with other excited states. (Phy. Rev. B
86.184419) The single Pr3+ ion (total angular momentum J = 4) has the point symmetry 4̄3m(T

d

). The crystalline
electric field (CEF) Hamiltonian using Stevens operator can be written as,

H
CEF

= W [x
O

40

+ 5O
44

F
4

+ (1� |x|)O60

� 21O
64

F
6

] (1)

Compound PrTi2Al20 PrV2Al20 PrCr2Al20 SmTi2Al20 SmV2Al20 SmCr2Al20

µe↵(µB

/mol) 3.43 3.57 3.56 0.55 0.46 0.5

✓CW (K) -40 -55 -53 -6.6 -5 -0.76

T
N

/ T
Q

(K) 2.0 0.6 < 0.4 6.4 2.9 1.8

TABLE I: Magnetic properties for RETM2Al20 (followed by two papers J.Phys.Soc.Jpn 80 (2011) 063701 (S.Nakatsuji group
in ISSP) and J.Solid.State.Chem 196 (2012) 274-281(J.Y.Chan group in Louisiana State Univ.) ). Fit region for Curie-
Weiss temperature of Pr (Sm) is 250K < T<350K ( T

N

< T < 40K), T
Q

is quadrupolar ordering temperature and T
N

is
antiferromagnetic ordering temperature.

PrTr2Al20  (Tr = Ti , V)  systems satisfies all the requirements!! 
 

¾ Non magnetic ground state with purely orbital degrees of freedom 
Cubic G3 CEF ground doublet  (consists of  electric quadruple + magnetic octupole) 

 
¾ Strong hybridization 

9 Cage structure (16Al surrounding Pr) 
9 Smaller cage ⇒ Stronger hybridization in PrV2Al20 

 

¾ Clean sample free from disorder 
Multipolar orderings 

 
 

Tr 

S. Niemann and W. Jeitschko, J. Solid State Chem. 114, 337 (1995) 

Pr site: diamond lattice 
Tr site: Pyrochlore 

CeCr2Al20-type Cubic (Fd-3m), Td @ Pr site 

2

FIG. 1: RETM2X20 lattice structure belongs to Fd3̄m : Blue and green spheres represent TM ions and X ions respectively.
RE ions are sitting in the center of the yellow shaded cage (Frank Kasper cage) formed by 16 X ions. The lattice structure of
RE and TM ions is consistent with the A and B sites of spinel structure AB2X4. (followed by crystallographic parameters in
J.Solid.Stae.Chem 196 (2012) 274-281)

FIG. 2: Pr and TI in PrTi2A20 lattice structure : Pr ions form a diamond lattice and Ti ions form a pyrochlore lattice.
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1

2
(J4

+

+ J4

�)
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6
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z
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z
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z
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6
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1
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[11J2

z
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Pr: Diamond Lattice

TM: Pyrochlore Lattice

Frank-Kasper cage

PrTi2Al20 
PrV2Al20 
PrIr2Zn20 

m⇤/m0 ⇠ 16

m⇤/m0 ⇠ 140

P. Gegenwart & Hiroshima Univ

S. Nakatsuji

multipolar orderheavy fermion
superconductivity quantum critical point

U of Tokyo



Pr3+ Crystal Electric Field Splitting: J=4 

4f2

five crystallographically different sites, namely, the Pr atom
at the 8a site, T at the 16d site, and X at the 16c, 48f, and 96g
sites. The Pr atoms form a diamond structure and the T atoms
form a pyrochlore structure. As shown in Fig. 1, the Pr atoms
are encapsulated in Frank-Kasper cages formed by 16 X
atoms.

Because of the large coordination number of the Pr atom,
the nearly spherical environment (the actual local point-group
symmetry is Td) provides ð4f Þ2 electrons in the Pr3+ ion with
relatively small CEF splitting and increased hybridization
between the 4f and conduction electrons. These aspects are
favorable for exploring exotic Kondo physics in terms of
higher-rank multipoles.

Compared with the one 4f electron in Ce3+, the two 4f
electrons in Pr3+ are more localized. Because of the even
number of 4f electrons, the CEF electronic states are free
from the Kramers theorem. Specifically, the Hund’s rule
J ¼ 4 (L ¼ 5, S ¼ 1) ground-state multiplet in the ð4f Þ2
configuration is lifted by the CEF Hamiltonian for the cubic
symmetry,

HCEF ¼ W

!
x

60
ðO40 þ 5O44Þ þ

1 % jxj
1260

ðO60 % 21O64Þ

þ y

30
ðO62 %O66Þ

"
; ð1Þ

where Omn is the Stevens operator and y ¼ 0 for Td and Oh

symmetries. This expression is well known as the Lea–
Leask–Wolf (LLW) Hamiltonian for cubic symmetry.13,14)

The eigenstates of HCEF for Td are the !1 singlet, !3 doublet,
and !4 and !5 triplets. The expressions for their energies are
given by

E1 ¼ 4W½7x % 20ð1 % jxjÞ';
E3 ¼ 4W½x þ 16ð1 % jxjÞ';

E4

E5

)

¼ %2W½4ð1 % jxjÞ þ 3x

( 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9ð1 % 2jxjÞ þ 30xð1 % jxjÞ þ 34x2 þ 1008y2

p
': ð2Þ

Among these irreducible representations, the !3 doublet has
pure electric quadrupoles of the !3-type: O20 (3z2 % r2) and
O22 (x2 % y2). The other internal degree of freedom in the !3

doublet is the magnetic octupole of the !1-type: Txyz (JxJyJz).
There are no active magnetic dipoles in the !3 doublet. In
contrast to the !3 non-Kramers doublet, the triplet states

accompany ordinary magnetic dipoles of the !4-type: Jx, Jy,
Jz, and other multipoles.

In PrRh2Zn20, a structural phase transition occurs at Ts,
which is much higher than the range of temperatures of
interest in this review, which lowers the local point-group
symmetry for the Pr sites to T, which is characterized by the
finite y parameter in Eq. (1). The compatibility relations
between Td and T are ð!1;!3;!4;!5Þ ! ð!1;!23;!

ð1Þ
4 ;!ð2Þ

4 Þ.
Note that this symmetry lowering does not essentially affect
the low-energy physics, as will be shown in later sections.
The details of the structural characteristics are discussed in
the Appendix.

The CEF level schemes of PrT2Zn20 (T = Ir, Rh) and
PrT2Al20 (T = V, Ti) are shown in Fig. 2, which are
confirmed by the combination of magnetization, specific
heat, ultrasound, and INS measurements as will be discussed
in Sect. 3. In all cases, the non-Kramers doublet !3 (!23) is
the CEF ground state, and the first excited state is the
magnetic triplet, either !4 or !5. The splitting between the !3

ground doublet and the excited triplet, denoted by Δ, should
be one of the important parameters of the system. If Δ were
sufficiently large as compared with other relevant energy
scales, such as the transition temperatures for the quadrupole
order and superconductivity, TQ and Tc, respectively (both
depend indirectly on the effective hybridization strength
between the 4f and conduction electrons), the quadrupolar
(and octupolar) degrees of freedom could dominate low-
energy physics. Otherwise, the interplay between the
quadrupolar and magnetic degrees of freedom would
predominate over pure quadrupolar physics. In Fig. 2, Δ
increases from the left panel to the right.

In Fig. 3, the relation between Δ and ðTQ; TcÞ for PrT2Zn20
and PrT2Al20 is shown. The linear dependences of TQ and Tc
on Δ indicate the existence of an overall characteristic energy
scale, which increases from PrIr2Zn20 to PrTi2Al20. We also
expect that the hybridization strength of the compounds will
increase in the same order. According to this consideration,
we would expect a very small TQ for the Cd systems with
much smaller Δ than that of the Zn systems as listed in
Table I.

The hybridization strength is also an important energy
scale of the system, which unfortunately cannot be extracted
directly from measurements of bulk properties. However, two

Pr

(16c)

(a) (b)

(c)

Pr

T

X

Pr

X 

(96g)X 

(16c)X 

(96g)X 

Fig. 1. (Color online) Crystal structure of PrT2Zn20 (T = Ir, Rh,…) and
PrT2Al20 (T = V, Ti,…).12) (a) Unit cell with Z ¼ 8, (b) atomic cage
including Pr atom, and (c) another cage for X atom at the 16c site.

PrIr 2 20Zn

Γ3
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Γ5

28 K

66 K
67 K

0

(T  )d

PrRh 2 20Zn

Γ23

Γ4
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Γ1

30 K

67 K
79 K

0

Γ4
(2)

(T )

PrTi 2 20Al
(T  )d

Γ3

Γ4

Γ1

Γ5

65 K

156 K

107 K

0

PrV 2 20Al
(T  )d
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Γ4
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Γ5 ~40 K

0

?
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Fig. 2. CEF level schemes of PrT2Zn20 (T = Ir, Rh) and PrT2Al20 (T = V,
Ti). The CEF ground states are non-Kramers doublets !3 (!23) for the point
group Td (T ). The first excited states are triplets.
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n E1n (meV) Irrep Wave function

4 13.47 �1
1
2

q
5
6 |4i+

1
2

q
7
3 |0i+

1
2

q
5
6 |� 4i

3 9.3 �
(1)
5±

1
2

q
7
2 | ± 3i � 1

2

q
1
2 |⌥ 1i

�
(2)
5

q
1
2 |2i �

q
1
2 |� 2i

2 5.61 �
(1)
4±

1
2

q
1
2 |⌥ 3i � 1

2

q
7
2 | ± 1i

�
(2)
4

q
1
2 |4i �

q
1
2 |� 4i

1 0 �
(1)
3

1
2

q
7
6 |4i �

1
2

q
5
3 |0i+

1
2

q
7
6 |� 4i

�
(2)
3

q
1
2 |2i+

q
1
2 |� 2i

TABLE II: Crystalline electric field splitting of Pr3+, J = 4 state

The least-square fitting to the observed spectra in a temperature range of 4.2  T  50K obtained the CEF
parameters x = 0.25 and W = �1.53 meV. Based on Eq.(1) and given two parameters x,W , we can easily obtain the
CEF splitting as following. Table.II shows the CEF splitting of J = 4 states for Pr3+. The ground state �

3

doublets
are separated with the first excited state �

4

triplets by ⇠ 50K and the J4

± in CEF Hamiltonian connects |J
z

= ±4(2)i
to |J

z

= 0(�2)i.

B. Pseudospin-1/2 model of �3 doublets

From now on, we focus on the �
3

doublets and construct the pseudospin-1/2 model of Pr3+ on the symmetry

grounds. Two �
3

doublets, (|+i ⌘ �(1)

3

, |�i ⌘ �(2)

3

), do not have magnetic dipole moments, but do have quadrupole
and octuppole moments.

h±|J
z

|±i = 0

h±|O
20

|±i = ±4

h±|O
22

|±i = 0

h±|T
xyz

|±i = 0

(h±| ± h⌥|)O
22

(|±i± |⌥i) = ⌥9.2376

(⌥ih±|+ h⌥|)T
xyz

(±i|±i+ |⌥i) = ±124.708 (3)

Here, O
20

= 1

2

(3J2

z

� J2), O
22

=
p
3

2

(J2

x

� J2

y

) and T
xyz

=
p
15

6

¯J
x

J
y

J
z

Based on Eq.(3), an e↵ective pseudospin-1/2
operator S represents,

S
z

⇠ O
20

, S
x

⇠ �O
22

, S
y

⇠ �T
xyz

(4)

Local environment of Pr
3+

has T
d

symmetry. (E(1), C
2

(3), S
4

(6), C
3

(8),�
da(bc)

(6) : 24 group elements for total) As
an example, Fig.3 shows S

4z

and C
31

rotational symmetry of Pr sites in the presence of Frank-Kasper cage. Now we
consider how pseudospin S transforms under the symmetry. The total angular momentum at sublattice µ 2 {A,B},
J = (J

µ,x

, J
µ,y

, J
µ,z

) transforms,

I : J

A

! J

B

,J
B

! J

A

✓ : J

µ

! �J

µ

S
4z

: J
µ,x

! �J
µ,y

, J
µ,y

! J
µ,x

C
31

: J
µ,x

! J
µ,z

, J
µ,y

! J
µ,x

, J
µ,z

! J
µ,y

. (5)

Based on Eq.(5), the pseudospin, S defined in Eq.(4) is transformed,

I : S

A

! S

B

,S
B

! S

A

✓ : S
µ,x

! S
µ,x

, S
µ,y

! �S
µ,y

, S
µ,z

! S
µ,z

S
4z

: S
µ,x

! �S
µ,x

, S
µ,y

! �S
µ,y

, S
µ,z

! S
µ,z

C
31

: S
µ,x

! �1

2
S
µ,x

+

p
3

2
S
µ,z

, S
µ,y

! S
µ,y

, S
µ,z

! �
p
3

2
S
µ,x

� 1

2
S
µ,z

. (6)
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In this Letter, we consider a frustrated local-moment
model with two-spin and four-spin interactions, that are
allowed by symmetry associated with the local envi-
ronment of Pr3+ ions and their coupling to the con-
duction electrons. Since our main interest is the in-
terplay between di↵erent multipolar orders and their
thermal phase transitions, we employ mean field theory
and Monte Carlo simulations to investigate the thermal
phase diagram of this model. Our key result is that such
interactions can lead to ground states with coexisting

multipolar orders; we show that this can lead to a single
or two-stage multipolar thermal transitions, and present
results on the e↵ect of a magnetic field. We discuss how
this provides a natural framework to interpret the exper-
iments on PrTi2Al20 and PrV2Al20, which is thus also of
potential importance for other heavy fermion materials.

Model.— In Pr(TM)2Al20 (with TM=Ti, V), the 4f2

Pr3+ ion lives in a T
d

local environment, arising from
the Frank Kasper cage formed by 16 neighboring Al
ions [22]. Inelastic neutron scattering and specific heat
studies have shed light on the local spectrum of the Pr3+

ion, arising from crystal field splitting of the J = 4
angular momentum multiplet [18, 21]. These indicate
a �3 non-Kramers doublet ground state separated from
the next �4 triplet of states by an energy gap ⇠ 50K. At
temperatures T ⌧ 50K, we can e↵ectively ignore these
excited crystal field multiplets [18]. Thus, for the low
energy physics of these materials, especially the broken
symmetry phases found at T . 5K, it is su�cient to
consider a model of conduction electrons Kondo-coupled
to this �3 doublet, whose wavefunctions are [21, 45]
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)⌘ ~⌧? describes

a time-reversal invariant quadrupolar moment, while ⌧
z

describes a time-reversal odd octupolar moment. In ad-
dition, the point group symmetry of the Pr3+ ion in-
cludes an S4z operation under which ⌧± ! �⌧±, and a
C31 operation under which ⌧± ! e±i2⇡/3⌧±.

With this in mind, we consider a symmetry-allowed
model of short-distance two-spin exchange between the
pseudospin-1/2 local moments ~⌧ , supplemented with the

simplest four-spin interaction that couples quadrupolar
and octupolar degrees of freedom,
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We will assume J
ij

= J1, J2 for nearest and next-nearest
neighbors respectively, and ignore further neighbor two-
spin interactions. For the four-spin coupling, the no-
tation hhijihkmii means that we consider a nearest-
neighbor pair hiji coupled to a distinct nearest-neighbor
pair hkmi, such that the two pairs are separated by a
single bond, leading to the shortest four-site cluster [48].

We consider the easy-plane regime, � < 1, so that
the two-spin interactions favor quadrupolar ⌧x,y order
over octupolar ⌧z order as is observed in many of these
compounds. While J1 < 0 will drive FQ order, as ob-
served in PrTi2Al20, increasing pressure might lead to
AFQ orders, either via a frustrating J2/|J1|> 0 which
leads to incommensurate spiral order (SpQ), or via a
sign change J1>0 which will lead to commensurate Néel
quadrupolar order (NQ) [18, 21]. Our main insight is
that while the two-spin interactions alone will favor pure
quadrupolar order, four-spin interactions will generi-
cally lead to coexisting multipolar orders. For K > 0,
quadrupolar orders with nearest-neighbor h~⌧?
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will favor ferro-octupolar (FO) order, while h~⌧?
i

·~⌧?
j

i<0
will favor Néel octupolar (NO) order; the FO and
NO orders get switched when we consider K < 0.

Motivated by constructing the simplest model to cap-
ture the phenomenology of PrTM2Al20, we will set
J1<0 for PrTi2Al20 which favors FQ order, and J1>0
for PrV2Al20 favoring NQ order. In both cases, we fix
J2>0 andK>0, and study the phases and their proper-
ties as we vary J2/|J1| and K/|J1|. At the classical level
of the analysis done here, we note that the model with
J1 < 0 maps onto the model with J1 > 0 by changing
~⌧ ! �~⌧ on one sublattice; with this understanding, we
will mainly focus on fixed J1 = +1, but present results
which are applicable for both systems.
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sider an ansatz ~⌧+

A/B

=
p

1�⌘2 exp(iq · r ± �

2 ) for

unit length spins on A/B sublattices, with ⌧z
A/B

=

±⌘. Here q,� specify a spiral of ~⌧? which is a
generic SpQ order with magnitude

p
1� ⌘2. The

limit Q = 0 corresponds to the NQ state. This co-
exists with NO order of strength ⌘. Let us define
F ⌘cos� cos q

x

4 cos q

y

4 cos q

z

4�sin� sin q

x

4 sin q

y

4 sin q

z

4 and
G⌘cos q

x

2 cos q

y

2 + cos q

y

2 cos q

z

2 + cos q

z

2 cos q

x

2 , in terms

2

In this Letter, we consider a frustrated local-moment
model with two-spin and four-spin interactions, that are
allowed by symmetry associated with the local envi-
ronment of Pr3+ ions and their coupling to the con-
duction electrons. Since our main interest is the in-
terplay between di↵erent multipolar orders and their
thermal phase transitions, we employ mean field theory
and Monte Carlo simulations to investigate the thermal
phase diagram of this model. Our key result is that such
interactions can lead to ground states with coexisting

multipolar orders; we show that this can lead to a single
or two-stage multipolar thermal transitions, and present
results on the e↵ect of a magnetic field. We discuss how
this provides a natural framework to interpret the exper-
iments on PrTi2Al20 and PrV2Al20, which is thus also of
potential importance for other heavy fermion materials.
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angular momentum multiplet [18, 21]. These indicate
a �3 non-Kramers doublet ground state separated from
the next �4 triplet of states by an energy gap ⇠ 50K. At
temperatures T ⌧ 50K, we can e↵ectively ignore these
excited crystal field multiplets [18]. Thus, for the low
energy physics of these materials, especially the broken
symmetry phases found at T . 5K, it is su�cient to
consider a model of conduction electrons Kondo-coupled
to this �3 doublet, whose wavefunctions are [21, 45]
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We will assume J
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= J1, J2 for nearest and next-nearest
neighbors respectively, and ignore further neighbor two-
spin interactions. For the four-spin coupling, the no-
tation hhijihkmii means that we consider a nearest-
neighbor pair hiji coupled to a distinct nearest-neighbor
pair hkmi, such that the two pairs are separated by a
single bond, leading to the shortest four-site cluster [48].

We consider the easy-plane regime, � < 1, so that
the two-spin interactions favor quadrupolar ⌧x,y order
over octupolar ⌧z order as is observed in many of these
compounds. While J1 < 0 will drive FQ order, as ob-
served in PrTi2Al20, increasing pressure might lead to
AFQ orders, either via a frustrating J2/|J1|> 0 which
leads to incommensurate spiral order (SpQ), or via a
sign change J1>0 which will lead to commensurate Néel
quadrupolar order (NQ) [18, 21]. Our main insight is
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In this Letter, we consider a frustrated local-moment
model with two-spin and four-spin interactions, that are
allowed by symmetry associated with the local envi-
ronment of Pr3+ ions and their coupling to the con-
duction electrons. Since our main interest is the in-
terplay between di↵erent multipolar orders and their
thermal phase transitions, we employ mean field theory
and Monte Carlo simulations to investigate the thermal
phase diagram of this model. Our key result is that such
interactions can lead to ground states with coexisting

multipolar orders; we show that this can lead to a single
or two-stage multipolar thermal transitions, and present
results on the e↵ect of a magnetic field. We discuss how
this provides a natural framework to interpret the exper-
iments on PrTi2Al20 and PrV2Al20, which is thus also of
potential importance for other heavy fermion materials.

Model.— In Pr(TM)2Al20 (with TM=Ti, V), the 4f2

Pr3+ ion lives in a T
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local environment, arising from
the Frank Kasper cage formed by 16 neighboring Al
ions [22]. Inelastic neutron scattering and specific heat
studies have shed light on the local spectrum of the Pr3+

ion, arising from crystal field splitting of the J = 4
angular momentum multiplet [18, 21]. These indicate
a �3 non-Kramers doublet ground state separated from
the next �4 triplet of states by an energy gap ⇠ 50K. At
temperatures T ⌧ 50K, we can e↵ectively ignore these
excited crystal field multiplets [18]. Thus, for the low
energy physics of these materials, especially the broken
symmetry phases found at T . 5K, it is su�cient to
consider a model of conduction electrons Kondo-coupled
to this �3 doublet, whose wavefunctions are [21, 45]
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We will assume J
ij

= J1, J2 for nearest and next-nearest
neighbors respectively, and ignore further neighbor two-
spin interactions. For the four-spin coupling, the no-
tation hhijihkmii means that we consider a nearest-
neighbor pair hiji coupled to a distinct nearest-neighbor
pair hkmi, such that the two pairs are separated by a
single bond, leading to the shortest four-site cluster [48].

We consider the easy-plane regime, � < 1, so that
the two-spin interactions favor quadrupolar ⌧x,y order
over octupolar ⌧z order as is observed in many of these
compounds. While J1 < 0 will drive FQ order, as ob-
served in PrTi2Al20, increasing pressure might lead to
AFQ orders, either via a frustrating J2/|J1|> 0 which
leads to incommensurate spiral order (SpQ), or via a
sign change J1>0 which will lead to commensurate Néel
quadrupolar order (NQ) [18, 21]. Our main insight is
that while the two-spin interactions alone will favor pure
quadrupolar order, four-spin interactions will generi-
cally lead to coexisting multipolar orders. For K > 0,
quadrupolar orders with nearest-neighbor h~⌧?
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will favor ferro-octupolar (FO) order, while h~⌧?
i

·~⌧?
j

i<0
will favor Néel octupolar (NO) order; the FO and
NO orders get switched when we consider K < 0.

Motivated by constructing the simplest model to cap-
ture the phenomenology of PrTM2Al20, we will set
J1<0 for PrTi2Al20 which favors FQ order, and J1>0
for PrV2Al20 favoring NQ order. In both cases, we fix
J2>0 andK>0, and study the phases and their proper-
ties as we vary J2/|J1| and K/|J1|. At the classical level
of the analysis done here, we note that the model with
J1 < 0 maps onto the model with J1 > 0 by changing
~⌧ ! �~⌧ on one sublattice; with this understanding, we
will mainly focus on fixed J1 = +1, but present results
which are applicable for both systems.

Ground state phase diagram.— For J1 > 0, con-
sider an ansatz ~⌧+
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In this Letter, we consider a frustrated local-moment
model with two-spin and four-spin interactions, that are
allowed by symmetry associated with the local envi-
ronment of Pr3+ ions and their coupling to the con-
duction electrons. Since our main interest is the in-
terplay between di↵erent multipolar orders and their
thermal phase transitions, we employ mean field theory
and Monte Carlo simulations to investigate the thermal
phase diagram of this model. Our key result is that such
interactions can lead to ground states with coexisting

multipolar orders; we show that this can lead to a single
or two-stage multipolar thermal transitions, and present
results on the e↵ect of a magnetic field. We discuss how
this provides a natural framework to interpret the exper-
iments on PrTi2Al20 and PrV2Al20, which is thus also of
potential importance for other heavy fermion materials.

Model.— In Pr(TM)2Al20 (with TM=Ti, V), the 4f2

Pr3+ ion lives in a T
d

local environment, arising from
the Frank Kasper cage formed by 16 neighboring Al
ions [22]. Inelastic neutron scattering and specific heat
studies have shed light on the local spectrum of the Pr3+

ion, arising from crystal field splitting of the J = 4
angular momentum multiplet [18, 21]. These indicate
a �3 non-Kramers doublet ground state separated from
the next �4 triplet of states by an energy gap ⇠ 50K. At
temperatures T ⌧ 50K, we can e↵ectively ignore these
excited crystal field multiplets [18]. Thus, for the low
energy physics of these materials, especially the broken
symmetry phases found at T . 5K, it is su�cient to
consider a model of conduction electrons Kondo-coupled
to this �3 doublet, whose wavefunctions are [21, 45]
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a time-reversal invariant quadrupolar moment, while ⌧
z

describes a time-reversal odd octupolar moment. In ad-
dition, the point group symmetry of the Pr3+ ion in-
cludes an S4z operation under which ⌧± ! �⌧±, and a
C31 operation under which ⌧± ! e±i2⇡/3⌧±.

With this in mind, we consider a symmetry-allowed
model of short-distance two-spin exchange between the
pseudospin-1/2 local moments ~⌧ , supplemented with the

simplest four-spin interaction that couples quadrupolar
and octupolar degrees of freedom,
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We will assume J
ij

= J1, J2 for nearest and next-nearest
neighbors respectively, and ignore further neighbor two-
spin interactions. For the four-spin coupling, the no-
tation hhijihkmii means that we consider a nearest-
neighbor pair hiji coupled to a distinct nearest-neighbor
pair hkmi, such that the two pairs are separated by a
single bond, leading to the shortest four-site cluster [48].

We consider the easy-plane regime, � < 1, so that
the two-spin interactions favor quadrupolar ⌧x,y order
over octupolar ⌧z order as is observed in many of these
compounds. While J1 < 0 will drive FQ order, as ob-
served in PrTi2Al20, increasing pressure might lead to
AFQ orders, either via a frustrating J2/|J1|> 0 which
leads to incommensurate spiral order (SpQ), or via a
sign change J1>0 which will lead to commensurate Néel
quadrupolar order (NQ) [18, 21]. Our main insight is
that while the two-spin interactions alone will favor pure
quadrupolar order, four-spin interactions will generi-
cally lead to coexisting multipolar orders. For K > 0,
quadrupolar orders with nearest-neighbor h~⌧?
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will favor Néel octupolar (NO) order; the FO and
NO orders get switched when we consider K < 0.

Motivated by constructing the simplest model to cap-
ture the phenomenology of PrTM2Al20, we will set
J1<0 for PrTi2Al20 which favors FQ order, and J1>0
for PrV2Al20 favoring NQ order. In both cases, we fix
J2>0 andK>0, and study the phases and their proper-
ties as we vary J2/|J1| and K/|J1|. At the classical level
of the analysis done here, we note that the model with
J1 < 0 maps onto the model with J1 > 0 by changing
~⌧ ! �~⌧ on one sublattice; with this understanding, we
will mainly focus on fixed J1 = +1, but present results
which are applicable for both systems.

Ground state phase diagram.— For J1 > 0, con-
sider an ansatz ~⌧+
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2 ) for
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In this Letter, we consider a frustrated local-moment
model with two-spin and four-spin interactions, that are
allowed by symmetry associated with the local envi-
ronment of Pr3+ ions and their coupling to the con-
duction electrons. Since our main interest is the in-
terplay between di↵erent multipolar orders and their
thermal phase transitions, we employ mean field theory
and Monte Carlo simulations to investigate the thermal
phase diagram of this model. Our key result is that such
interactions can lead to ground states with coexisting

multipolar orders; we show that this can lead to a single
or two-stage multipolar thermal transitions, and present
results on the e↵ect of a magnetic field. We discuss how
this provides a natural framework to interpret the exper-
iments on PrTi2Al20 and PrV2Al20, which is thus also of
potential importance for other heavy fermion materials.

Model.— In Pr(TM)2Al20 (with TM=Ti, V), the 4f2

Pr3+ ion lives in a T
d

local environment, arising from
the Frank Kasper cage formed by 16 neighboring Al
ions [22]. Inelastic neutron scattering and specific heat
studies have shed light on the local spectrum of the Pr3+

ion, arising from crystal field splitting of the J = 4
angular momentum multiplet [18, 21]. These indicate
a �3 non-Kramers doublet ground state separated from
the next �4 triplet of states by an energy gap ⇠ 50K. At
temperatures T ⌧ 50K, we can e↵ectively ignore these
excited crystal field multiplets [18]. Thus, for the low
energy physics of these materials, especially the broken
symmetry phases found at T . 5K, it is su�cient to
consider a model of conduction electrons Kondo-coupled
to this �3 doublet, whose wavefunctions are [21, 45]
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a time-reversal invariant quadrupolar moment, while ⌧
z

describes a time-reversal odd octupolar moment. In ad-
dition, the point group symmetry of the Pr3+ ion in-
cludes an S4z operation under which ⌧± ! �⌧±, and a
C31 operation under which ⌧± ! e±i2⇡/3⌧±.

With this in mind, we consider a symmetry-allowed
model of short-distance two-spin exchange between the
pseudospin-1/2 local moments ~⌧ , supplemented with the

simplest four-spin interaction that couples quadrupolar
and octupolar degrees of freedom,
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We will assume J
ij

= J1, J2 for nearest and next-nearest
neighbors respectively, and ignore further neighbor two-
spin interactions. For the four-spin coupling, the no-
tation hhijihkmii means that we consider a nearest-
neighbor pair hiji coupled to a distinct nearest-neighbor
pair hkmi, such that the two pairs are separated by a
single bond, leading to the shortest four-site cluster [48].

We consider the easy-plane regime, � < 1, so that
the two-spin interactions favor quadrupolar ⌧x,y order
over octupolar ⌧z order as is observed in many of these
compounds. While J1 < 0 will drive FQ order, as ob-
served in PrTi2Al20, increasing pressure might lead to
AFQ orders, either via a frustrating J2/|J1|> 0 which
leads to incommensurate spiral order (SpQ), or via a
sign change J1>0 which will lead to commensurate Néel
quadrupolar order (NQ) [18, 21]. Our main insight is
that while the two-spin interactions alone will favor pure
quadrupolar order, four-spin interactions will generi-
cally lead to coexisting multipolar orders. For K > 0,
quadrupolar orders with nearest-neighbor h~⌧?
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will favor ferro-octupolar (FO) order, while h~⌧?
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i<0
will favor Néel octupolar (NO) order; the FO and
NO orders get switched when we consider K < 0.

Motivated by constructing the simplest model to cap-
ture the phenomenology of PrTM2Al20, we will set
J1<0 for PrTi2Al20 which favors FQ order, and J1>0
for PrV2Al20 favoring NQ order. In both cases, we fix
J2>0 andK>0, and study the phases and their proper-
ties as we vary J2/|J1| and K/|J1|. At the classical level
of the analysis done here, we note that the model with
J1 < 0 maps onto the model with J1 > 0 by changing
~⌧ ! �~⌧ on one sublattice; with this understanding, we
will mainly focus on fixed J1 = +1, but present results
which are applicable for both systems.

Ground state phase diagram.— For J1 > 0, con-
sider an ansatz ~⌧+
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2 ) for

unit length spins on A/B sublattices, with ⌧z
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In this Letter, we consider a frustrated local-moment
model with two-spin and four-spin interactions, that are
allowed by symmetry associated with the local envi-
ronment of Pr3+ ions and their coupling to the con-
duction electrons. Since our main interest is the in-
terplay between di↵erent multipolar orders and their
thermal phase transitions, we employ mean field theory
and Monte Carlo simulations to investigate the thermal
phase diagram of this model. Our key result is that such
interactions can lead to ground states with coexisting

multipolar orders; we show that this can lead to a single
or two-stage multipolar thermal transitions, and present
results on the e↵ect of a magnetic field. We discuss how
this provides a natural framework to interpret the exper-
iments on PrTi2Al20 and PrV2Al20, which is thus also of
potential importance for other heavy fermion materials.

Model.— In Pr(TM)2Al20 (with TM=Ti, V), the 4f2

Pr3+ ion lives in a T
d

local environment, arising from
the Frank Kasper cage formed by 16 neighboring Al
ions [22]. Inelastic neutron scattering and specific heat
studies have shed light on the local spectrum of the Pr3+

ion, arising from crystal field splitting of the J = 4
angular momentum multiplet [18, 21]. These indicate
a �3 non-Kramers doublet ground state separated from
the next �4 triplet of states by an energy gap ⇠ 50K. At
temperatures T ⌧ 50K, we can e↵ectively ignore these
excited crystal field multiplets [18]. Thus, for the low
energy physics of these materials, especially the broken
symmetry phases found at T . 5K, it is su�cient to
consider a model of conduction electrons Kondo-coupled
to this �3 doublet, whose wavefunctions are [21, 45]
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a time-reversal invariant quadrupolar moment, while ⌧
z

describes a time-reversal odd octupolar moment. In ad-
dition, the point group symmetry of the Pr3+ ion in-
cludes an S4z operation under which ⌧± ! �⌧±, and a
C31 operation under which ⌧± ! e±i2⇡/3⌧±.

With this in mind, we consider a symmetry-allowed
model of short-distance two-spin exchange between the
pseudospin-1/2 local moments ~⌧ , supplemented with the

simplest four-spin interaction that couples quadrupolar
and octupolar degrees of freedom,
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We will assume J
ij

= J1, J2 for nearest and next-nearest
neighbors respectively, and ignore further neighbor two-
spin interactions. For the four-spin coupling, the no-
tation hhijihkmii means that we consider a nearest-
neighbor pair hiji coupled to a distinct nearest-neighbor
pair hkmi, such that the two pairs are separated by a
single bond, leading to the shortest four-site cluster [48].

We consider the easy-plane regime, � < 1, so that
the two-spin interactions favor quadrupolar ⌧x,y order
over octupolar ⌧z order as is observed in many of these
compounds. While J1 < 0 will drive FQ order, as ob-
served in PrTi2Al20, increasing pressure might lead to
AFQ orders, either via a frustrating J2/|J1|> 0 which
leads to incommensurate spiral order (SpQ), or via a
sign change J1>0 which will lead to commensurate Néel
quadrupolar order (NQ) [18, 21]. Our main insight is
that while the two-spin interactions alone will favor pure
quadrupolar order, four-spin interactions will generi-
cally lead to coexisting multipolar orders. For K > 0,
quadrupolar orders with nearest-neighbor h~⌧?
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will favor ferro-octupolar (FO) order, while h~⌧?
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will favor Néel octupolar (NO) order; the FO and
NO orders get switched when we consider K < 0.

Motivated by constructing the simplest model to cap-
ture the phenomenology of PrTM2Al20, we will set
J1<0 for PrTi2Al20 which favors FQ order, and J1>0
for PrV2Al20 favoring NQ order. In both cases, we fix
J2>0 andK>0, and study the phases and their proper-
ties as we vary J2/|J1| and K/|J1|. At the classical level
of the analysis done here, we note that the model with
J1 < 0 maps onto the model with J1 > 0 by changing
~⌧ ! �~⌧ on one sublattice; with this understanding, we
will mainly focus on fixed J1 = +1, but present results
which are applicable for both systems.

Ground state phase diagram.— For J1 > 0, con-
sider an ansatz ~⌧+
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In this Letter, we consider a frustrated local-moment
model with two-spin and four-spin interactions, that are
allowed by symmetry associated with the local envi-
ronment of Pr3+ ions and their coupling to the con-
duction electrons. Since our main interest is the in-
terplay between di↵erent multipolar orders and their
thermal phase transitions, we employ mean field theory
and Monte Carlo simulations to investigate the thermal
phase diagram of this model. Our key result is that such
interactions can lead to ground states with coexisting

multipolar orders; we show that this can lead to a single
or two-stage multipolar thermal transitions, and present
results on the e↵ect of a magnetic field. We discuss how
this provides a natural framework to interpret the exper-
iments on PrTi2Al20 and PrV2Al20, which is thus also of
potential importance for other heavy fermion materials.

Model.— In Pr(TM)2Al20 (with TM=Ti, V), the 4f2

Pr3+ ion lives in a T
d

local environment, arising from
the Frank Kasper cage formed by 16 neighboring Al
ions [22]. Inelastic neutron scattering and specific heat
studies have shed light on the local spectrum of the Pr3+

ion, arising from crystal field splitting of the J = 4
angular momentum multiplet [18, 21]. These indicate
a �3 non-Kramers doublet ground state separated from
the next �4 triplet of states by an energy gap ⇠ 50K. At
temperatures T ⌧ 50K, we can e↵ectively ignore these
excited crystal field multiplets [18]. Thus, for the low
energy physics of these materials, especially the broken
symmetry phases found at T . 5K, it is su�cient to
consider a model of conduction electrons Kondo-coupled
to this �3 doublet, whose wavefunctions are [21, 45]
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a time-reversal invariant quadrupolar moment, while ⌧
z

describes a time-reversal odd octupolar moment. In ad-
dition, the point group symmetry of the Pr3+ ion in-
cludes an S4z operation under which ⌧± ! �⌧±, and a
C31 operation under which ⌧± ! e±i2⇡/3⌧±.

With this in mind, we consider a symmetry-allowed
model of short-distance two-spin exchange between the
pseudospin-1/2 local moments ~⌧ , supplemented with the

simplest four-spin interaction that couples quadrupolar
and octupolar degrees of freedom,
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We will assume J
ij

= J1, J2 for nearest and next-nearest
neighbors respectively, and ignore further neighbor two-
spin interactions. For the four-spin coupling, the no-
tation hhijihkmii means that we consider a nearest-
neighbor pair hiji coupled to a distinct nearest-neighbor
pair hkmi, such that the two pairs are separated by a
single bond, leading to the shortest four-site cluster [48].

We consider the easy-plane regime, � < 1, so that
the two-spin interactions favor quadrupolar ⌧x,y order
over octupolar ⌧z order as is observed in many of these
compounds. While J1 < 0 will drive FQ order, as ob-
served in PrTi2Al20, increasing pressure might lead to
AFQ orders, either via a frustrating J2/|J1|> 0 which
leads to incommensurate spiral order (SpQ), or via a
sign change J1>0 which will lead to commensurate Néel
quadrupolar order (NQ) [18, 21]. Our main insight is
that while the two-spin interactions alone will favor pure
quadrupolar order, four-spin interactions will generi-
cally lead to coexisting multipolar orders. For K > 0,
quadrupolar orders with nearest-neighbor h~⌧?
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will favor ferro-octupolar (FO) order, while h~⌧?
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will favor Néel octupolar (NO) order; the FO and
NO orders get switched when we consider K < 0.

Motivated by constructing the simplest model to cap-
ture the phenomenology of PrTM2Al20, we will set
J1<0 for PrTi2Al20 which favors FQ order, and J1>0
for PrV2Al20 favoring NQ order. In both cases, we fix
J2>0 andK>0, and study the phases and their proper-
ties as we vary J2/|J1| and K/|J1|. At the classical level
of the analysis done here, we note that the model with
J1 < 0 maps onto the model with J1 > 0 by changing
~⌧ ! �~⌧ on one sublattice; with this understanding, we
will mainly focus on fixed J1 = +1, but present results
which are applicable for both systems.
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In this Letter, we consider a frustrated local-moment
model with two-spin and four-spin interactions, that are
allowed by symmetry associated with the local envi-
ronment of Pr3+ ions and their coupling to the con-
duction electrons. Since our main interest is the in-
terplay between di↵erent multipolar orders and their
thermal phase transitions, we employ mean field theory
and Monte Carlo simulations to investigate the thermal
phase diagram of this model. Our key result is that such
interactions can lead to ground states with coexisting

multipolar orders; we show that this can lead to a single
or two-stage multipolar thermal transitions, and present
results on the e↵ect of a magnetic field. We discuss how
this provides a natural framework to interpret the exper-
iments on PrTi2Al20 and PrV2Al20, which is thus also of
potential importance for other heavy fermion materials.

Model.— In Pr(TM)2Al20 (with TM=Ti, V), the 4f2

Pr3+ ion lives in a T
d

local environment, arising from
the Frank Kasper cage formed by 16 neighboring Al
ions [22]. Inelastic neutron scattering and specific heat
studies have shed light on the local spectrum of the Pr3+

ion, arising from crystal field splitting of the J = 4
angular momentum multiplet [18, 21]. These indicate
a �3 non-Kramers doublet ground state separated from
the next �4 triplet of states by an energy gap ⇠ 50K. At
temperatures T ⌧ 50K, we can e↵ectively ignore these
excited crystal field multiplets [18]. Thus, for the low
energy physics of these materials, especially the broken
symmetry phases found at T . 5K, it is su�cient to
consider a model of conduction electrons Kondo-coupled
to this �3 doublet, whose wavefunctions are [21, 45]
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cludes an S4z operation under which ⌧± ! �⌧±, and a
C31 operation under which ⌧± ! e±i2⇡/3⌧±.

With this in mind, we consider a symmetry-allowed
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We will assume J
ij

= J1, J2 for nearest and next-nearest
neighbors respectively, and ignore further neighbor two-
spin interactions. For the four-spin coupling, the no-
tation hhijihkmii means that we consider a nearest-
neighbor pair hiji coupled to a distinct nearest-neighbor
pair hkmi, such that the two pairs are separated by a
single bond, leading to the shortest four-site cluster [48].

We consider the easy-plane regime, � < 1, so that
the two-spin interactions favor quadrupolar ⌧x,y order
over octupolar ⌧z order as is observed in many of these
compounds. While J1 < 0 will drive FQ order, as ob-
served in PrTi2Al20, increasing pressure might lead to
AFQ orders, either via a frustrating J2/|J1|> 0 which
leads to incommensurate spiral order (SpQ), or via a
sign change J1>0 which will lead to commensurate Néel
quadrupolar order (NQ) [18, 21]. Our main insight is
that while the two-spin interactions alone will favor pure
quadrupolar order, four-spin interactions will generi-
cally lead to coexisting multipolar orders. For K > 0,
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will favor Néel octupolar (NO) order; the FO and
NO orders get switched when we consider K < 0.

Motivated by constructing the simplest model to cap-
ture the phenomenology of PrTM2Al20, we will set
J1<0 for PrTi2Al20 which favors FQ order, and J1>0
for PrV2Al20 favoring NQ order. In both cases, we fix
J2>0 andK>0, and study the phases and their proper-
ties as we vary J2/|J1| and K/|J1|. At the classical level
of the analysis done here, we note that the model with
J1 < 0 maps onto the model with J1 > 0 by changing
~⌧ ! �~⌧ on one sublattice; with this understanding, we
will mainly focus on fixed J1 = +1, but present results
which are applicable for both systems.
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In this Letter, we consider a frustrated local-moment
model with two-spin and four-spin interactions, that are
allowed by symmetry associated with the local envi-
ronment of Pr3+ ions and their coupling to the con-
duction electrons. Since our main interest is the in-
terplay between di↵erent multipolar orders and their
thermal phase transitions, we employ mean field theory
and Monte Carlo simulations to investigate the thermal
phase diagram of this model. Our key result is that such
interactions can lead to ground states with coexisting

multipolar orders; we show that this can lead to a single
or two-stage multipolar thermal transitions, and present
results on the e↵ect of a magnetic field. We discuss how
this provides a natural framework to interpret the exper-
iments on PrTi2Al20 and PrV2Al20, which is thus also of
potential importance for other heavy fermion materials.

Model.— In Pr(TM)2Al20 (with TM=Ti, V), the 4f2

Pr3+ ion lives in a T
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local environment, arising from
the Frank Kasper cage formed by 16 neighboring Al
ions [22]. Inelastic neutron scattering and specific heat
studies have shed light on the local spectrum of the Pr3+

ion, arising from crystal field splitting of the J = 4
angular momentum multiplet [18, 21]. These indicate
a �3 non-Kramers doublet ground state separated from
the next �4 triplet of states by an energy gap ⇠ 50K. At
temperatures T ⌧ 50K, we can e↵ectively ignore these
excited crystal field multiplets [18]. Thus, for the low
energy physics of these materials, especially the broken
symmetry phases found at T . 5K, it is su�cient to
consider a model of conduction electrons Kondo-coupled
to this �3 doublet, whose wavefunctions are [21, 45]
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dition, the point group symmetry of the Pr3+ ion in-
cludes an S4z operation under which ⌧± ! �⌧±, and a
C31 operation under which ⌧± ! e±i2⇡/3⌧±.

With this in mind, we consider a symmetry-allowed
model of short-distance two-spin exchange between the
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We will assume J
ij

= J1, J2 for nearest and next-nearest
neighbors respectively, and ignore further neighbor two-
spin interactions. For the four-spin coupling, the no-
tation hhijihkmii means that we consider a nearest-
neighbor pair hiji coupled to a distinct nearest-neighbor
pair hkmi, such that the two pairs are separated by a
single bond, leading to the shortest four-site cluster [48].

We consider the easy-plane regime, � < 1, so that
the two-spin interactions favor quadrupolar ⌧x,y order
over octupolar ⌧z order as is observed in many of these
compounds. While J1 < 0 will drive FQ order, as ob-
served in PrTi2Al20, increasing pressure might lead to
AFQ orders, either via a frustrating J2/|J1|> 0 which
leads to incommensurate spiral order (SpQ), or via a
sign change J1>0 which will lead to commensurate Néel
quadrupolar order (NQ) [18, 21]. Our main insight is
that while the two-spin interactions alone will favor pure
quadrupolar order, four-spin interactions will generi-
cally lead to coexisting multipolar orders. For K > 0,
quadrupolar orders with nearest-neighbor h~⌧?
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will favor Néel octupolar (NO) order; the FO and
NO orders get switched when we consider K < 0.

Motivated by constructing the simplest model to cap-
ture the phenomenology of PrTM2Al20, we will set
J1<0 for PrTi2Al20 which favors FQ order, and J1>0
for PrV2Al20 favoring NQ order. In both cases, we fix
J2>0 andK>0, and study the phases and their proper-
ties as we vary J2/|J1| and K/|J1|. At the classical level
of the analysis done here, we note that the model with
J1 < 0 maps onto the model with J1 > 0 by changing
~⌧ ! �~⌧ on one sublattice; with this understanding, we
will mainly focus on fixed J1 = +1, but present results
which are applicable for both systems.
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In this Letter, we consider a frustrated local-moment
model with two-spin and four-spin interactions, that are
allowed by symmetry associated with the local envi-
ronment of Pr3+ ions and their coupling to the con-
duction electrons. Since our main interest is the in-
terplay between di↵erent multipolar orders and their
thermal phase transitions, we employ mean field theory
and Monte Carlo simulations to investigate the thermal
phase diagram of this model. Our key result is that such
interactions can lead to ground states with coexisting

multipolar orders; we show that this can lead to a single
or two-stage multipolar thermal transitions, and present
results on the e↵ect of a magnetic field. We discuss how
this provides a natural framework to interpret the exper-
iments on PrTi2Al20 and PrV2Al20, which is thus also of
potential importance for other heavy fermion materials.

Model.— In Pr(TM)2Al20 (with TM=Ti, V), the 4f2

Pr3+ ion lives in a T
d

local environment, arising from
the Frank Kasper cage formed by 16 neighboring Al
ions [22]. Inelastic neutron scattering and specific heat
studies have shed light on the local spectrum of the Pr3+

ion, arising from crystal field splitting of the J = 4
angular momentum multiplet [18, 21]. These indicate
a �3 non-Kramers doublet ground state separated from
the next �4 triplet of states by an energy gap ⇠ 50K. At
temperatures T ⌧ 50K, we can e↵ectively ignore these
excited crystal field multiplets [18]. Thus, for the low
energy physics of these materials, especially the broken
symmetry phases found at T . 5K, it is su�cient to
consider a model of conduction electrons Kondo-coupled
to this �3 doublet, whose wavefunctions are [21, 45]
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dition, the point group symmetry of the Pr3+ ion in-
cludes an S4z operation under which ⌧± ! �⌧±, and a
C31 operation under which ⌧± ! e±i2⇡/3⌧±.

With this in mind, we consider a symmetry-allowed
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We will assume J
ij

= J1, J2 for nearest and next-nearest
neighbors respectively, and ignore further neighbor two-
spin interactions. For the four-spin coupling, the no-
tation hhijihkmii means that we consider a nearest-
neighbor pair hiji coupled to a distinct nearest-neighbor
pair hkmi, such that the two pairs are separated by a
single bond, leading to the shortest four-site cluster [48].

We consider the easy-plane regime, � < 1, so that
the two-spin interactions favor quadrupolar ⌧x,y order
over octupolar ⌧z order as is observed in many of these
compounds. While J1 < 0 will drive FQ order, as ob-
served in PrTi2Al20, increasing pressure might lead to
AFQ orders, either via a frustrating J2/|J1|> 0 which
leads to incommensurate spiral order (SpQ), or via a
sign change J1>0 which will lead to commensurate Néel
quadrupolar order (NQ) [18, 21]. Our main insight is
that while the two-spin interactions alone will favor pure
quadrupolar order, four-spin interactions will generi-
cally lead to coexisting multipolar orders. For K > 0,
quadrupolar orders with nearest-neighbor h~⌧?
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will favor Néel octupolar (NO) order; the FO and
NO orders get switched when we consider K < 0.

Motivated by constructing the simplest model to cap-
ture the phenomenology of PrTM2Al20, we will set
J1<0 for PrTi2Al20 which favors FQ order, and J1>0
for PrV2Al20 favoring NQ order. In both cases, we fix
J2>0 andK>0, and study the phases and their proper-
ties as we vary J2/|J1| and K/|J1|. At the classical level
of the analysis done here, we note that the model with
J1 < 0 maps onto the model with J1 > 0 by changing
~⌧ ! �~⌧ on one sublattice; with this understanding, we
will mainly focus on fixed J1 = +1, but present results
which are applicable for both systems.
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In this Letter, we consider a frustrated local-moment
model with two-spin and four-spin interactions, that are
allowed by symmetry associated with the local envi-
ronment of Pr3+ ions and their coupling to the con-
duction electrons. Since our main interest is the in-
terplay between di↵erent multipolar orders and their
thermal phase transitions, we employ mean field theory
and Monte Carlo simulations to investigate the thermal
phase diagram of this model. Our key result is that such
interactions can lead to ground states with coexisting

multipolar orders; we show that this can lead to a single
or two-stage multipolar thermal transitions, and present
results on the e↵ect of a magnetic field. We discuss how
this provides a natural framework to interpret the exper-
iments on PrTi2Al20 and PrV2Al20, which is thus also of
potential importance for other heavy fermion materials.

Model.— In Pr(TM)2Al20 (with TM=Ti, V), the 4f2

Pr3+ ion lives in a T
d

local environment, arising from
the Frank Kasper cage formed by 16 neighboring Al
ions [22]. Inelastic neutron scattering and specific heat
studies have shed light on the local spectrum of the Pr3+

ion, arising from crystal field splitting of the J = 4
angular momentum multiplet [18, 21]. These indicate
a �3 non-Kramers doublet ground state separated from
the next �4 triplet of states by an energy gap ⇠ 50K. At
temperatures T ⌧ 50K, we can e↵ectively ignore these
excited crystal field multiplets [18]. Thus, for the low
energy physics of these materials, especially the broken
symmetry phases found at T . 5K, it is su�cient to
consider a model of conduction electrons Kondo-coupled
to this �3 doublet, whose wavefunctions are [21, 45]
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dition, the point group symmetry of the Pr3+ ion in-
cludes an S4z operation under which ⌧± ! �⌧±, and a
C31 operation under which ⌧± ! e±i2⇡/3⌧±.

With this in mind, we consider a symmetry-allowed
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We will assume J
ij

= J1, J2 for nearest and next-nearest
neighbors respectively, and ignore further neighbor two-
spin interactions. For the four-spin coupling, the no-
tation hhijihkmii means that we consider a nearest-
neighbor pair hiji coupled to a distinct nearest-neighbor
pair hkmi, such that the two pairs are separated by a
single bond, leading to the shortest four-site cluster [48].

We consider the easy-plane regime, � < 1, so that
the two-spin interactions favor quadrupolar ⌧x,y order
over octupolar ⌧z order as is observed in many of these
compounds. While J1 < 0 will drive FQ order, as ob-
served in PrTi2Al20, increasing pressure might lead to
AFQ orders, either via a frustrating J2/|J1|> 0 which
leads to incommensurate spiral order (SpQ), or via a
sign change J1>0 which will lead to commensurate Néel
quadrupolar order (NQ) [18, 21]. Our main insight is
that while the two-spin interactions alone will favor pure
quadrupolar order, four-spin interactions will generi-
cally lead to coexisting multipolar orders. For K > 0,
quadrupolar orders with nearest-neighbor h~⌧?
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will favor Néel octupolar (NO) order; the FO and
NO orders get switched when we consider K < 0.

Motivated by constructing the simplest model to cap-
ture the phenomenology of PrTM2Al20, we will set
J1<0 for PrTi2Al20 which favors FQ order, and J1>0
for PrV2Al20 favoring NQ order. In both cases, we fix
J2>0 andK>0, and study the phases and their proper-
ties as we vary J2/|J1| and K/|J1|. At the classical level
of the analysis done here, we note that the model with
J1 < 0 maps onto the model with J1 > 0 by changing
~⌧ ! �~⌧ on one sublattice; with this understanding, we
will mainly focus on fixed J1 = +1, but present results
which are applicable for both systems.

Ground state phase diagram.— For J1 > 0, con-
sider an ansatz ~⌧+

A/B

=
p

1�⌘2 exp(iq · r ± �

2 ) for

unit length spins on A/B sublattices, with ⌧z
A/B

=

±⌘. Here q,� specify a spiral of ~⌧? which is a
generic SpQ order with magnitude

p
1� ⌘2. The

limit Q = 0 corresponds to the NQ state. This co-
exists with NO order of strength ⌘. Let us define
F ⌘cos� cos q

x

4 cos q

y

4 cos q

z

4�sin� sin q

x

4 sin q

y

4 sin q

z

4 and
G⌘cos q

x

2 cos q

y

2 + cos q

y

2 cos q

z

2 + cos q

z

2 cos q

x

2 , in terms

Octupolar
time-reversal odd

h±|J↵|±i = 0
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m⇤/m0 ⇠ 16 m⇤/m0 ⇠ 110

length from the equation Bc2ð0Þ ¼ !0=2!"
2
0. This yields

the small value of "0 $ 84 "A, and a large electronic effec-
tive massm% $ 106m0, indicating heavy fermion character
of the superconductivity.

Now we turn to the temperature dependence of the
normal-state resistivity at 8.7 GPa. Unlike the typical tem-
perature dependence appearing in the proximity to the
magnetic QCP, neither standard Fermi-liquid (# / T2) nor
typical non-Fermi-liquid (# / Tn; n < 2) behaviors were
observed, but the resistivity above TSC is best fitted by a
single power-law dependence #0 þ ATn with n$ 3:0.
Furthermore, the T3 dependence survives under magnetic
fields exceeding the upper critical field and extends to the
lowest temperature measured [Fig. 2(c)]. This is in sharp
contrast with the ambient pressure casewhere the resistivity
shows an exponential decrease below TQ, reflecting freez-
ing of the quadrupole moment forming an anisotropic gap
of the collective mode of the ferroquadrupole order [18].
Therefore, the T3 dependence indicates the gapless nature
of the excitations, most likely of quadrupole fluctuations.
Indeed, although in a limited field region, the T3 depen-
dence was also observed in the Pr-based heavy fermion
superconductor PrOs4Sb12 at the border of the field-induced
quadrupole order [6]. Moreover, this asymptotic T3 behav-
ior becomes more prominent with pressure. As pressure
starts suppressing the quadrupolar order above 6 GPa,
it dominates over the entire temperature region below TQ,
suggesting that T3 behavior comes from the critical

fluctuations of the quadrupolar order. Compared to the
PrOs4Sb12 case, the T3 dependence in PrTi2Al20 is much
more robust against a magnetic field up to at least 4.8 T,
consistent with the nonmagnetic nature of the quadrupole
moment. We obtained residual resistivity #0 by assuming
the power-law equation # ¼ #0 þ AT3 for different pres-
sures and summarized the pressure variation of #0 together
with m% [Fig. 2(d)]. The pressure evolution of #0 and m%

upon suppression of TQ indicates the emergence of heavy
fermion superconductivity with a large electronic effective
mass that comes from critical fluctuations associated with
the ferroquadrupole order.
Pressure-induced evolution of ferroquadrupolar and

superconducting phases of PrTi2Al20 is summarized in
the temperature-pressure phase diagram (Fig. 3). After
peaking at P$ 6 GPa, the ferroquadrupole ordering tem-
perature becomes suppressed with significant broadening,
indicating the presence of the associated QCP. The most
prominent feature is that ferroquadrupole order coexists
with the pressure-induced heavy fermion superconductiv-
ity in a wide pressure region. The coexistence of quadru-
pole order and the superconductivity can be compared
to that observed in PrIr2Zn20, which is isostructural to
PrTi2Al20. PrIr2Zn20 exhibits an antiferroquadrupole or-
dering at TQ ¼ 0:11 K and undergoes a subsequent super-
conducting transition at TSC ¼ 0:05 K [24]. However, the
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FIG. 2 (color online). (a) Temperature dependence of the elec-
trical resistivity #ðTÞ of PrTi2Al20 at 8.7 GPa under various
magnetic fields. (b) Superconducting phase diagram, i.e., the
critical magnetic field Bc2 as a function of temperature, derived
from the zero resistivity temperature. (c)#ðTÞ versusT3 at various
pressures. (d) Pressure dependence of the residual resistivity #0

and the effective mass m% estimated by using the slope of the
critical field curve, assuming a spherical Fermi surface.
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FIG. 3 (color online). Open circles and squares represent the
position of Tmax determined from the maximum in the tempera-
ture dependence of the resistivity and the ferroquadrupole order-
ing temperature TQ, respectively. The SC transition temperatures
TSC are deduced from the temperature dependence of the resis-
tivity (closed circles), the ac magnetic susceptibility (closed
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The inset shows the cubic crystal structure of PrTi2Al20. Cages
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differential paramagnetic effect is quite small in PrV2Al20
[30], indicating a strong pining effect typical of the type II
SC. The critical temperatures defined above are consistent
with the zero-resistance temperature (the circles) of the SC
drop of ρðTÞ (Fig. 3). The solid line in Fig. 3 is the fit to our
Bc2 results based on the Werthamer-Helfand-Hohenberg
(WHH) model [31,32]. The best fitting was obtained using
parameters of Tc ¼ 46.2 mK and the slope of Bc2 at Tc,
B0
c2 ≡ dBc2=dT ¼ 0.41 T=K. The model reproduces the

experimental data well, indicating that the orbital depairing
effect is dominant. The resultant orbital critical field at
T ¼ 0, Borb

c2 ð0Þ ¼ −0.727B0
c2Tc, and the Ginzburg-Landau

(GL) coherence length, ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Φ0=2πBorb

c2 ð0Þ
p

, areBorb
c2 ð0Þ ¼

14.3 mT and ξ ¼ 0.15 μm, respectively.
Strikingly, B0

c2, of PrV2Al20 is about 10 times larger
than the Ti analog [21], indicating a significantly heavier
effective mass. Indeed, the effective mass is estimated to be
m$ ¼ ℏkF=vF ∼ 140m0 by using the GL coherence length
ξ ¼ 0.15 μm, the Fermi velocity vF ¼ ξkBTc=ð0.18ℏÞ ¼
5.1 km=s, kF ¼ ð3π2Z=ΩÞ ¼ 6.1 × 109 1=m, where Z is
the number of electrons per unit cell and Ω is the unit-cell
volume. The effective mass m$=m0 ∼ 140 is much larger
than them$=m0 ∼ 16 estimated for PrTi2Al20 under ambient
pressure [21] and is comparable to m$=m0 ∼ 110 under
∼8 GPa in the vicinity of the quadrupolar quantum criti-
cality [14]. Thus, the mass enhancement in PrV2Al20
indicates not only the strong c-f hybridization, but also
its proximity to a quadrupolar QCP.

The heavy-fermion character of the SC was also con-
firmed by the specific heat (C) measurements. Figure 4(a)
shows the C=T of PrV2Al20. In comparison, the lattice
contribution estimated from the C=T of LaV2Al20 is found
to be small and negligible. After showing a broad minimum
at T ∼ 0.12 K, the C=T slightly increases on cooling and
exhibits an anomaly at T ¼ 0.046 K, corresponding to the
SC transition. The low T upturn in C=T becomes evident
in the normal state stabilized under the magnetic field of
20 mT and is found to follow C=T ∼ 1=T2 down to the
lowest T of 30 mK. This power law increase,C ∼ 1=T, seen
at T < 100 mK indicates an entropy release associated
with a very small energy scale of mK range, most likely
coming from a nuclear magnetism. Actually, hyperfine-
enhanced nuclear magnetism is often reported for Pr
intermetallic compounds with a nonmagnetic ground state.
Indeed, the analysis based on the μSR measurements also
indicated the hyperfine-enhanced nuclear magnetism in
PrTi2Al20 and estimated the transition temperature of
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field. Double transition temperatures TQ and T$ are defined at
the peaks. The broken line indicates the fit to C=T ∼ 1=T3=2 in
the paraquadrupolar state. As for the error bars at T < Tc, see
Ref. [22]. (Inset) T dependence of C4f=T for PrV2Al20 under
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differential paramagnetic effect is quite small in PrV2Al20
[30], indicating a strong pining effect typical of the type II
SC. The critical temperatures defined above are consistent
with the zero-resistance temperature (the circles) of the SC
drop of ρðTÞ (Fig. 3). The solid line in Fig. 3 is the fit to our
Bc2 results based on the Werthamer-Helfand-Hohenberg
(WHH) model [31,32]. The best fitting was obtained using
parameters of Tc ¼ 46.2 mK and the slope of Bc2 at Tc,
B0
c2 ≡ dBc2=dT ¼ 0.41 T=K. The model reproduces the

experimental data well, indicating that the orbital depairing
effect is dominant. The resultant orbital critical field at
T ¼ 0, Borb

c2 ð0Þ ¼ −0.727B0
c2Tc, and the Ginzburg-Landau

(GL) coherence length, ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Φ0=2πBorb

c2 ð0Þ
p

, areBorb
c2 ð0Þ ¼

14.3 mT and ξ ¼ 0.15 μm, respectively.
Strikingly, B0

c2, of PrV2Al20 is about 10 times larger
than the Ti analog [21], indicating a significantly heavier
effective mass. Indeed, the effective mass is estimated to be
m$ ¼ ℏkF=vF ∼ 140m0 by using the GL coherence length
ξ ¼ 0.15 μm, the Fermi velocity vF ¼ ξkBTc=ð0.18ℏÞ ¼
5.1 km=s, kF ¼ ð3π2Z=ΩÞ ¼ 6.1 × 109 1=m, where Z is
the number of electrons per unit cell and Ω is the unit-cell
volume. The effective mass m$=m0 ∼ 140 is much larger
than them$=m0 ∼ 16 estimated for PrTi2Al20 under ambient
pressure [21] and is comparable to m$=m0 ∼ 110 under
∼8 GPa in the vicinity of the quadrupolar quantum criti-
cality [14]. Thus, the mass enhancement in PrV2Al20
indicates not only the strong c-f hybridization, but also
its proximity to a quadrupolar QCP.

The heavy-fermion character of the SC was also con-
firmed by the specific heat (C) measurements. Figure 4(a)
shows the C=T of PrV2Al20. In comparison, the lattice
contribution estimated from the C=T of LaV2Al20 is found
to be small and negligible. After showing a broad minimum
at T ∼ 0.12 K, the C=T slightly increases on cooling and
exhibits an anomaly at T ¼ 0.046 K, corresponding to the
SC transition. The low T upturn in C=T becomes evident
in the normal state stabilized under the magnetic field of
20 mT and is found to follow C=T ∼ 1=T2 down to the
lowest T of 30 mK. This power law increase,C ∼ 1=T, seen
at T < 100 mK indicates an entropy release associated
with a very small energy scale of mK range, most likely
coming from a nuclear magnetism. Actually, hyperfine-
enhanced nuclear magnetism is often reported for Pr
intermetallic compounds with a nonmagnetic ground state.
Indeed, the analysis based on the μSR measurements also
indicated the hyperfine-enhanced nuclear magnetism in
PrTi2Al20 and estimated the transition temperature of
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susceptibility χ0 for PrV2Al20 under various magnetic fields.
Arrows indicate the critical temperatures.
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field. Double transition temperatures TQ and T$ are defined at
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subtracting the contribution of the lattice and nuclear magnetism
from C=T. (b) T dependence of the entropy S4f for PrV2Al20 and
PrTi2Al20. The horizontal broken lines show thevalue ofR ln 2 and
R=2 ln 2, respectively. The inset showsC4f=T vsT3 for theT range
at T < 0.58 K. The broken line represents the linear fit, indicating
that C4f=T shows T3 dependence in 0.05 K < T < 0.5 K.
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A series of Pr(TM)2X20 (with TM=Ti,V,Rh,Ir and X=Al,Zn) Kondo materials exhibits exotic

behavior such as quadrupolar order, superconductivity and non-Fermi liquid behavior. In particular,

non-Kramers Pr

3+
4f2

moments show interesting magnetic field dependence with multipolar order-

ings. In this paper, we study magnetic field e↵ect of multipolar orderings based on a simple Landau

theory, taking into account both quadrupolar and octupolar moments of non-Kramers doublet in

Pr3+. We show that ferro- and antiferro- multipolar orderings give rise to fundamental di↵erence

in field e↵ect, providing understanding of experimental results on a series of Pr(TM)2X20 materials.

At low temperature, a series of these materials
show quadrupolar ordering; Ferroquadrupolar order at
TQ ⇠ 2 K (PrTi2Al20), antiferroquadrupolar order at
TQ ⇠ 0.75K (PrV2Al20), 0.11K (PrIr2Zn20) and 0.06K
(PrRh2Zn20) respectively. In particular, there exist ad-
ditional phase transition at T⇤ ⇠ 0.65K observed in
PrV2Al20. The types of antiferroquadrupolar orders
and the nature of additional transition are still un-
clear and it requires further experiments. ((1/2,1/2,1/2)
order for IrZn case ref: PHYSICAL REVIEW B 95,
155106 (2017))

Multipolar ordering of 4f2
Pr

3+
ion — Pr(TM)2X20

(with TM=Ti,V,Rh,Ir and X=Al,Zn) are cage com-
pounds with the space group Fd3̄m. In particular, the
Pr3+ 4f2 ions form a diamond lattice structure where
each ion lives at the center of the Frank Kasper cage
formed by 16 neighboring X ions with the local point
group Td. (PrRh2Zn20 has the local point group T due
to the structural transition.) Interplay of crystal field
e↵ect and strong spin orbit coupling leads to the split-
tings of multiplets with total angular momentum J = 4
and the ground state is described by �3 doublet. (�23

doublet for PrRh2Zn20.);

|�(1)
3 i = 1

2

r
7

6
|4i � 1

2

r
5

3
|0i+ 1

2

r
7

6
|�4i

|�(2)
3 i = 1p

2
|2i+ 1p

2
|�2i . (1)

In these compounds, the first excited triplet �4 or �5 is
separated from the ground state doublet by � ⇡ 30 ⇠
70. This allows the low energy physics with broken
symmetry phases is well described by �3 or �23 dou-
blets, where the transition temperature T . 5K. Using
these doublets, one can define pseudospin-1/2 basis as

we discussed before in Ref.[]; |"i ⌘ 1p
2
(|�(1)

3 i+ i |�(2)
3 i)

and |#i⌘ 1p
2
(i |�(1)

3 i+|�(2)
3 i). The corresponding pseu-

dospin operators in terms of Stevens operators are O22=

p
3
2 (J2

x�J2
y ), O20 =

1
2 (3J

2
z �J2), and Txyz =

p
15
6 JxJyJz

(overline denoting a symmetrized product), as ⌧x =
� 1

4O22, ⌧y = � 1
4O20, and ⌧z = 1

3
p
5
Txyz. It is impor-

tant to note that the low energy physics is described by
quadratic and cubic orders of J , which correspond to
quadrupolar moment ⌧x, ⌧y and octupolar moment ⌧z
respectively.

As mentioned above, a series of Pr(TM)2X20 Kondo
compounds exhibit di↵erent types of ferro- or antiferro-
multipolar ordering at low temperature. Since the or-
dering temperatures in these compounds are generally
much lower than the energy gap �, one can only fo-
cus on quadrupolar moments ⌧x, ⌧y and octupolar mo-
ment ⌧z that are described by the ground state doublet.
Without considering complicated antiferro- multipolar
orderings stabilized with finite ordering wavevectors, we
study the two simplest scenario, ferro- or antiferro-mul-
tipolar orderings without enlarging magnetic unit cell.
Then one can introduce their order parameters as fol-
lowing.

�⌘h⌧+µ i
m⌘h⌧µz i

$ �̃⌘h⌧+A i�h⌧+B i
m̃⌘h⌧Az i�h⌧Bz i (2)

Here, � and �⇤ indicate the ferro- quadrupolar
(FQ) order parameters in a complex space with
h⌧±µ i = h⌧xµ i±ih⌧yµi and m indicates the order parameter
of ferro- octupolar (FO) order with (h⌧⌫Ai = h⌧⌫Bi,
⌫ 2 {x, y, z} and at sublattices A and B.) Similarly,
�̃, �̃⇤ and m̃ are the order parameters defined for
antiferro- quadrupolar (AFQ) antiferro- octupolar
(AFO) orderings.

Landau theory of multipolar orders with Q = 0— The
point group symmetries of Pr3+ ions include S4z (⇡/2
rotation along z axis and inversion), C31 (2⇡/3 rota-
tion along (111) direction) and I (inversion). Under
these point group symmetries and time reversal sym-

�u ⌘ h⌧+A i+ h⌧+B i �s ⌘ h⌧+A i � h⌧+B i

mu ⌘ h⌧zAi+ h⌧zBi ms ⌘ h⌧zAi � h⌧zBi

F-Q

F-O

AF-Q

AF-O

2

In this Letter, we consider a frustrated local-moment
model with two-spin and four-spin interactions, that are
allowed by symmetry associated with the local envi-
ronment of Pr3+ ions and their coupling to the con-
duction electrons. Since our main interest is the in-
terplay between di↵erent multipolar orders and their
thermal phase transitions, we employ mean field theory
and Monte Carlo simulations to investigate the thermal
phase diagram of this model. Our key result is that such
interactions can lead to ground states with coexisting

multipolar orders; we show that this can lead to a single
or two-stage multipolar thermal transitions, and present
results on the e↵ect of a magnetic field. We discuss how
this provides a natural framework to interpret the exper-
iments on PrTi2Al20 and PrV2Al20, which is thus also of
potential importance for other heavy fermion materials.

Model.— In Pr(TM)2Al20 (with TM=Ti, V), the 4f2

Pr3+ ion lives in a T
d

local environment, arising from
the Frank Kasper cage formed by 16 neighboring Al
ions [22]. Inelastic neutron scattering and specific heat
studies have shed light on the local spectrum of the Pr3+

ion, arising from crystal field splitting of the J = 4
angular momentum multiplet [18, 21]. These indicate
a �3 non-Kramers doublet ground state separated from
the next �4 triplet of states by an energy gap ⇠ 50K. At
temperatures T ⌧ 50K, we can e↵ectively ignore these
excited crystal field multiplets [18]. Thus, for the low
energy physics of these materials, especially the broken
symmetry phases found at T . 5K, it is su�cient to
consider a model of conduction electrons Kondo-coupled
to this �3 doublet, whose wavefunctions are [21, 45]

|�(1)
3 i = 1

2

r
7

6
|4i � 1

2

r
5

3
|0i+ 1

2

r
7

6
|�4i

|�(2)
3 i = 1p

2
|2i+ 1p

2
|�2i . (1)

Using these, we can define the pseudospin-1/2 basis

|"i ⌘ 1p
2
(|�(1)

3 i+ i |�(2)
3 i) and |#i ⌘ 1p

2
(i |�(1)

3 i+ |�(2)
3 i).

We identify the corresponding pseudospin operators in

terms of Stevens operators O22 =
p
3
2 (J2

x

�J2
y

), O20 =
1
2 (3J

2
z

�J2), and T
xyz

=
p
15
6 J

x

J
y

J
z

(overline denoting
a symmetrized product), as ⌧

x

= � 1
4O22, ⌧y = � 1

4O20,
and ⌧

z

= 1
3
p
5
T
xyz

[46, 47]. Here, (⌧
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a time-reversal invariant quadrupolar moment, while ⌧
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describes a time-reversal odd octupolar moment. In ad-
dition, the point group symmetry of the Pr3+ ion in-
cludes an S4z operation under which ⌧± ! �⌧±, and a
C31 operation under which ⌧± ! e±i2⇡/3⌧±.

With this in mind, we consider a symmetry-allowed
model of short-distance two-spin exchange between the
pseudospin-1/2 local moments ~⌧ , supplemented with the

simplest four-spin interaction that couples quadrupolar
and octupolar degrees of freedom,
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We will assume J
ij

= J1, J2 for nearest and next-nearest
neighbors respectively, and ignore further neighbor two-
spin interactions. For the four-spin coupling, the no-
tation hhijihkmii means that we consider a nearest-
neighbor pair hiji coupled to a distinct nearest-neighbor
pair hkmi, such that the two pairs are separated by a
single bond, leading to the shortest four-site cluster [48].

We consider the easy-plane regime, � < 1, so that
the two-spin interactions favor quadrupolar ⌧x,y order
over octupolar ⌧z order as is observed in many of these
compounds. While J1 < 0 will drive FQ order, as ob-
served in PrTi2Al20, increasing pressure might lead to
AFQ orders, either via a frustrating J2/|J1|> 0 which
leads to incommensurate spiral order (SpQ), or via a
sign change J1>0 which will lead to commensurate Néel
quadrupolar order (NQ) [18, 21]. Our main insight is
that while the two-spin interactions alone will favor pure
quadrupolar order, four-spin interactions will generi-
cally lead to coexisting multipolar orders. For K > 0,
quadrupolar orders with nearest-neighbor h~⌧?
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will favor Néel octupolar (NO) order; the FO and
NO orders get switched when we consider K < 0.

Motivated by constructing the simplest model to cap-
ture the phenomenology of PrTM2Al20, we will set
J1<0 for PrTi2Al20 which favors FQ order, and J1>0
for PrV2Al20 favoring NQ order. In both cases, we fix
J2>0 andK>0, and study the phases and their proper-
ties as we vary J2/|J1| and K/|J1|. At the classical level
of the analysis done here, we note that the model with
J1 < 0 maps onto the model with J1 > 0 by changing
~⌧ ! �~⌧ on one sublattice; with this understanding, we
will mainly focus on fixed J1 = +1, but present results
which are applicable for both systems.
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In this Letter, we consider a frustrated local-moment
model with two-spin and four-spin interactions, that are
allowed by symmetry associated with the local envi-
ronment of Pr3+ ions and their coupling to the con-
duction electrons. Since our main interest is the in-
terplay between di↵erent multipolar orders and their
thermal phase transitions, we employ mean field theory
and Monte Carlo simulations to investigate the thermal
phase diagram of this model. Our key result is that such
interactions can lead to ground states with coexisting

multipolar orders; we show that this can lead to a single
or two-stage multipolar thermal transitions, and present
results on the e↵ect of a magnetic field. We discuss how
this provides a natural framework to interpret the exper-
iments on PrTi2Al20 and PrV2Al20, which is thus also of
potential importance for other heavy fermion materials.

Model.— In Pr(TM)2Al20 (with TM=Ti, V), the 4f2

Pr3+ ion lives in a T
d

local environment, arising from
the Frank Kasper cage formed by 16 neighboring Al
ions [22]. Inelastic neutron scattering and specific heat
studies have shed light on the local spectrum of the Pr3+

ion, arising from crystal field splitting of the J = 4
angular momentum multiplet [18, 21]. These indicate
a �3 non-Kramers doublet ground state separated from
the next �4 triplet of states by an energy gap ⇠ 50K. At
temperatures T ⌧ 50K, we can e↵ectively ignore these
excited crystal field multiplets [18]. Thus, for the low
energy physics of these materials, especially the broken
symmetry phases found at T . 5K, it is su�cient to
consider a model of conduction electrons Kondo-coupled
to this �3 doublet, whose wavefunctions are [21, 45]
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a time-reversal invariant quadrupolar moment, while ⌧
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describes a time-reversal odd octupolar moment. In ad-
dition, the point group symmetry of the Pr3+ ion in-
cludes an S4z operation under which ⌧± ! �⌧±, and a
C31 operation under which ⌧± ! e±i2⇡/3⌧±.

With this in mind, we consider a symmetry-allowed
model of short-distance two-spin exchange between the
pseudospin-1/2 local moments ~⌧ , supplemented with the

simplest four-spin interaction that couples quadrupolar
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We will assume J
ij

= J1, J2 for nearest and next-nearest
neighbors respectively, and ignore further neighbor two-
spin interactions. For the four-spin coupling, the no-
tation hhijihkmii means that we consider a nearest-
neighbor pair hiji coupled to a distinct nearest-neighbor
pair hkmi, such that the two pairs are separated by a
single bond, leading to the shortest four-site cluster [48].

We consider the easy-plane regime, � < 1, so that
the two-spin interactions favor quadrupolar ⌧x,y order
over octupolar ⌧z order as is observed in many of these
compounds. While J1 < 0 will drive FQ order, as ob-
served in PrTi2Al20, increasing pressure might lead to
AFQ orders, either via a frustrating J2/|J1|> 0 which
leads to incommensurate spiral order (SpQ), or via a
sign change J1>0 which will lead to commensurate Néel
quadrupolar order (NQ) [18, 21]. Our main insight is
that while the two-spin interactions alone will favor pure
quadrupolar order, four-spin interactions will generi-
cally lead to coexisting multipolar orders. For K > 0,
quadrupolar orders with nearest-neighbor h~⌧?
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will favor Néel octupolar (NO) order; the FO and
NO orders get switched when we consider K < 0.

Motivated by constructing the simplest model to cap-
ture the phenomenology of PrTM2Al20, we will set
J1<0 for PrTi2Al20 which favors FQ order, and J1>0
for PrV2Al20 favoring NQ order. In both cases, we fix
J2>0 andK>0, and study the phases and their proper-
ties as we vary J2/|J1| and K/|J1|. At the classical level
of the analysis done here, we note that the model with
J1 < 0 maps onto the model with J1 > 0 by changing
~⌧ ! �~⌧ on one sublattice; with this understanding, we
will mainly focus on fixed J1 = +1, but present results
which are applicable for both systems.

Ground state phase diagram.— For J1 > 0, con-
sider an ansatz ~⌧+
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In this Letter, we consider a frustrated local-moment
model with two-spin and four-spin interactions, that are
allowed by symmetry associated with the local envi-
ronment of Pr3+ ions and their coupling to the con-
duction electrons. Since our main interest is the in-
terplay between di↵erent multipolar orders and their
thermal phase transitions, we employ mean field theory
and Monte Carlo simulations to investigate the thermal
phase diagram of this model. Our key result is that such
interactions can lead to ground states with coexisting

multipolar orders; we show that this can lead to a single
or two-stage multipolar thermal transitions, and present
results on the e↵ect of a magnetic field. We discuss how
this provides a natural framework to interpret the exper-
iments on PrTi2Al20 and PrV2Al20, which is thus also of
potential importance for other heavy fermion materials.

Model.— In Pr(TM)2Al20 (with TM=Ti, V), the 4f2

Pr3+ ion lives in a T
d

local environment, arising from
the Frank Kasper cage formed by 16 neighboring Al
ions [22]. Inelastic neutron scattering and specific heat
studies have shed light on the local spectrum of the Pr3+

ion, arising from crystal field splitting of the J = 4
angular momentum multiplet [18, 21]. These indicate
a �3 non-Kramers doublet ground state separated from
the next �4 triplet of states by an energy gap ⇠ 50K. At
temperatures T ⌧ 50K, we can e↵ectively ignore these
excited crystal field multiplets [18]. Thus, for the low
energy physics of these materials, especially the broken
symmetry phases found at T . 5K, it is su�cient to
consider a model of conduction electrons Kondo-coupled
to this �3 doublet, whose wavefunctions are [21, 45]
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a time-reversal invariant quadrupolar moment, while ⌧
z

describes a time-reversal odd octupolar moment. In ad-
dition, the point group symmetry of the Pr3+ ion in-
cludes an S4z operation under which ⌧± ! �⌧±, and a
C31 operation under which ⌧± ! e±i2⇡/3⌧±.

With this in mind, we consider a symmetry-allowed
model of short-distance two-spin exchange between the
pseudospin-1/2 local moments ~⌧ , supplemented with the

simplest four-spin interaction that couples quadrupolar
and octupolar degrees of freedom,

H=
1

2

X

i,j

J
ij

(~⌧?
i

· ~⌧?
j

+�⌧z
i

⌧z
j

)�K
X

hhijihkmii
~⌧?
i

· ~⌧?
j

⌧z
k

⌧z
m

.(2)

We will assume J
ij

= J1, J2 for nearest and next-nearest
neighbors respectively, and ignore further neighbor two-
spin interactions. For the four-spin coupling, the no-
tation hhijihkmii means that we consider a nearest-
neighbor pair hiji coupled to a distinct nearest-neighbor
pair hkmi, such that the two pairs are separated by a
single bond, leading to the shortest four-site cluster [48].

We consider the easy-plane regime, � < 1, so that
the two-spin interactions favor quadrupolar ⌧x,y order
over octupolar ⌧z order as is observed in many of these
compounds. While J1 < 0 will drive FQ order, as ob-
served in PrTi2Al20, increasing pressure might lead to
AFQ orders, either via a frustrating J2/|J1|> 0 which
leads to incommensurate spiral order (SpQ), or via a
sign change J1>0 which will lead to commensurate Néel
quadrupolar order (NQ) [18, 21]. Our main insight is
that while the two-spin interactions alone will favor pure
quadrupolar order, four-spin interactions will generi-
cally lead to coexisting multipolar orders. For K > 0,
quadrupolar orders with nearest-neighbor h~⌧?
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will favor Néel octupolar (NO) order; the FO and
NO orders get switched when we consider K < 0.

Motivated by constructing the simplest model to cap-
ture the phenomenology of PrTM2Al20, we will set
J1<0 for PrTi2Al20 which favors FQ order, and J1>0
for PrV2Al20 favoring NQ order. In both cases, we fix
J2>0 andK>0, and study the phases and their proper-
ties as we vary J2/|J1| and K/|J1|. At the classical level
of the analysis done here, we note that the model with
J1 < 0 maps onto the model with J1 > 0 by changing
~⌧ ! �~⌧ on one sublattice; with this understanding, we
will mainly focus on fixed J1 = +1, but present results
which are applicable for both systems.

Ground state phase diagram.— For J1 > 0, con-
sider an ansatz ~⌧+
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In this Letter, we consider a frustrated local-moment
model with two-spin and four-spin interactions, that are
allowed by symmetry associated with the local envi-
ronment of Pr3+ ions and their coupling to the con-
duction electrons. Since our main interest is the in-
terplay between di↵erent multipolar orders and their
thermal phase transitions, we employ mean field theory
and Monte Carlo simulations to investigate the thermal
phase diagram of this model. Our key result is that such
interactions can lead to ground states with coexisting

multipolar orders; we show that this can lead to a single
or two-stage multipolar thermal transitions, and present
results on the e↵ect of a magnetic field. We discuss how
this provides a natural framework to interpret the exper-
iments on PrTi2Al20 and PrV2Al20, which is thus also of
potential importance for other heavy fermion materials.

Model.— In Pr(TM)2Al20 (with TM=Ti, V), the 4f2

Pr3+ ion lives in a T
d

local environment, arising from
the Frank Kasper cage formed by 16 neighboring Al
ions [22]. Inelastic neutron scattering and specific heat
studies have shed light on the local spectrum of the Pr3+

ion, arising from crystal field splitting of the J = 4
angular momentum multiplet [18, 21]. These indicate
a �3 non-Kramers doublet ground state separated from
the next �4 triplet of states by an energy gap ⇠ 50K. At
temperatures T ⌧ 50K, we can e↵ectively ignore these
excited crystal field multiplets [18]. Thus, for the low
energy physics of these materials, especially the broken
symmetry phases found at T . 5K, it is su�cient to
consider a model of conduction electrons Kondo-coupled
to this �3 doublet, whose wavefunctions are [21, 45]

|�(1)
3 i = 1

2

r
7

6
|4i � 1

2

r
5

3
|0i+ 1

2

r
7

6
|�4i

|�(2)
3 i = 1p

2
|2i+ 1p

2
|�2i . (1)

Using these, we can define the pseudospin-1/2 basis

|"i ⌘ 1p
2
(|�(1)

3 i+ i |�(2)
3 i) and |#i ⌘ 1p

2
(i |�(1)

3 i+ |�(2)
3 i).

We identify the corresponding pseudospin operators in

terms of Stevens operators O22 =
p
3
2 (J2

x

�J2
y

), O20 =
1
2 (3J

2
z

�J2), and T
xyz

=
p
15
6 J

x

J
y

J
z

(overline denoting
a symmetrized product), as ⌧

x

= � 1
4O22, ⌧y = � 1

4O20,
and ⌧

z

= 1
3
p
5
T
xyz

[46, 47]. Here, (⌧
x

, ⌧
y

)⌘ ~⌧? describes

a time-reversal invariant quadrupolar moment, while ⌧
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describes a time-reversal odd octupolar moment. In ad-
dition, the point group symmetry of the Pr3+ ion in-
cludes an S4z operation under which ⌧± ! �⌧±, and a
C31 operation under which ⌧± ! e±i2⇡/3⌧±.

With this in mind, we consider a symmetry-allowed
model of short-distance two-spin exchange between the
pseudospin-1/2 local moments ~⌧ , supplemented with the
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We will assume J
ij

= J1, J2 for nearest and next-nearest
neighbors respectively, and ignore further neighbor two-
spin interactions. For the four-spin coupling, the no-
tation hhijihkmii means that we consider a nearest-
neighbor pair hiji coupled to a distinct nearest-neighbor
pair hkmi, such that the two pairs are separated by a
single bond, leading to the shortest four-site cluster [48].

We consider the easy-plane regime, � < 1, so that
the two-spin interactions favor quadrupolar ⌧x,y order
over octupolar ⌧z order as is observed in many of these
compounds. While J1 < 0 will drive FQ order, as ob-
served in PrTi2Al20, increasing pressure might lead to
AFQ orders, either via a frustrating J2/|J1|> 0 which
leads to incommensurate spiral order (SpQ), or via a
sign change J1>0 which will lead to commensurate Néel
quadrupolar order (NQ) [18, 21]. Our main insight is
that while the two-spin interactions alone will favor pure
quadrupolar order, four-spin interactions will generi-
cally lead to coexisting multipolar orders. For K > 0,
quadrupolar orders with nearest-neighbor h~⌧?
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will favor Néel octupolar (NO) order; the FO and
NO orders get switched when we consider K < 0.

Motivated by constructing the simplest model to cap-
ture the phenomenology of PrTM2Al20, we will set
J1<0 for PrTi2Al20 which favors FQ order, and J1>0
for PrV2Al20 favoring NQ order. In both cases, we fix
J2>0 andK>0, and study the phases and their proper-
ties as we vary J2/|J1| and K/|J1|. At the classical level
of the analysis done here, we note that the model with
J1 < 0 maps onto the model with J1 > 0 by changing
~⌧ ! �~⌧ on one sublattice; with this understanding, we
will mainly focus on fixed J1 = +1, but present results
which are applicable for both systems.
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In this Letter, we consider a frustrated local-moment
model with two-spin and four-spin interactions, that are
allowed by symmetry associated with the local envi-
ronment of Pr3+ ions and their coupling to the con-
duction electrons. Since our main interest is the in-
terplay between di↵erent multipolar orders and their
thermal phase transitions, we employ mean field theory
and Monte Carlo simulations to investigate the thermal
phase diagram of this model. Our key result is that such
interactions can lead to ground states with coexisting

multipolar orders; we show that this can lead to a single
or two-stage multipolar thermal transitions, and present
results on the e↵ect of a magnetic field. We discuss how
this provides a natural framework to interpret the exper-
iments on PrTi2Al20 and PrV2Al20, which is thus also of
potential importance for other heavy fermion materials.

Model.— In Pr(TM)2Al20 (with TM=Ti, V), the 4f2

Pr3+ ion lives in a T
d

local environment, arising from
the Frank Kasper cage formed by 16 neighboring Al
ions [22]. Inelastic neutron scattering and specific heat
studies have shed light on the local spectrum of the Pr3+

ion, arising from crystal field splitting of the J = 4
angular momentum multiplet [18, 21]. These indicate
a �3 non-Kramers doublet ground state separated from
the next �4 triplet of states by an energy gap ⇠ 50K. At
temperatures T ⌧ 50K, we can e↵ectively ignore these
excited crystal field multiplets [18]. Thus, for the low
energy physics of these materials, especially the broken
symmetry phases found at T . 5K, it is su�cient to
consider a model of conduction electrons Kondo-coupled
to this �3 doublet, whose wavefunctions are [21, 45]
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a time-reversal invariant quadrupolar moment, while ⌧
z

describes a time-reversal odd octupolar moment. In ad-
dition, the point group symmetry of the Pr3+ ion in-
cludes an S4z operation under which ⌧± ! �⌧±, and a
C31 operation under which ⌧± ! e±i2⇡/3⌧±.

With this in mind, we consider a symmetry-allowed
model of short-distance two-spin exchange between the
pseudospin-1/2 local moments ~⌧ , supplemented with the

simplest four-spin interaction that couples quadrupolar
and octupolar degrees of freedom,
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We will assume J
ij

= J1, J2 for nearest and next-nearest
neighbors respectively, and ignore further neighbor two-
spin interactions. For the four-spin coupling, the no-
tation hhijihkmii means that we consider a nearest-
neighbor pair hiji coupled to a distinct nearest-neighbor
pair hkmi, such that the two pairs are separated by a
single bond, leading to the shortest four-site cluster [48].

We consider the easy-plane regime, � < 1, so that
the two-spin interactions favor quadrupolar ⌧x,y order
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III. LANDAU THEORY

In this paper, we study the simplest scenarios with
uniform or two-sublattice orders which do not enlarge
the unit cell of the diamond lattice. Thus, we consider
FerroQuadrupole (FQ), AntiFerroQuadrupole (AFQ),
FerroOctupole (FO) and AntiFerroOctupole (AFO)
broken symmetry states. Some of these orders could
potentially coexist. Let us introduce uniform and stag-
gered multipolar order parameters
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Here, the complex scalars �
u,s

denote, respectively, the
uniform (for FQ) and staggered parts (for AFQ) of the
XY quadrupolar order, while the real scalars m
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to the uniform (for FO) and staggered parts (for AFO)
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The symmetry-allowed terms in the Landau free energy
with independent order parameters are thus:
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where the ellipses denote dropped higher order terms.
The important di↵erence between the FQ versus AFQ
free energies appears in the “clock” anisotropy terms
which break XY symmetry for �
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s

respectively; this
is cubic for FQ and sixth order for AFQ. This free
energy must be supplemented by Fint which encapsu-
lates interactions between the di↵erent order parame-
ters. Symmetry allows for a single cubic interaction,
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Such terms can lead to coexistence of quadrupolar and
octupolar order parameters depending on the signs of

the coe�cients. Below, we will analyze this Landau
free energy in various cases, starting from the simplest
example.

A. FQ order in PrTi2Al20

PrTi2Al20 exhibits FQ order, so we can focus on the
single term F

�u

in Eq. (16) above.12,30,31 For r
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> 0,
this describes a paramagnetic (PM) phase with �
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= 0,
while r
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< 0 leads to FQ order with �
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= ⇡/6 + 2n⇡/3 (with integer n),
while v < 0 pins ✓
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= ⇡/6 + (2n+ 1)⇡/3. In particular,
either sign of v favors O20 order over O22 order, which
is consistent with nuclear magnetic resonance (NMR)
experiments35 on PrTi2Al20. In the “hard-spin” limit,
the theory for the PM-to-FQ transition is a Z3 clock
model which is known to exhibit a first-order transition
in three dimensions (3D).44,45 However, disorder e↵ects
have been shown in certain examples to convert first-
order transitions into continuous phase transitions.46

Such e↵ects may be important in understanding exper-
imental observations; this needs further investigation.
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of the interplay of AFQ and FQ orders by considering
the regime where r
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is large. The resulting FQ order is
then parasitic, and it will be slaved to the AFQ order.
Let us simplify the problem by setting (v, g
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to leading order, and minimizing the free energy with
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the unit cell of the diamond lattice. Thus, we consider
FerroQuadrupole (FQ), AntiFerroQuadrupole (AFQ),
FerroOctupole (FO) and AntiFerroOctupole (AFO)
broken symmetry states. Some of these orders could
potentially coexist. Let us introduce uniform and stag-
gered multipolar order parameters
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where the ellipses denote dropped higher order terms.
The important di↵erence between the FQ versus AFQ
free energies appears in the “clock” anisotropy terms
which break XY symmetry for �
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respectively; this
is cubic for FQ and sixth order for AFQ. This free
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Such terms can lead to coexistence of quadrupolar and
octupolar order parameters depending on the signs of
the coe�cients. Below, we will analyze this Landau
free energy in various cases, starting from the simplest
example.

A. FQ order in PrTi2Al20

PrTi2Al20 exhibits FQ order, so we can focus on the
single term F
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in Eq. (16) above.12,30,31 For r
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this describes a paramagnetic (PM) phase with �
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while r
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= ⇡/6 + (2n+ 1)⇡/3. In particular,
either sign of v favors O20 order over O22 order, which
is consistent with nuclear magnetic resonance (NMR)
experiments35 on PrTi2Al20. In the ‘hard-spin’ limit,
the theory for the PM-to-FQ transition is a Z3 clock
model which is known to exhibit a first-order transi-
tion in three dimensions (3D).44,45 However, disorder
e↵ects46 may modify this expectation, leading to a con-
tinuous transition as appears to be observed in experi-
ments; this needs further theoretical investigation.
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the unit cell of the diamond lattice. Thus, we consider
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where the ellipses denote dropped higher order terms.
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Such terms can lead to coexistence of quadrupolar and
octupolar order parameters depending on the signs of
the coe�cients. Below, we will analyze this Landau
free energy in various cases, starting from the simplest
example.
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In this Letter, we consider a frustrated local-moment
model with two-spin and four-spin interactions, that are
allowed by symmetry associated with the local envi-
ronment of Pr3+ ions and their coupling to the con-
duction electrons. Since our main interest is the in-
terplay between di↵erent multipolar orders and their
thermal phase transitions, we employ mean field theory
and Monte Carlo simulations to investigate the thermal
phase diagram of this model. Our key result is that such
interactions can lead to ground states with coexisting

multipolar orders; we show that this can lead to a single
or two-stage multipolar thermal transitions, and present
results on the e↵ect of a magnetic field. We discuss how
this provides a natural framework to interpret the exper-
iments on PrTi2Al20 and PrV2Al20, which is thus also of
potential importance for other heavy fermion materials.

Model.— In Pr(TM)2Al20 (with TM=Ti, V), the 4f2

Pr3+ ion lives in a T
d

local environment, arising from
the Frank Kasper cage formed by 16 neighboring Al
ions [22]. Inelastic neutron scattering and specific heat
studies have shed light on the local spectrum of the Pr3+

ion, arising from crystal field splitting of the J = 4
angular momentum multiplet [18, 21]. These indicate
a �3 non-Kramers doublet ground state separated from
the next �4 triplet of states by an energy gap ⇠ 50K. At
temperatures T ⌧ 50K, we can e↵ectively ignore these
excited crystal field multiplets [18]. Thus, for the low
energy physics of these materials, especially the broken
symmetry phases found at T . 5K, it is su�cient to
consider a model of conduction electrons Kondo-coupled
to this �3 doublet, whose wavefunctions are [21, 45]
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cludes an S4z operation under which ⌧± ! �⌧±, and a
C31 operation under which ⌧± ! e±i2⇡/3⌧±.

With this in mind, we consider a symmetry-allowed
model of short-distance two-spin exchange between the
pseudospin-1/2 local moments ~⌧ , supplemented with the
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We will assume J
ij

= J1, J2 for nearest and next-nearest
neighbors respectively, and ignore further neighbor two-
spin interactions. For the four-spin coupling, the no-
tation hhijihkmii means that we consider a nearest-
neighbor pair hiji coupled to a distinct nearest-neighbor
pair hkmi, such that the two pairs are separated by a
single bond, leading to the shortest four-site cluster [48].

We consider the easy-plane regime, � < 1, so that
the two-spin interactions favor quadrupolar ⌧x,y order
over octupolar ⌧z order as is observed in many of these
compounds. While J1 < 0 will drive FQ order, as ob-
served in PrTi2Al20, increasing pressure might lead to
AFQ orders, either via a frustrating J2/|J1|> 0 which
leads to incommensurate spiral order (SpQ), or via a
sign change J1>0 which will lead to commensurate Néel
quadrupolar order (NQ) [18, 21]. Our main insight is
that while the two-spin interactions alone will favor pure
quadrupolar order, four-spin interactions will generi-
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J1<0 for PrTi2Al20 which favors FQ order, and J1>0
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the unit cell of the diamond lattice. Thus, we consider
FerroQuadrupole (FQ), AntiFerroQuadrupole (AFQ),
FerroOctupole (FO) and AntiFerroOctupole (AFO)
broken symmetry states. Some of these orders could
potentially coexist. Let us introduce uniform and stag-
gered multipolar order parameters
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Here, the complex scalars �
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denote, respectively, the
uniform (for FQ) and staggered parts (for AFQ) of the
XY quadrupolar order, while the real scalars m
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The symmetry-allowed terms in the Landau free energy
with independent order parameters are thus:
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where the ellipses denote dropped higher order terms.
The important di↵erence between the FQ versus AFQ
free energies appears in the “clock” anisotropy terms
which break XY symmetry for �
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s

respectively; this
is cubic for FQ and sixth order for AFQ. This free
energy must be supplemented by Fint which encapsu-
lates interactions between the di↵erent order parame-
ters. Symmetry allows for a single cubic interaction,
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Such terms can lead to coexistence of quadrupolar and
octupolar order parameters depending on the signs of
the coe�cients. Below, we will analyze this Landau
free energy in various cases, starting from the simplest
example.

A. FQ order in PrTi2Al20

PrTi2Al20 exhibits FQ order, so we can focus on the
single term F
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in Eq. (16) above.12,30,31 For r
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this describes a paramagnetic (PM) phase with �

u

= 0,
while r

u�

< 0 leads to FQ order with �
u

6= 0. The phase
of �

u

⌘ |�
u

|ei✓u is determined by the clock term v. For
v > 0, we favor ✓

u

= ⇡/6 + 2n⇡/3 (with integer n),
while v < 0 pins ✓

u

= ⇡/6 + (2n+ 1)⇡/3. In particular,
either sign of v favors O20 order over O22 order, which
is consistent with nuclear magnetic resonance (NMR)
experiments35 on PrTi2Al20. In the ‘hard-spin’ limit,
the theory for the PM-to-FQ transition is a Z3 clock
model which is known to exhibit a first-order transi-
tion in three dimensions (3D).44,45 However, disorder
e↵ects46 may modify this expectation, leading to a con-
tinuous transition as appears to be observed in experi-
ments; this needs further theoretical investigation.
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III. LANDAU THEORY

In this paper, we study the simplest scenarios with
uniform or two-sublattice orders which do not enlarge
the unit cell of the diamond lattice. Thus, we consider
FerroQuadrupole (FQ), AntiFerroQuadrupole (AFQ),
FerroOctupole (FO) and AntiFerroOctupole (AFO)
broken symmetry states. Some of these orders could
potentially coexist. Let us introduce uniform and stag-
gered multipolar order parameters

�
u,s

⌘h⌧+
A

i± h⌧+
B

i (10)

m
u,s

⌘h⌧z
A

i± h⌧z
B

i . (11)

Here, the complex scalars �
u,s

denote, respectively, the
uniform (for FQ) and staggered parts (for AFQ) of the
XY quadrupolar order, while the real scalars m

u,s

refer
to the uniform (for FO) and staggered parts (for AFO)
of the Ising octupolar order. The underlying crystal
and time-reversal symmetry transformations act on the
order parameters �

u,s

and m
u,s

as follows:

⇥ : �
u,s

! �
u,s

; m
u,s

! �m
u,s

(12)

I : (�
u

,m
u

) ! (�
u

,m
u

); (�
s

,m
s

) ! �(�
s

,m
s

)(13)

S4z : �
u,s

! ��⇤
u,s

; m
u,s

! �m
u,s

(14)

C31 : �
u,s

! ei2⇡/3�
u,s

; m
u,s

! m
u,s

. (15)

The symmetry-allowed terms in the Landau free energy
with independent order parameters are thus:

F
�u

=r
u�

|�
u

|2+iv(�3
u

��⇤3
u

)+g
u�

|�
u

|4+. . . (16)

F
�s

=r
s�

|�
s

|2+g
s�

|�
s

|4+w(�6
s

+�⇤6
s

)+. . . (17)

F
mu

=r
um

m2
u

+g
um

m4
u

+. . . (18)

F
ms

=r
sm

m2
s

+g
sm

m4
s

+. . . , (19)

where the ellipses denote dropped higher order terms.
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Such terms can lead to coexistence of quadrupolar and
octupolar order parameters depending on the signs of

the coe�cients. Below, we will analyze this Landau
free energy in various cases, starting from the simplest
example.
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model which is known to exhibit a first-order transition
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have been shown in certain examples to convert first-
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Such terms can lead to coexistence of quadrupolar and
octupolar order parameters depending on the signs of

the coe�cients. Below, we will analyze this Landau
free energy in various cases, starting from the simplest
example.
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model which is known to exhibit a first-order transition
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have been shown in certain examples to convert first-
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Such e↵ects may be important in understanding exper-
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Considering Only Quadrupolar Order Parameters
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where the ellipses denote dropped higher order terms.
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Such terms can lead to coexistence of quadrupolar and
octupolar order parameters depending on the signs of

the coe�cients. Below, we will analyze this Landau
free energy in various cases, starting from the simplest
example.

A. FQ order in PrTi2Al20
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is consistent with nuclear magnetic resonance (NMR)
experiments35 on PrTi2Al20. In the “hard-spin” limit,
the theory for the PM-to-FQ transition is a Z3 clock
model which is known to exhibit a first-order transition
in three dimensions (3D).44,45 However, disorder e↵ects
have been shown in certain examples to convert first-
order transitions into continuous phase transitions.46

Such e↵ects may be important in understanding exper-
imental observations; this needs further investigation.
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Such terms can lead to coexistence of quadrupolar and
octupolar order parameters depending on the signs of

the coe�cients. Below, we will analyze this Landau
free energy in various cases, starting from the simplest
example.
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to the uniform (for FO) and staggered parts (for AFO)
of the Ising octupolar order. The underlying crystal
and time-reversal symmetry transformations act on the
order parameters �
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The symmetry-allowed terms in the Landau free energy
with independent order parameters are thus:
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where the ellipses denote dropped higher order terms.
The important di↵erence between the FQ versus AFQ
free energies appears in the “clock” anisotropy terms
which break XY symmetry for �

u

,�
s

respectively; this
is cubic for FQ and sixth order for AFQ. This free
energy must be supplemented by Fint which encapsu-
lates interactions between the di↵erent order parame-
ters. Symmetry allows for a single cubic interaction,
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This leads to “parasitic” FQ order �
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s

in an AFQ
state. Additional quartic interactions between order pa-
rameters take the form
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Such terms can lead to coexistence of quadrupolar and
octupolar order parameters depending on the signs of

the coe�cients. Below, we will analyze this Landau
free energy in various cases, starting from the simplest
example.

A. FQ order in PrTi2Al20

PrTi2Al20 exhibits FQ order, so we can focus on the
single term F
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in Eq. (16) above.12,30,31 For r
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= 0,
while r

u�

< 0 leads to FQ order with �
u

6= 0. The phase
of �

u

⌘ |�
u

|ei✓u is determined by the clock term v. For
v > 0, we favor ✓

u

= ⇡/6 + 2n⇡/3 (with integer n),
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either sign of v favors O20 order over O22 order, which
is consistent with nuclear magnetic resonance (NMR)
experiments35 on PrTi2Al20. In the “hard-spin” limit,
the theory for the PM-to-FQ transition is a Z3 clock
model which is known to exhibit a first-order transition
in three dimensions (3D).44,45 However, disorder e↵ects
have been shown in certain examples to convert first-
order transitions into continuous phase transitions.46

Such e↵ects may be important in understanding exper-
imental observations; this needs further investigation.
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Substituting back, the full free energy is given by
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Figure 1: AFQ, AFO, FQ order parameters as a function of Temperature under zero mag-
netic field (B = 0).

As one can notice, the induced parasitic FQ moment only turns on when AFQ is switched
on. Moreover, a kink appears in both AFQ and FQ when AFO turns on non-analytically,
due to the coupling of AFO to AFQ and FQ, respectively.

We now consider non-zero magnetic fields applied along the (100) (✓
h

= �⇡/6) and (110)
(✓

h

= �⇡/2) directions. Below are a set of plots of the order parameters changing with
ever-increasing magnetic fields. As seen another slight kink appears in the AFQ, which we
attribute to arising from the fact that the real and imaginary part of �̃ ordering at di↵erent
temperatures [further analysis with increasing the interaction strength (u

�

etc.) will be
needed].

Figure 2: AFQ, AFO, FQ order parameters as a function of Temperature under h=0
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nario might potentially explain the two observed zero
field thermal transitions in PrV2Al20.15,21 We note that
while there are many possible cuts we could take which
would lead to multiple thermal transitions, the one we
have chosen seems most promising from the point of
view of understanding the magnetic field evolution as
discussed in Section IV.

C. Coexisting AFQ and octupolar orders

Finally, let us turn to the most interesting possibil-
ity, that the two thermal transitions in PrV2Al20 corre-
spond, respectively, to the onset of AFQ and of octupo-
lar order which spontaneously breaks time-reversal sym-
metry. In previous work, we have considered this pos-
sibility within a particular (phenomenological) micro-
scopic Hamiltonian with competing two-spin and four-
spin interactions which we studied using classical Monte
Carlo simulations.41 Here, we revisit this scenario us-
ing Landau theory which goes beyond a specific micro-
scopic model. We note the precise type of octupolar
order, either ferrooctupolar or antiferrooctupolar, does
not change our Landau theory analysis performed be-
low; without loss of generality, we thus consider the
case with ferro-octupolar order. This distinction will
of course be important when we turn in the end to a
discussion of experimental consequences.

To illustrate this interplay of AFQ and octupolar or-
ders, Fig. 2(a) shows a phase diagram obtained using the

Landau free energy Fe↵
�s

+F
mu

+F (4)
int , where we consider

having integrated out �
u

and assumed large r
u�

so any
multiple thermal transitions must arise from additional

octupolar order. We pick c6 6= 0 in F (4)
int in Eq. (21);

specifically, we chose c6 < 0 to allow for a coexistence
phase. As we vary r

s�

, r
um

, there exist four distinct
phases: a paramagnet (PM) (�

s

=�
u

=m
s

=0), an AFQ
phase with parasitic FQ order (�

s

6=0,�
u

6=0,m
u

=0),
an FO phase (�

s

= �
u

= 0,m
u

6= 0), and finally a
phase with coexisting AFQ and FO orders with par-
asitic FQ order (�

s

6=0,�
u

6=0,m
u

6=0). Fig. 2(b) shows
the temperature dependence of the order parameters as
we “cool” from the PM into the phase with coexisting
AFQ and FO orders; for simplicity, we consider going
along the trajectory indicated in Fig. 2(a), i.e., keep-
ing r

sm

fixed and varying r
s�

. This clearly shows the
double transition, with the upper transition T

Q

being
associated with AFQ order (with parasitic FQ) and the
lower transition at T ⇤ arising from the octupolar order.
Fig. 2(c) shows the common origin plots of pseudospin ⌧
for AFQ and AFQ-FO respectively (both with parasitic
FQ).
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FIG. 2. [Color online] (a) Phase diagram of the Landau the-

ory described by F
�u

+F
�s

+F
mu

+F (3)
int +F (4)

int with AFQ,
FQ and FO order parameters as functions of r

s�

and r
sm

.
Here, we set wv� > 0 distinct with the case depicted in
Fig. 1, thus the phase transition only arise from developing
additional octupolar order. In this case, three phases exist;
paramagnet (PM), AFQ with parasitic FQ (AFQFQ) and
coexisting AFQ and FO with parasitic FQ order (AFQFQ
FO). See main text for details. (b) Plot of the order pa-
rameters along shown trajectory (purple line) in panel (a).
Red, blue and green lines represent the magnitude of order
parameters �

s

and �
u

and m
u

. (c) Common origin plots
of each phase. Red, blue and green arrows exhibit magni-
tudes of AFQ, FQ and FO phases respectively and purple
arrow is the combination of them, determining the direction
of pseudospin ⌧ . All these spin configurations have three-
fold degeneracies with 2⇡/3 rotation in ⌧

x

-⌧
y

plane. (Here
we chose the quadrupole order configuration having only ⌧

y

component.)

IV. IMPACT OF A MAGNETIC FIELD

We next consider the impact of an applied magnetic
field B on the Landau free energy, and its phases and
phase transitions. The leading term is a quadratic-in-
field coupling to the quadrupolar order; microscopically,
this arises via second order perturbation theory inB · J ,
where J is the J = 4 angular momentum operator. Pro-
jecting to the �3 doublet, we arrive at the form39

Hfield=�B2(b1⌧
x+b2⌧

y) (26)

Red: AF-Q
Blue: F-O
Green: F-Q
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In this Letter, we consider a frustrated local-moment
model with two-spin and four-spin interactions, that are
allowed by symmetry associated with the local envi-
ronment of Pr3+ ions and their coupling to the con-
duction electrons. Since our main interest is the in-
terplay between di↵erent multipolar orders and their
thermal phase transitions, we employ mean field theory
and Monte Carlo simulations to investigate the thermal
phase diagram of this model. Our key result is that such
interactions can lead to ground states with coexisting

multipolar orders; we show that this can lead to a single
or two-stage multipolar thermal transitions, and present
results on the e↵ect of a magnetic field. We discuss how
this provides a natural framework to interpret the exper-
iments on PrTi2Al20 and PrV2Al20, which is thus also of
potential importance for other heavy fermion materials.

Model.— In Pr(TM)2Al20 (with TM=Ti, V), the 4f2

Pr3+ ion lives in a T
d

local environment, arising from
the Frank Kasper cage formed by 16 neighboring Al
ions [22]. Inelastic neutron scattering and specific heat
studies have shed light on the local spectrum of the Pr3+

ion, arising from crystal field splitting of the J = 4
angular momentum multiplet [18, 21]. These indicate
a �3 non-Kramers doublet ground state separated from
the next �4 triplet of states by an energy gap ⇠ 50K. At
temperatures T ⌧ 50K, we can e↵ectively ignore these
excited crystal field multiplets [18]. Thus, for the low
energy physics of these materials, especially the broken
symmetry phases found at T . 5K, it is su�cient to
consider a model of conduction electrons Kondo-coupled
to this �3 doublet, whose wavefunctions are [21, 45]
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[46, 47]. Here, (⌧
x

, ⌧
y

)⌘ ~⌧? describes

a time-reversal invariant quadrupolar moment, while ⌧
z

describes a time-reversal odd octupolar moment. In ad-
dition, the point group symmetry of the Pr3+ ion in-
cludes an S4z operation under which ⌧± ! �⌧±, and a
C31 operation under which ⌧± ! e±i2⇡/3⌧±.

With this in mind, we consider a symmetry-allowed
model of short-distance two-spin exchange between the
pseudospin-1/2 local moments ~⌧ , supplemented with the

simplest four-spin interaction that couples quadrupolar
and octupolar degrees of freedom,
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We will assume J
ij

= J1, J2 for nearest and next-nearest
neighbors respectively, and ignore further neighbor two-
spin interactions. For the four-spin coupling, the no-
tation hhijihkmii means that we consider a nearest-
neighbor pair hiji coupled to a distinct nearest-neighbor
pair hkmi, such that the two pairs are separated by a
single bond, leading to the shortest four-site cluster [48].

We consider the easy-plane regime, � < 1, so that
the two-spin interactions favor quadrupolar ⌧x,y order
over octupolar ⌧z order as is observed in many of these
compounds. While J1 < 0 will drive FQ order, as ob-
served in PrTi2Al20, increasing pressure might lead to
AFQ orders, either via a frustrating J2/|J1|> 0 which
leads to incommensurate spiral order (SpQ), or via a
sign change J1>0 which will lead to commensurate Néel
quadrupolar order (NQ) [18, 21]. Our main insight is
that while the two-spin interactions alone will favor pure
quadrupolar order, four-spin interactions will generi-
cally lead to coexisting multipolar orders. For K > 0,
quadrupolar orders with nearest-neighbor h~⌧?
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i>0

will favor ferro-octupolar (FO) order, while h~⌧?
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i<0
will favor Néel octupolar (NO) order; the FO and
NO orders get switched when we consider K < 0.

Motivated by constructing the simplest model to cap-
ture the phenomenology of PrTM2Al20, we will set
J1<0 for PrTi2Al20 which favors FQ order, and J1>0
for PrV2Al20 favoring NQ order. In both cases, we fix
J2>0 andK>0, and study the phases and their proper-
ties as we vary J2/|J1| and K/|J1|. At the classical level
of the analysis done here, we note that the model with
J1 < 0 maps onto the model with J1 > 0 by changing
~⌧ ! �~⌧ on one sublattice; with this understanding, we
will mainly focus on fixed J1 = +1, but present results
which are applicable for both systems.
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model with two-spin and four-spin interactions, that are
allowed by symmetry associated with the local envi-
ronment of Pr3+ ions and their coupling to the con-
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terplay between di↵erent multipolar orders and their
thermal phase transitions, we employ mean field theory
and Monte Carlo simulations to investigate the thermal
phase diagram of this model. Our key result is that such
interactions can lead to ground states with coexisting

multipolar orders; we show that this can lead to a single
or two-stage multipolar thermal transitions, and present
results on the e↵ect of a magnetic field. We discuss how
this provides a natural framework to interpret the exper-
iments on PrTi2Al20 and PrV2Al20, which is thus also of
potential importance for other heavy fermion materials.
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the next �4 triplet of states by an energy gap ⇠ 50K. At
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excited crystal field multiplets [18]. Thus, for the low
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pair hkmi, such that the two pairs are separated by a
single bond, leading to the shortest four-site cluster [48].
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model with two-spin and four-spin interactions, that are
allowed by symmetry associated with the local envi-
ronment of Pr3+ ions and their coupling to the con-
duction electrons. Since our main interest is the in-
terplay between di↵erent multipolar orders and their
thermal phase transitions, we employ mean field theory
and Monte Carlo simulations to investigate the thermal
phase diagram of this model. Our key result is that such
interactions can lead to ground states with coexisting

multipolar orders; we show that this can lead to a single
or two-stage multipolar thermal transitions, and present
results on the e↵ect of a magnetic field. We discuss how
this provides a natural framework to interpret the exper-
iments on PrTi2Al20 and PrV2Al20, which is thus also of
potential importance for other heavy fermion materials.
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cludes an S4z operation under which ⌧± ! �⌧±, and a
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With this in mind, we consider a symmetry-allowed
model of short-distance two-spin exchange between the
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We will assume J
ij

= J1, J2 for nearest and next-nearest
neighbors respectively, and ignore further neighbor two-
spin interactions. For the four-spin coupling, the no-
tation hhijihkmii means that we consider a nearest-
neighbor pair hiji coupled to a distinct nearest-neighbor
pair hkmi, such that the two pairs are separated by a
single bond, leading to the shortest four-site cluster [48].

We consider the easy-plane regime, � < 1, so that
the two-spin interactions favor quadrupolar ⌧x,y order
over octupolar ⌧z order as is observed in many of these
compounds. While J1 < 0 will drive FQ order, as ob-
served in PrTi2Al20, increasing pressure might lead to
AFQ orders, either via a frustrating J2/|J1|> 0 which
leads to incommensurate spiral order (SpQ), or via a
sign change J1>0 which will lead to commensurate Néel
quadrupolar order (NQ) [18, 21]. Our main insight is
that while the two-spin interactions alone will favor pure
quadrupolar order, four-spin interactions will generi-
cally lead to coexisting multipolar orders. For K > 0,
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will favor Néel octupolar (NO) order; the FO and
NO orders get switched when we consider K < 0.

Motivated by constructing the simplest model to cap-
ture the phenomenology of PrTM2Al20, we will set
J1<0 for PrTi2Al20 which favors FQ order, and J1>0
for PrV2Al20 favoring NQ order. In both cases, we fix
J2>0 andK>0, and study the phases and their proper-
ties as we vary J2/|J1| and K/|J1|. At the classical level
of the analysis done here, we note that the model with
J1 < 0 maps onto the model with J1 > 0 by changing
~⌧ ! �~⌧ on one sublattice; with this understanding, we
will mainly focus on fixed J1 = +1, but present results
which are applicable for both systems.
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In this Letter, we consider a frustrated local-moment
model with two-spin and four-spin interactions, that are
allowed by symmetry associated with the local envi-
ronment of Pr3+ ions and their coupling to the con-
duction electrons. Since our main interest is the in-
terplay between di↵erent multipolar orders and their
thermal phase transitions, we employ mean field theory
and Monte Carlo simulations to investigate the thermal
phase diagram of this model. Our key result is that such
interactions can lead to ground states with coexisting

multipolar orders; we show that this can lead to a single
or two-stage multipolar thermal transitions, and present
results on the e↵ect of a magnetic field. We discuss how
this provides a natural framework to interpret the exper-
iments on PrTi2Al20 and PrV2Al20, which is thus also of
potential importance for other heavy fermion materials.

Model.— In Pr(TM)2Al20 (with TM=Ti, V), the 4f2

Pr3+ ion lives in a T
d

local environment, arising from
the Frank Kasper cage formed by 16 neighboring Al
ions [22]. Inelastic neutron scattering and specific heat
studies have shed light on the local spectrum of the Pr3+

ion, arising from crystal field splitting of the J = 4
angular momentum multiplet [18, 21]. These indicate
a �3 non-Kramers doublet ground state separated from
the next �4 triplet of states by an energy gap ⇠ 50K. At
temperatures T ⌧ 50K, we can e↵ectively ignore these
excited crystal field multiplets [18]. Thus, for the low
energy physics of these materials, especially the broken
symmetry phases found at T . 5K, it is su�cient to
consider a model of conduction electrons Kondo-coupled
to this �3 doublet, whose wavefunctions are [21, 45]
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= J1, J2 for nearest and next-nearest
neighbors respectively, and ignore further neighbor two-
spin interactions. For the four-spin coupling, the no-
tation hhijihkmii means that we consider a nearest-
neighbor pair hiji coupled to a distinct nearest-neighbor
pair hkmi, such that the two pairs are separated by a
single bond, leading to the shortest four-site cluster [48].

We consider the easy-plane regime, � < 1, so that
the two-spin interactions favor quadrupolar ⌧x,y order
over octupolar ⌧z order as is observed in many of these
compounds. While J1 < 0 will drive FQ order, as ob-
served in PrTi2Al20, increasing pressure might lead to
AFQ orders, either via a frustrating J2/|J1|> 0 which
leads to incommensurate spiral order (SpQ), or via a
sign change J1>0 which will lead to commensurate Néel
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In this Letter, we consider a frustrated local-moment
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allowed by symmetry associated with the local envi-
ronment of Pr3+ ions and their coupling to the con-
duction electrons. Since our main interest is the in-
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thermal phase transitions, we employ mean field theory
and Monte Carlo simulations to investigate the thermal
phase diagram of this model. Our key result is that such
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results on the e↵ect of a magnetic field. We discuss how
this provides a natural framework to interpret the exper-
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the next �4 triplet of states by an energy gap ⇠ 50K. At
temperatures T ⌧ 50K, we can e↵ectively ignore these
excited crystal field multiplets [18]. Thus, for the low
energy physics of these materials, especially the broken
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= J1, J2 for nearest and next-nearest
neighbors respectively, and ignore further neighbor two-
spin interactions. For the four-spin coupling, the no-
tation hhijihkmii means that we consider a nearest-
neighbor pair hiji coupled to a distinct nearest-neighbor
pair hkmi, such that the two pairs are separated by a
single bond, leading to the shortest four-site cluster [48].

We consider the easy-plane regime, � < 1, so that
the two-spin interactions favor quadrupolar ⌧x,y order
over octupolar ⌧z order as is observed in many of these
compounds. While J1 < 0 will drive FQ order, as ob-
served in PrTi2Al20, increasing pressure might lead to
AFQ orders, either via a frustrating J2/|J1|> 0 which
leads to incommensurate spiral order (SpQ), or via a
sign change J1>0 which will lead to commensurate Néel
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J1<0 for PrTi2Al20 which favors FQ order, and J1>0
for PrV2Al20 favoring NQ order. In both cases, we fix
J2>0 andK>0, and study the phases and their proper-
ties as we vary J2/|J1| and K/|J1|. At the classical level
of the analysis done here, we note that the model with
J1 < 0 maps onto the model with J1 > 0 by changing
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which are applicable for both systems.
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FIG. 1. Phase diagram at zero magnetic field [h = 0]. The
temperature regimes studied in Sec. V are denoted by dashed
lines at: T < TQ, TO, TO < T < TQ, and T > TQ, TO. The
order parameters for AFQ, FO, and FQ are denoted by |�̃|,
m, and |�|, respectively. Here the bare critical temperatures
are TQ = T c

Q and TO [shifted from the bare T c
O due to the

couplings u�̃m and u�m discussed in the main text].

second-order perturbation theory in ~h · ~J , where the low
energy subspace is spanned by the �

3g doublet, and the
high energy subspace is spanned by the excited triplets
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4,5. This leads to
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) are the
gaps between the low energy doublets and the corre-
sponding triplet states at zero magnetic field. The ef-
fective coupling to the ferroquadrupolar order is via
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z � h2). Based on the form
of the coupling in Eq. 16, we infer that  H transforms
identically to � under the relevant symmetries. Going
to third-order in perturbation theory leads to a further
O(h3) coupling of the magnetic field to octupole moment
of the form ⇠ hxhyhz⌧z.

Thus, the symmetry allowed e↵ective magnetic field
coupling to the quadrupolar moments is
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. The first (second) line in Eq.

17 is the symmetry allowed coupling to the AFQ (FQ).

The third line involves couplings permitted due to pure
symmetry reasons that renormalize the mass terms of
the AFQ and FQ. Physically they arise from conduction
electron mediated magnetic couplings (having integrated
out the conduction electrons); similar coupling to the
octupolar moment is also permitted [⇠ h2m2], which is
formally introduced in Sec. IVB via the magnetic field
assisted coupling of the octupolar moment to the lattice
strain. In the subsequent sections, we discuss magnetic
fields applied along the [100] , [110] and [111] directions.
For clarity, we present the value for | H | and ✓H for
the magnetic field directions discussed in subsequent sec-
tions, in Table I.

Magnetic Field, ~h = h · n̂ | H | ✓H
n̂ = [100] �0

2 h2 �⇡/6
n̂ = 1p

2
[110] �0

4 h2 �⇡/2
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3
[111] 0 �

TABLE I. E↵ective magnetic field strengths | H |, and asso-
ciated complex angle ✓H . For the n̂ = 1p

3
[111], the magnetic

field does not directly couple to the quadrupolar moments,
but can do so via s̃H and sH , as described in the main text.

III. CUBIC CRYSTAL NORMAL MODES, AND
RELATIVE LENGTH CHANGE EXPRESSION

In this section, we introduce the expression of the free
energy of a deformed face-centred cubic lattice, as well
as its associated normal modes. We also formulate the
relative length change expression in terms of the elastic
strain components.

A. Elastic Energy of a Cubic Crystal

In the spirit of Landau and Lifshitz, the general form
of the free energy of a cubic crystal is constrained by the
octahedral symmetry, Oh, to be58–60

F
lattice

=
c
11

2

�
✏2xx + ✏2yy + ✏2zz

�
+

c
44

2

�
✏2xy + ✏2yz + ✏2xz

�

+ c
12

(✏xx✏yy + ✏yy✏zz + ✏zz✏xx) , (18)

where the crystal’s deformation is described by the com-
ponents of the strain tensor ✏ik, and cij is the elastic
modulus tensor describing the sti↵ness of the crystal.
Note that we use the common abbreviation of the elastic
modulus tensor’s indices i.e. cxxxx ⌘ c
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. This expression can be more elegantly writ-
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order parameters for AFQ, FO, and FQ are denoted by |�̃|,
m, and |�|, respectively. Here the bare critical temperatures
are TQ = T c

Q and TO [shifted from the bare T c
O due to the

couplings u�̃m and u�m discussed in the main text].
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assisted coupling of the octupolar moment to the lattice
strain. In the subsequent sections, we discuss magnetic
fields applied along the [100] , [110] and [111] directions.
For clarity, we present the value for | H | and ✓H for
the magnetic field directions discussed in subsequent sec-
tions, in Table I.

Magnetic Field, ~h = h · n̂ | H | ✓H
n̂ = [100] �0

2 h2 �⇡/6
n̂ = 1p

2
[110] �0

4 h2 �⇡/2
n̂ = 1p

3
[111] 0 �

TABLE I. E↵ective magnetic field strengths | H |, and asso-
ciated complex angle ✓H . For the n̂ = 1p

3
[111], the magnetic

field does not directly couple to the quadrupolar moments,
but can do so via s̃H and sH , as described in the main text.

III. CUBIC CRYSTAL NORMAL MODES, AND
RELATIVE LENGTH CHANGE EXPRESSION

In this section, we introduce the expression of the free
energy of a deformed face-centred cubic lattice, as well
as its associated normal modes. We also formulate the
relative length change expression in terms of the elastic
strain components.

A. Elastic Energy of a Cubic Crystal

In the spirit of Landau and Lifshitz, the general form
of the free energy of a cubic crystal is constrained by the
octahedral symmetry, Oh, to be58–60
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(✏xx✏yy + ✏yy✏zz + ✏zz✏xx) , (18)

where the crystal’s deformation is described by the com-
ponents of the strain tensor ✏ik, and cij is the elastic
modulus tensor describing the sti↵ness of the crystal.
Note that we use the common abbreviation of the elastic
modulus tensor’s indices i.e. cxxxx ⌘ c
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, cxxyy ⌘ c
12

,
cxyxy ⌘ c

44

. This expression can be more elegantly writ-
ten in terms of the normal modes of the cubic lattice,
namely,
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(19)
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where cB is the bulk modulus, ✏B ⌘ ✏xx + ✏yy + ✏zz is
the volume expansion of the crystal, ✏⌫ ⌘ (2✏zz � ✏xx �
✏yy)/

p
3 and ✏µ ⌘ (✏xx � ✏yy) are lattice strains that

transform as the �
3g irrep. of the Oh group, and the o↵-

diagonal strain components transform as the �
5g irrep. of

Oh group; here the subscript g indicates even under time-
reversal and spatial inversion (parity). We henceforth use
Eq. 19 for the cubic crystal’s elastic energy.

B. General expression for relative length change

The relative length change, �L/L, of the crystal can
be shown to be related to the components of the strain
tensor, as described in more detail in Appendix B. The
general expression of the length change along a direction
~l is

✓
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=
3X

i,j=1

✏ij l̂i l̂j , (20)

where ✏ij ⌘ ⌃i,j
1

2

⇣
@ui

@xj
+ @uj

@xi

⌘
is the familiar strain ten-

sor, and l̂i is the ith component of unit vector l̂. For ease
of understanding the strain tensor, we use the conven-
tion that ✏

11

= ✏xx, ✏12 = ✏xy etc. We apply Eq. 20 to
particular length change directions in Sec. V.

IV. SYMMETRY ALLOWED COUPLING OF
MULTIPOLAR MOMENTS AND CUBIC

CRYSTAL NORMAL MODES

We now turn our attention to the problem of coupling
the lattice normal modes of the cubic crystal to the mul-
tipolar moments. We recall that the cubic crystal struc-
ture supports normal modes that transform as irreps. of
Oh, while the Landau free energy of the multipolar mo-
ments (F ) is constructed subject to the symmetries of
Td. The symmetry requirements in constructing F ensure
that any new terms (such as coupling of lattice strains to
the multipolar moments, or the lattice elastic energies)
added to F must be invariant under Td. Thus, only se-

lect normal modes of the crystal that transform as the
irreps. of Td are permitted to couple to the multipolar
moments in F . In the present case, all the cubic nor-
mal modes presented in Eq. 19 also transform as irreps.
under Td (as can be explicitly verified), and thus their as-
sociated lattice elastic energies (along with the couplings
discussed below) are admitted into F . In the next two
subsections, we consider the direct coupling of quadrupo-
lar moments to the cubic normal modes, and then tackle
the magnetic field assisted octupolar coupling to the lat-
tice normal modes.

A. Coupling of quadrupolar moment to lattice
strain

Coupling between the quadrupolar moments and the
lattice normal modes appears as a natural choice, as the
quadrupolar moments and the lattice strains are both
even under time-reversal. Moreover, both the normal
modes {✏µ, ✏⌫} and the quadrupolar moments {O

22

,O
20

}
transform as �

3g irreps. of Td (the aforementioned lat-
tice normal modes also transform as �

3g in Oh, as Td is a
subgroup of Oh). This similarity in how they transform
under Td allows a linear coupling between the aforesaid
lattice normal modes and quadrupolar moments. Thus,
the Landau free energy of the multipolar moments shown
in Eqs. 11, 17 gets augmented by the following lattice
elastic energy and coupling terms to quadrupolar mo-
ments,
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� gQ [✏⌫,Ah⌧yAi + ✏⌫,Bh⌧yBi] , (21)

where gQ is the coe�cient of coupling between the
quadrupolar moments and lattice strain tensors. Note
that we include the coupling of the lattice strain on each
sublattice to its corresponding quadrupole moment on
the same sublattice. Expressing this in terms of the AFQ
and FQ order parameters (�̃,�) using Eq. 10 and min-
imizing with respect to the lattice degrees of freedom
( �Fstrain,Q

�✏µ,A
etc.) yields the following set of equations
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The total strain for each normal mode is thus

✏µ = ✏µ,A + ✏µ,B =
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and substituting the expression for the minimized lattice
strains from Eqs. 22 back into Eq. 21, yields

F
strain,Q[�̃,�] = �
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4(c
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. (24)

Thus, the coupling of the lattice degrees of freedom to the
quadrupolar moments results in renormalizing the mass
terms of the quadrupolar moments.
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where cB is the bulk modulus, ✏B ⌘ ✏xx + ✏yy + ✏zz is
the volume expansion of the crystal, ✏⌫ ⌘ (2✏zz � ✏xx �
✏yy)/

p
3 and ✏µ ⌘ (✏xx � ✏yy) are lattice strains that

transform as the �
3g irrep. of the Oh group, and the o↵-

diagonal strain components transform as the �
5g irrep. of

Oh group; here the subscript g indicates even under time-
reversal and spatial inversion (parity). We henceforth use
Eq. 19 for the cubic crystal’s elastic energy.

B. General expression for relative length change

The relative length change, �L/L, of the crystal can
be shown to be related to the components of the strain
tensor, as described in more detail in Appendix B. The
general expression of the length change along a direction
~l is
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is the familiar strain ten-

sor, and l̂i is the ith component of unit vector l̂. For ease
of understanding the strain tensor, we use the conven-
tion that ✏

11

= ✏xx, ✏12 = ✏xy etc. We apply Eq. 20 to
particular length change directions in Sec. V.

IV. SYMMETRY ALLOWED COUPLING OF
MULTIPOLAR MOMENTS AND CUBIC

CRYSTAL NORMAL MODES

We now turn our attention to the problem of coupling
the lattice normal modes of the cubic crystal to the mul-
tipolar moments. We recall that the cubic crystal struc-
ture supports normal modes that transform as irreps. of
Oh, while the Landau free energy of the multipolar mo-
ments (F ) is constructed subject to the symmetries of
Td. The symmetry requirements in constructing F ensure
that any new terms (such as coupling of lattice strains to
the multipolar moments, or the lattice elastic energies)
added to F must be invariant under Td. Thus, only se-

lect normal modes of the crystal that transform as the
irreps. of Td are permitted to couple to the multipolar
moments in F . In the present case, all the cubic nor-
mal modes presented in Eq. 19 also transform as irreps.
under Td (as can be explicitly verified), and thus their as-
sociated lattice elastic energies (along with the couplings
discussed below) are admitted into F . In the next two
subsections, we consider the direct coupling of quadrupo-
lar moments to the cubic normal modes, and then tackle
the magnetic field assisted octupolar coupling to the lat-
tice normal modes.

A. Coupling of quadrupolar moment to lattice
strain

Coupling between the quadrupolar moments and the
lattice normal modes appears as a natural choice, as the
quadrupolar moments and the lattice strains are both
even under time-reversal. Moreover, both the normal
modes {✏µ, ✏⌫} and the quadrupolar moments {O
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transform as �

3g irreps. of Td (the aforementioned lat-
tice normal modes also transform as �

3g in Oh, as Td is a
subgroup of Oh). This similarity in how they transform
under Td allows a linear coupling between the aforesaid
lattice normal modes and quadrupolar moments. Thus,
the Landau free energy of the multipolar moments shown
in Eqs. 11, 17 gets augmented by the following lattice
elastic energy and coupling terms to quadrupolar mo-
ments,

F
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� gQ [✏⌫,Ah⌧yAi + ✏⌫,Bh⌧yBi] , (21)

where gQ is the coe�cient of coupling between the
quadrupolar moments and lattice strain tensors. Note
that we include the coupling of the lattice strain on each
sublattice to its corresponding quadrupole moment on
the same sublattice. Expressing this in terms of the AFQ
and FQ order parameters (�̃,�) using Eq. 10 and min-
imizing with respect to the lattice degrees of freedom
( �Fstrain,Q
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etc.) yields the following set of equations
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The total strain for each normal mode is thus
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and substituting the expression for the minimized lattice
strains from Eqs. 22 back into Eq. 21, yields
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Thus, the coupling of the lattice degrees of freedom to the
quadrupolar moments results in renormalizing the mass
terms of the quadrupolar moments.
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where cB is the bulk modulus, ✏B ⌘ ✏xx + ✏yy + ✏zz is
the volume expansion of the crystal, ✏⌫ ⌘ (2✏zz � ✏xx �
✏yy)/

p
3 and ✏µ ⌘ (✏xx � ✏yy) are lattice strains that

transform as the �
3g irrep. of the Oh group, and the o↵-

diagonal strain components transform as the �
5g irrep. of

Oh group; here the subscript g indicates even under time-
reversal and spatial inversion (parity). We henceforth use
Eq. 19 for the cubic crystal’s elastic energy.

B. General expression for relative length change

The relative length change, �L/L, of the crystal can
be shown to be related to the components of the strain
tensor, as described in more detail in Appendix B. The
general expression of the length change along a direction
~l is
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sor, and l̂i is the ith component of unit vector l̂. For ease
of understanding the strain tensor, we use the conven-
tion that ✏

11

= ✏xx, ✏12 = ✏xy etc. We apply Eq. 20 to
particular length change directions in Sec. V.
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We now turn our attention to the problem of coupling
the lattice normal modes of the cubic crystal to the mul-
tipolar moments. We recall that the cubic crystal struc-
ture supports normal modes that transform as irreps. of
Oh, while the Landau free energy of the multipolar mo-
ments (F ) is constructed subject to the symmetries of
Td. The symmetry requirements in constructing F ensure
that any new terms (such as coupling of lattice strains to
the multipolar moments, or the lattice elastic energies)
added to F must be invariant under Td. Thus, only se-

lect normal modes of the crystal that transform as the
irreps. of Td are permitted to couple to the multipolar
moments in F . In the present case, all the cubic nor-
mal modes presented in Eq. 19 also transform as irreps.
under Td (as can be explicitly verified), and thus their as-
sociated lattice elastic energies (along with the couplings
discussed below) are admitted into F . In the next two
subsections, we consider the direct coupling of quadrupo-
lar moments to the cubic normal modes, and then tackle
the magnetic field assisted octupolar coupling to the lat-
tice normal modes.

A. Coupling of quadrupolar moment to lattice
strain

Coupling between the quadrupolar moments and the
lattice normal modes appears as a natural choice, as the
quadrupolar moments and the lattice strains are both
even under time-reversal. Moreover, both the normal
modes {✏µ, ✏⌫} and the quadrupolar moments {O
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transform as �

3g irreps. of Td (the aforementioned lat-
tice normal modes also transform as �

3g in Oh, as Td is a
subgroup of Oh). This similarity in how they transform
under Td allows a linear coupling between the aforesaid
lattice normal modes and quadrupolar moments. Thus,
the Landau free energy of the multipolar moments shown
in Eqs. 11, 17 gets augmented by the following lattice
elastic energy and coupling terms to quadrupolar mo-
ments,
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where gQ is the coe�cient of coupling between the
quadrupolar moments and lattice strain tensors. Note
that we include the coupling of the lattice strain on each
sublattice to its corresponding quadrupole moment on
the same sublattice. Expressing this in terms of the AFQ
and FQ order parameters (�̃,�) using Eq. 10 and min-
imizing with respect to the lattice degrees of freedom
( �Fstrain,Q
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The total strain for each normal mode is thus
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and substituting the expression for the minimized lattice
strains from Eqs. 22 back into Eq. 21, yields
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Thus, the coupling of the lattice degrees of freedom to the
quadrupolar moments results in renormalizing the mass
terms of the quadrupolar moments.
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where cB is the bulk modulus, ✏B ⌘ ✏xx + ✏yy + ✏zz is
the volume expansion of the crystal, ✏⌫ ⌘ (2✏zz � ✏xx �
✏yy)/
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transform as the �
3g irrep. of the Oh group, and the o↵-

diagonal strain components transform as the �
5g irrep. of

Oh group; here the subscript g indicates even under time-
reversal and spatial inversion (parity). We henceforth use
Eq. 19 for the cubic crystal’s elastic energy.

B. General expression for relative length change

The relative length change, �L/L, of the crystal can
be shown to be related to the components of the strain
tensor, as described in more detail in Appendix B. The
general expression of the length change along a direction
~l is
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of understanding the strain tensor, we use the conven-
tion that ✏
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= ✏xx, ✏12 = ✏xy etc. We apply Eq. 20 to
particular length change directions in Sec. V.
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We now turn our attention to the problem of coupling
the lattice normal modes of the cubic crystal to the mul-
tipolar moments. We recall that the cubic crystal struc-
ture supports normal modes that transform as irreps. of
Oh, while the Landau free energy of the multipolar mo-
ments (F ) is constructed subject to the symmetries of
Td. The symmetry requirements in constructing F ensure
that any new terms (such as coupling of lattice strains to
the multipolar moments, or the lattice elastic energies)
added to F must be invariant under Td. Thus, only se-

lect normal modes of the crystal that transform as the
irreps. of Td are permitted to couple to the multipolar
moments in F . In the present case, all the cubic nor-
mal modes presented in Eq. 19 also transform as irreps.
under Td (as can be explicitly verified), and thus their as-
sociated lattice elastic energies (along with the couplings
discussed below) are admitted into F . In the next two
subsections, we consider the direct coupling of quadrupo-
lar moments to the cubic normal modes, and then tackle
the magnetic field assisted octupolar coupling to the lat-
tice normal modes.

A. Coupling of quadrupolar moment to lattice
strain

Coupling between the quadrupolar moments and the
lattice normal modes appears as a natural choice, as the
quadrupolar moments and the lattice strains are both
even under time-reversal. Moreover, both the normal
modes {✏µ, ✏⌫} and the quadrupolar moments {O
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3g irreps. of Td (the aforementioned lat-
tice normal modes also transform as �

3g in Oh, as Td is a
subgroup of Oh). This similarity in how they transform
under Td allows a linear coupling between the aforesaid
lattice normal modes and quadrupolar moments. Thus,
the Landau free energy of the multipolar moments shown
in Eqs. 11, 17 gets augmented by the following lattice
elastic energy and coupling terms to quadrupolar mo-
ments,
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where gQ is the coe�cient of coupling between the
quadrupolar moments and lattice strain tensors. Note
that we include the coupling of the lattice strain on each
sublattice to its corresponding quadrupole moment on
the same sublattice. Expressing this in terms of the AFQ
and FQ order parameters (�̃,�) using Eq. 10 and min-
imizing with respect to the lattice degrees of freedom
( �Fstrain,Q
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The total strain for each normal mode is thus
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and substituting the expression for the minimized lattice
strains from Eqs. 22 back into Eq. 21, yields
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Thus, the coupling of the lattice degrees of freedom to the
quadrupolar moments results in renormalizing the mass
terms of the quadrupolar moments.

volume expansion

eg symmetry distortion}



Coupling to Quadrupolar Order Parameter

coupled to eg symmetry distortion

2

In this Letter, we consider a frustrated local-moment
model with two-spin and four-spin interactions, that are
allowed by symmetry associated with the local envi-
ronment of Pr3+ ions and their coupling to the con-
duction electrons. Since our main interest is the in-
terplay between di↵erent multipolar orders and their
thermal phase transitions, we employ mean field theory
and Monte Carlo simulations to investigate the thermal
phase diagram of this model. Our key result is that such
interactions can lead to ground states with coexisting

multipolar orders; we show that this can lead to a single
or two-stage multipolar thermal transitions, and present
results on the e↵ect of a magnetic field. We discuss how
this provides a natural framework to interpret the exper-
iments on PrTi2Al20 and PrV2Al20, which is thus also of
potential importance for other heavy fermion materials.

Model.— In Pr(TM)2Al20 (with TM=Ti, V), the 4f2

Pr3+ ion lives in a T
d

local environment, arising from
the Frank Kasper cage formed by 16 neighboring Al
ions [22]. Inelastic neutron scattering and specific heat
studies have shed light on the local spectrum of the Pr3+

ion, arising from crystal field splitting of the J = 4
angular momentum multiplet [18, 21]. These indicate
a �3 non-Kramers doublet ground state separated from
the next �4 triplet of states by an energy gap ⇠ 50K. At
temperatures T ⌧ 50K, we can e↵ectively ignore these
excited crystal field multiplets [18]. Thus, for the low
energy physics of these materials, especially the broken
symmetry phases found at T . 5K, it is su�cient to
consider a model of conduction electrons Kondo-coupled
to this �3 doublet, whose wavefunctions are [21, 45]
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a time-reversal invariant quadrupolar moment, while ⌧
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describes a time-reversal odd octupolar moment. In ad-
dition, the point group symmetry of the Pr3+ ion in-
cludes an S4z operation under which ⌧± ! �⌧±, and a
C31 operation under which ⌧± ! e±i2⇡/3⌧±.

With this in mind, we consider a symmetry-allowed
model of short-distance two-spin exchange between the
pseudospin-1/2 local moments ~⌧ , supplemented with the

simplest four-spin interaction that couples quadrupolar
and octupolar degrees of freedom,

H=
1

2

X

i,j

J
ij

(~⌧?
i

· ~⌧?
j

+�⌧z
i

⌧z
j

)�K
X

hhijihkmii
~⌧?
i

· ~⌧?
j

⌧z
k

⌧z
m

.(2)

We will assume J
ij

= J1, J2 for nearest and next-nearest
neighbors respectively, and ignore further neighbor two-
spin interactions. For the four-spin coupling, the no-
tation hhijihkmii means that we consider a nearest-
neighbor pair hiji coupled to a distinct nearest-neighbor
pair hkmi, such that the two pairs are separated by a
single bond, leading to the shortest four-site cluster [48].

We consider the easy-plane regime, � < 1, so that
the two-spin interactions favor quadrupolar ⌧x,y order
over octupolar ⌧z order as is observed in many of these
compounds. While J1 < 0 will drive FQ order, as ob-
served in PrTi2Al20, increasing pressure might lead to
AFQ orders, either via a frustrating J2/|J1|> 0 which
leads to incommensurate spiral order (SpQ), or via a
sign change J1>0 which will lead to commensurate Néel
quadrupolar order (NQ) [18, 21]. Our main insight is
that while the two-spin interactions alone will favor pure
quadrupolar order, four-spin interactions will generi-
cally lead to coexisting multipolar orders. For K > 0,
quadrupolar orders with nearest-neighbor h~⌧?
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will favor Néel octupolar (NO) order; the FO and
NO orders get switched when we consider K < 0.

Motivated by constructing the simplest model to cap-
ture the phenomenology of PrTM2Al20, we will set
J1<0 for PrTi2Al20 which favors FQ order, and J1>0
for PrV2Al20 favoring NQ order. In both cases, we fix
J2>0 andK>0, and study the phases and their proper-
ties as we vary J2/|J1| and K/|J1|. At the classical level
of the analysis done here, we note that the model with
J1 < 0 maps onto the model with J1 > 0 by changing
~⌧ ! �~⌧ on one sublattice; with this understanding, we
will mainly focus on fixed J1 = +1, but present results
which are applicable for both systems.
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sider an ansatz ~⌧+

A/B

=
p

1�⌘2 exp(iq · r ± �

2 ) for

unit length spins on A/B sublattices, with ⌧z
A/B

=

±⌘. Here q,� specify a spiral of ~⌧? which is a
generic SpQ order with magnitude

p
1� ⌘2. The

limit Q = 0 corresponds to the NQ state. This co-
exists with NO order of strength ⌘. Let us define
F ⌘cos� cos q

x

4 cos q

y

4 cos q

z

4�sin� sin q

x

4 sin q

y

4 sin q

z

4 and
G⌘cos q

x

2 cos q

y

2 + cos q

y

2 cos q

z

2 + cos q

z

2 cos q

x

2 , in terms

2

In this Letter, we consider a frustrated local-moment
model with two-spin and four-spin interactions, that are
allowed by symmetry associated with the local envi-
ronment of Pr3+ ions and their coupling to the con-
duction electrons. Since our main interest is the in-
terplay between di↵erent multipolar orders and their
thermal phase transitions, we employ mean field theory
and Monte Carlo simulations to investigate the thermal
phase diagram of this model. Our key result is that such
interactions can lead to ground states with coexisting

multipolar orders; we show that this can lead to a single
or two-stage multipolar thermal transitions, and present
results on the e↵ect of a magnetic field. We discuss how
this provides a natural framework to interpret the exper-
iments on PrTi2Al20 and PrV2Al20, which is thus also of
potential importance for other heavy fermion materials.

Model.— In Pr(TM)2Al20 (with TM=Ti, V), the 4f2

Pr3+ ion lives in a T
d

local environment, arising from
the Frank Kasper cage formed by 16 neighboring Al
ions [22]. Inelastic neutron scattering and specific heat
studies have shed light on the local spectrum of the Pr3+

ion, arising from crystal field splitting of the J = 4
angular momentum multiplet [18, 21]. These indicate
a �3 non-Kramers doublet ground state separated from
the next �4 triplet of states by an energy gap ⇠ 50K. At
temperatures T ⌧ 50K, we can e↵ectively ignore these
excited crystal field multiplets [18]. Thus, for the low
energy physics of these materials, especially the broken
symmetry phases found at T . 5K, it is su�cient to
consider a model of conduction electrons Kondo-coupled
to this �3 doublet, whose wavefunctions are [21, 45]
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dition, the point group symmetry of the Pr3+ ion in-
cludes an S4z operation under which ⌧± ! �⌧±, and a
C31 operation under which ⌧± ! e±i2⇡/3⌧±.

With this in mind, we consider a symmetry-allowed
model of short-distance two-spin exchange between the
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We will assume J
ij

= J1, J2 for nearest and next-nearest
neighbors respectively, and ignore further neighbor two-
spin interactions. For the four-spin coupling, the no-
tation hhijihkmii means that we consider a nearest-
neighbor pair hiji coupled to a distinct nearest-neighbor
pair hkmi, such that the two pairs are separated by a
single bond, leading to the shortest four-site cluster [48].

We consider the easy-plane regime, � < 1, so that
the two-spin interactions favor quadrupolar ⌧x,y order
over octupolar ⌧z order as is observed in many of these
compounds. While J1 < 0 will drive FQ order, as ob-
served in PrTi2Al20, increasing pressure might lead to
AFQ orders, either via a frustrating J2/|J1|> 0 which
leads to incommensurate spiral order (SpQ), or via a
sign change J1>0 which will lead to commensurate Néel
quadrupolar order (NQ) [18, 21]. Our main insight is
that while the two-spin interactions alone will favor pure
quadrupolar order, four-spin interactions will generi-
cally lead to coexisting multipolar orders. For K > 0,
quadrupolar orders with nearest-neighbor h~⌧?
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will favor Néel octupolar (NO) order; the FO and
NO orders get switched when we consider K < 0.

Motivated by constructing the simplest model to cap-
ture the phenomenology of PrTM2Al20, we will set
J1<0 for PrTi2Al20 which favors FQ order, and J1>0
for PrV2Al20 favoring NQ order. In both cases, we fix
J2>0 andK>0, and study the phases and their proper-
ties as we vary J2/|J1| and K/|J1|. At the classical level
of the analysis done here, we note that the model with
J1 < 0 maps onto the model with J1 > 0 by changing
~⌧ ! �~⌧ on one sublattice; with this understanding, we
will mainly focus on fixed J1 = +1, but present results
which are applicable for both systems.
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In this Letter, we consider a frustrated local-moment
model with two-spin and four-spin interactions, that are
allowed by symmetry associated with the local envi-
ronment of Pr3+ ions and their coupling to the con-
duction electrons. Since our main interest is the in-
terplay between di↵erent multipolar orders and their
thermal phase transitions, we employ mean field theory
and Monte Carlo simulations to investigate the thermal
phase diagram of this model. Our key result is that such
interactions can lead to ground states with coexisting

multipolar orders; we show that this can lead to a single
or two-stage multipolar thermal transitions, and present
results on the e↵ect of a magnetic field. We discuss how
this provides a natural framework to interpret the exper-
iments on PrTi2Al20 and PrV2Al20, which is thus also of
potential importance for other heavy fermion materials.

Model.— In Pr(TM)2Al20 (with TM=Ti, V), the 4f2

Pr3+ ion lives in a T
d

local environment, arising from
the Frank Kasper cage formed by 16 neighboring Al
ions [22]. Inelastic neutron scattering and specific heat
studies have shed light on the local spectrum of the Pr3+

ion, arising from crystal field splitting of the J = 4
angular momentum multiplet [18, 21]. These indicate
a �3 non-Kramers doublet ground state separated from
the next �4 triplet of states by an energy gap ⇠ 50K. At
temperatures T ⌧ 50K, we can e↵ectively ignore these
excited crystal field multiplets [18]. Thus, for the low
energy physics of these materials, especially the broken
symmetry phases found at T . 5K, it is su�cient to
consider a model of conduction electrons Kondo-coupled
to this �3 doublet, whose wavefunctions are [21, 45]

|�(1)
3 i = 1

2

r
7

6
|4i � 1

2

r
5

3
|0i+ 1

2

r
7

6
|�4i

|�(2)
3 i = 1p

2
|2i+ 1p

2
|�2i . (1)

Using these, we can define the pseudospin-1/2 basis

|"i ⌘ 1p
2
(|�(1)

3 i+ i |�(2)
3 i) and |#i ⌘ 1p

2
(i |�(1)

3 i+ |�(2)
3 i).

We identify the corresponding pseudospin operators in

terms of Stevens operators O22 =
p
3
2 (J2

x

�J2
y

), O20 =
1
2 (3J

2
z

�J2), and T
xyz

=
p
15
6 J

x

J
y

J
z

(overline denoting
a symmetrized product), as ⌧

x

= � 1
4O22, ⌧y = � 1

4O20,
and ⌧

z

= 1
3
p
5
T
xyz

[46, 47]. Here, (⌧
x

, ⌧
y

)⌘ ~⌧? describes

a time-reversal invariant quadrupolar moment, while ⌧
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describes a time-reversal odd octupolar moment. In ad-
dition, the point group symmetry of the Pr3+ ion in-
cludes an S4z operation under which ⌧± ! �⌧±, and a
C31 operation under which ⌧± ! e±i2⇡/3⌧±.

With this in mind, we consider a symmetry-allowed
model of short-distance two-spin exchange between the
pseudospin-1/2 local moments ~⌧ , supplemented with the
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We will assume J
ij

= J1, J2 for nearest and next-nearest
neighbors respectively, and ignore further neighbor two-
spin interactions. For the four-spin coupling, the no-
tation hhijihkmii means that we consider a nearest-
neighbor pair hiji coupled to a distinct nearest-neighbor
pair hkmi, such that the two pairs are separated by a
single bond, leading to the shortest four-site cluster [48].

We consider the easy-plane regime, � < 1, so that
the two-spin interactions favor quadrupolar ⌧x,y order
over octupolar ⌧z order as is observed in many of these
compounds. While J1 < 0 will drive FQ order, as ob-
served in PrTi2Al20, increasing pressure might lead to
AFQ orders, either via a frustrating J2/|J1|> 0 which
leads to incommensurate spiral order (SpQ), or via a
sign change J1>0 which will lead to commensurate Néel
quadrupolar order (NQ) [18, 21]. Our main insight is
that while the two-spin interactions alone will favor pure
quadrupolar order, four-spin interactions will generi-
cally lead to coexisting multipolar orders. For K > 0,
quadrupolar orders with nearest-neighbor h~⌧?
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will favor Néel octupolar (NO) order; the FO and
NO orders get switched when we consider K < 0.

Motivated by constructing the simplest model to cap-
ture the phenomenology of PrTM2Al20, we will set
J1<0 for PrTi2Al20 which favors FQ order, and J1>0
for PrV2Al20 favoring NQ order. In both cases, we fix
J2>0 andK>0, and study the phases and their proper-
ties as we vary J2/|J1| and K/|J1|. At the classical level
of the analysis done here, we note that the model with
J1 < 0 maps onto the model with J1 > 0 by changing
~⌧ ! �~⌧ on one sublattice; with this understanding, we
will mainly focus on fixed J1 = +1, but present results
which are applicable for both systems.
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In this Letter, we consider a frustrated local-moment
model with two-spin and four-spin interactions, that are
allowed by symmetry associated with the local envi-
ronment of Pr3+ ions and their coupling to the con-
duction electrons. Since our main interest is the in-
terplay between di↵erent multipolar orders and their
thermal phase transitions, we employ mean field theory
and Monte Carlo simulations to investigate the thermal
phase diagram of this model. Our key result is that such
interactions can lead to ground states with coexisting

multipolar orders; we show that this can lead to a single
or two-stage multipolar thermal transitions, and present
results on the e↵ect of a magnetic field. We discuss how
this provides a natural framework to interpret the exper-
iments on PrTi2Al20 and PrV2Al20, which is thus also of
potential importance for other heavy fermion materials.

Model.— In Pr(TM)2Al20 (with TM=Ti, V), the 4f2

Pr3+ ion lives in a T
d

local environment, arising from
the Frank Kasper cage formed by 16 neighboring Al
ions [22]. Inelastic neutron scattering and specific heat
studies have shed light on the local spectrum of the Pr3+

ion, arising from crystal field splitting of the J = 4
angular momentum multiplet [18, 21]. These indicate
a �3 non-Kramers doublet ground state separated from
the next �4 triplet of states by an energy gap ⇠ 50K. At
temperatures T ⌧ 50K, we can e↵ectively ignore these
excited crystal field multiplets [18]. Thus, for the low
energy physics of these materials, especially the broken
symmetry phases found at T . 5K, it is su�cient to
consider a model of conduction electrons Kondo-coupled
to this �3 doublet, whose wavefunctions are [21, 45]
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dition, the point group symmetry of the Pr3+ ion in-
cludes an S4z operation under which ⌧± ! �⌧±, and a
C31 operation under which ⌧± ! e±i2⇡/3⌧±.

With this in mind, we consider a symmetry-allowed
model of short-distance two-spin exchange between the
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We will assume J
ij

= J1, J2 for nearest and next-nearest
neighbors respectively, and ignore further neighbor two-
spin interactions. For the four-spin coupling, the no-
tation hhijihkmii means that we consider a nearest-
neighbor pair hiji coupled to a distinct nearest-neighbor
pair hkmi, such that the two pairs are separated by a
single bond, leading to the shortest four-site cluster [48].

We consider the easy-plane regime, � < 1, so that
the two-spin interactions favor quadrupolar ⌧x,y order
over octupolar ⌧z order as is observed in many of these
compounds. While J1 < 0 will drive FQ order, as ob-
served in PrTi2Al20, increasing pressure might lead to
AFQ orders, either via a frustrating J2/|J1|> 0 which
leads to incommensurate spiral order (SpQ), or via a
sign change J1>0 which will lead to commensurate Néel
quadrupolar order (NQ) [18, 21]. Our main insight is
that while the two-spin interactions alone will favor pure
quadrupolar order, four-spin interactions will generi-
cally lead to coexisting multipolar orders. For K > 0,
quadrupolar orders with nearest-neighbor h~⌧?
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will favor Néel octupolar (NO) order; the FO and
NO orders get switched when we consider K < 0.

Motivated by constructing the simplest model to cap-
ture the phenomenology of PrTM2Al20, we will set
J1<0 for PrTi2Al20 which favors FQ order, and J1>0
for PrV2Al20 favoring NQ order. In both cases, we fix
J2>0 andK>0, and study the phases and their proper-
ties as we vary J2/|J1| and K/|J1|. At the classical level
of the analysis done here, we note that the model with
J1 < 0 maps onto the model with J1 > 0 by changing
~⌧ ! �~⌧ on one sublattice; with this understanding, we
will mainly focus on fixed J1 = +1, but present results
which are applicable for both systems.
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sider an ansatz ~⌧+

A/B

=
p

1�⌘2 exp(iq · r ± �

2 ) for

unit length spins on A/B sublattices, with ⌧z
A/B

=

±⌘. Here q,� specify a spiral of ~⌧? which is a
generic SpQ order with magnitude

p
1� ⌘2. The

limit Q = 0 corresponds to the NQ state. This co-
exists with NO order of strength ⌘. Let us define
F ⌘cos� cos q

x

4 cos q

y

4 cos q

z

4�sin� sin q

x

4 sin q

y

4 sin q

z

4 and
G⌘cos q

x

2 cos q

y

2 + cos q

y

2 cos q

z

2 + cos q

z

2 cos q

x

2 , in terms

2

In this Letter, we consider a frustrated local-moment
model with two-spin and four-spin interactions, that are
allowed by symmetry associated with the local envi-
ronment of Pr3+ ions and their coupling to the con-
duction electrons. Since our main interest is the in-
terplay between di↵erent multipolar orders and their
thermal phase transitions, we employ mean field theory
and Monte Carlo simulations to investigate the thermal
phase diagram of this model. Our key result is that such
interactions can lead to ground states with coexisting

multipolar orders; we show that this can lead to a single
or two-stage multipolar thermal transitions, and present
results on the e↵ect of a magnetic field. We discuss how
this provides a natural framework to interpret the exper-
iments on PrTi2Al20 and PrV2Al20, which is thus also of
potential importance for other heavy fermion materials.

Model.— In Pr(TM)2Al20 (with TM=Ti, V), the 4f2

Pr3+ ion lives in a T
d

local environment, arising from
the Frank Kasper cage formed by 16 neighboring Al
ions [22]. Inelastic neutron scattering and specific heat
studies have shed light on the local spectrum of the Pr3+

ion, arising from crystal field splitting of the J = 4
angular momentum multiplet [18, 21]. These indicate
a �3 non-Kramers doublet ground state separated from
the next �4 triplet of states by an energy gap ⇠ 50K. At
temperatures T ⌧ 50K, we can e↵ectively ignore these
excited crystal field multiplets [18]. Thus, for the low
energy physics of these materials, especially the broken
symmetry phases found at T . 5K, it is su�cient to
consider a model of conduction electrons Kondo-coupled
to this �3 doublet, whose wavefunctions are [21, 45]
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[46, 47]. Here, (⌧
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a time-reversal invariant quadrupolar moment, while ⌧
z

describes a time-reversal odd octupolar moment. In ad-
dition, the point group symmetry of the Pr3+ ion in-
cludes an S4z operation under which ⌧± ! �⌧±, and a
C31 operation under which ⌧± ! e±i2⇡/3⌧±.

With this in mind, we consider a symmetry-allowed
model of short-distance two-spin exchange between the
pseudospin-1/2 local moments ~⌧ , supplemented with the

simplest four-spin interaction that couples quadrupolar
and octupolar degrees of freedom,
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We will assume J
ij

= J1, J2 for nearest and next-nearest
neighbors respectively, and ignore further neighbor two-
spin interactions. For the four-spin coupling, the no-
tation hhijihkmii means that we consider a nearest-
neighbor pair hiji coupled to a distinct nearest-neighbor
pair hkmi, such that the two pairs are separated by a
single bond, leading to the shortest four-site cluster [48].

We consider the easy-plane regime, � < 1, so that
the two-spin interactions favor quadrupolar ⌧x,y order
over octupolar ⌧z order as is observed in many of these
compounds. While J1 < 0 will drive FQ order, as ob-
served in PrTi2Al20, increasing pressure might lead to
AFQ orders, either via a frustrating J2/|J1|> 0 which
leads to incommensurate spiral order (SpQ), or via a
sign change J1>0 which will lead to commensurate Néel
quadrupolar order (NQ) [18, 21]. Our main insight is
that while the two-spin interactions alone will favor pure
quadrupolar order, four-spin interactions will generi-
cally lead to coexisting multipolar orders. For K > 0,
quadrupolar orders with nearest-neighbor h~⌧?
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will favor ferro-octupolar (FO) order, while h~⌧?
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i<0
will favor Néel octupolar (NO) order; the FO and
NO orders get switched when we consider K < 0.

Motivated by constructing the simplest model to cap-
ture the phenomenology of PrTM2Al20, we will set
J1<0 for PrTi2Al20 which favors FQ order, and J1>0
for PrV2Al20 favoring NQ order. In both cases, we fix
J2>0 andK>0, and study the phases and their proper-
ties as we vary J2/|J1| and K/|J1|. At the classical level
of the analysis done here, we note that the model with
J1 < 0 maps onto the model with J1 > 0 by changing
~⌧ ! �~⌧ on one sublattice; with this understanding, we
will mainly focus on fixed J1 = +1, but present results
which are applicable for both systems.
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where cB is the bulk modulus, ✏B ⌘ ✏xx + ✏yy + ✏zz is
the volume expansion of the crystal, ✏⌫ ⌘ (2✏zz � ✏xx �
✏yy)/

p
3 and ✏µ ⌘ (✏xx � ✏yy) are lattice strains that

transform as the �
3g irrep. of the Oh group, and the o↵-

diagonal strain components transform as the �
5g irrep. of

Oh group; here the subscript g indicates even under time-
reversal and spatial inversion (parity). We henceforth use
Eq. 19 for the cubic crystal’s elastic energy.

B. General expression for relative length change

The relative length change, �L/L, of the crystal can
be shown to be related to the components of the strain
tensor, as described in more detail in Appendix B. The
general expression of the length change along a direction
~l is
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⌘
is the familiar strain ten-

sor, and l̂i is the ith component of unit vector l̂. For ease
of understanding the strain tensor, we use the conven-
tion that ✏

11

= ✏xx, ✏12 = ✏xy etc. We apply Eq. 20 to
particular length change directions in Sec. V.

IV. SYMMETRY ALLOWED COUPLING OF
MULTIPOLAR MOMENTS AND CUBIC

CRYSTAL NORMAL MODES

We now turn our attention to the problem of coupling
the lattice normal modes of the cubic crystal to the mul-
tipolar moments. We recall that the cubic crystal struc-
ture supports normal modes that transform as irreps. of
Oh, while the Landau free energy of the multipolar mo-
ments (F ) is constructed subject to the symmetries of
Td. The symmetry requirements in constructing F ensure
that any new terms (such as coupling of lattice strains to
the multipolar moments, or the lattice elastic energies)
added to F must be invariant under Td. Thus, only se-

lect normal modes of the crystal that transform as the
irreps. of Td are permitted to couple to the multipolar
moments in F . In the present case, all the cubic nor-
mal modes presented in Eq. 19 also transform as irreps.
under Td (as can be explicitly verified), and thus their as-
sociated lattice elastic energies (along with the couplings
discussed below) are admitted into F . In the next two
subsections, we consider the direct coupling of quadrupo-
lar moments to the cubic normal modes, and then tackle
the magnetic field assisted octupolar coupling to the lat-
tice normal modes.

A. Coupling of quadrupolar moment to lattice
strain

Coupling between the quadrupolar moments and the
lattice normal modes appears as a natural choice, as the
quadrupolar moments and the lattice strains are both
even under time-reversal. Moreover, both the normal
modes {✏µ, ✏⌫} and the quadrupolar moments {O

22

,O
20

}
transform as �

3g irreps. of Td (the aforementioned lat-
tice normal modes also transform as �

3g in Oh, as Td is a
subgroup of Oh). This similarity in how they transform
under Td allows a linear coupling between the aforesaid
lattice normal modes and quadrupolar moments. Thus,
the Landau free energy of the multipolar moments shown
in Eqs. 11, 17 gets augmented by the following lattice
elastic energy and coupling terms to quadrupolar mo-
ments,
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where gQ is the coe�cient of coupling between the
quadrupolar moments and lattice strain tensors. Note
that we include the coupling of the lattice strain on each
sublattice to its corresponding quadrupole moment on
the same sublattice. Expressing this in terms of the AFQ
and FQ order parameters (�̃,�) using Eq. 10 and min-
imizing with respect to the lattice degrees of freedom
( �Fstrain,Q
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etc.) yields the following set of equations
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The total strain for each normal mode is thus
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and substituting the expression for the minimized lattice
strains from Eqs. 22 back into Eq. 21, yields

F
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Thus, the coupling of the lattice degrees of freedom to the
quadrupolar moments results in renormalizing the mass
terms of the quadrupolar moments.
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where cB is the bulk modulus, ✏B ⌘ ✏xx + ✏yy + ✏zz is
the volume expansion of the crystal, ✏⌫ ⌘ (2✏zz � ✏xx �
✏yy)/

p
3 and ✏µ ⌘ (✏xx � ✏yy) are lattice strains that

transform as the �
3g irrep. of the Oh group, and the o↵-

diagonal strain components transform as the �
5g irrep. of

Oh group; here the subscript g indicates even under time-
reversal and spatial inversion (parity). We henceforth use
Eq. 19 for the cubic crystal’s elastic energy.

B. General expression for relative length change

The relative length change, �L/L, of the crystal can
be shown to be related to the components of the strain
tensor, as described in more detail in Appendix B. The
general expression of the length change along a direction
~l is
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sor, and l̂i is the ith component of unit vector l̂. For ease
of understanding the strain tensor, we use the conven-
tion that ✏
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= ✏xx, ✏12 = ✏xy etc. We apply Eq. 20 to
particular length change directions in Sec. V.
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We now turn our attention to the problem of coupling
the lattice normal modes of the cubic crystal to the mul-
tipolar moments. We recall that the cubic crystal struc-
ture supports normal modes that transform as irreps. of
Oh, while the Landau free energy of the multipolar mo-
ments (F ) is constructed subject to the symmetries of
Td. The symmetry requirements in constructing F ensure
that any new terms (such as coupling of lattice strains to
the multipolar moments, or the lattice elastic energies)
added to F must be invariant under Td. Thus, only se-

lect normal modes of the crystal that transform as the
irreps. of Td are permitted to couple to the multipolar
moments in F . In the present case, all the cubic nor-
mal modes presented in Eq. 19 also transform as irreps.
under Td (as can be explicitly verified), and thus their as-
sociated lattice elastic energies (along with the couplings
discussed below) are admitted into F . In the next two
subsections, we consider the direct coupling of quadrupo-
lar moments to the cubic normal modes, and then tackle
the magnetic field assisted octupolar coupling to the lat-
tice normal modes.

A. Coupling of quadrupolar moment to lattice
strain

Coupling between the quadrupolar moments and the
lattice normal modes appears as a natural choice, as the
quadrupolar moments and the lattice strains are both
even under time-reversal. Moreover, both the normal
modes {✏µ, ✏⌫} and the quadrupolar moments {O
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transform as �

3g irreps. of Td (the aforementioned lat-
tice normal modes also transform as �

3g in Oh, as Td is a
subgroup of Oh). This similarity in how they transform
under Td allows a linear coupling between the aforesaid
lattice normal modes and quadrupolar moments. Thus,
the Landau free energy of the multipolar moments shown
in Eqs. 11, 17 gets augmented by the following lattice
elastic energy and coupling terms to quadrupolar mo-
ments,
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where gQ is the coe�cient of coupling between the
quadrupolar moments and lattice strain tensors. Note
that we include the coupling of the lattice strain on each
sublattice to its corresponding quadrupole moment on
the same sublattice. Expressing this in terms of the AFQ
and FQ order parameters (�̃,�) using Eq. 10 and min-
imizing with respect to the lattice degrees of freedom
( �Fstrain,Q
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The total strain for each normal mode is thus
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and substituting the expression for the minimized lattice
strains from Eqs. 22 back into Eq. 21, yields
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Thus, the coupling of the lattice degrees of freedom to the
quadrupolar moments results in renormalizing the mass
terms of the quadrupolar moments.
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where cB is the bulk modulus, ✏B ⌘ ✏xx + ✏yy + ✏zz is
the volume expansion of the crystal, ✏⌫ ⌘ (2✏zz � ✏xx �
✏yy)/
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3 and ✏µ ⌘ (✏xx � ✏yy) are lattice strains that

transform as the �
3g irrep. of the Oh group, and the o↵-

diagonal strain components transform as the �
5g irrep. of

Oh group; here the subscript g indicates even under time-
reversal and spatial inversion (parity). We henceforth use
Eq. 19 for the cubic crystal’s elastic energy.

B. General expression for relative length change

The relative length change, �L/L, of the crystal can
be shown to be related to the components of the strain
tensor, as described in more detail in Appendix B. The
general expression of the length change along a direction
~l is
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of understanding the strain tensor, we use the conven-
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= ✏xx, ✏12 = ✏xy etc. We apply Eq. 20 to
particular length change directions in Sec. V.
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CRYSTAL NORMAL MODES

We now turn our attention to the problem of coupling
the lattice normal modes of the cubic crystal to the mul-
tipolar moments. We recall that the cubic crystal struc-
ture supports normal modes that transform as irreps. of
Oh, while the Landau free energy of the multipolar mo-
ments (F ) is constructed subject to the symmetries of
Td. The symmetry requirements in constructing F ensure
that any new terms (such as coupling of lattice strains to
the multipolar moments, or the lattice elastic energies)
added to F must be invariant under Td. Thus, only se-

lect normal modes of the crystal that transform as the
irreps. of Td are permitted to couple to the multipolar
moments in F . In the present case, all the cubic nor-
mal modes presented in Eq. 19 also transform as irreps.
under Td (as can be explicitly verified), and thus their as-
sociated lattice elastic energies (along with the couplings
discussed below) are admitted into F . In the next two
subsections, we consider the direct coupling of quadrupo-
lar moments to the cubic normal modes, and then tackle
the magnetic field assisted octupolar coupling to the lat-
tice normal modes.

A. Coupling of quadrupolar moment to lattice
strain

Coupling between the quadrupolar moments and the
lattice normal modes appears as a natural choice, as the
quadrupolar moments and the lattice strains are both
even under time-reversal. Moreover, both the normal
modes {✏µ, ✏⌫} and the quadrupolar moments {O
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transform as �

3g irreps. of Td (the aforementioned lat-
tice normal modes also transform as �

3g in Oh, as Td is a
subgroup of Oh). This similarity in how they transform
under Td allows a linear coupling between the aforesaid
lattice normal modes and quadrupolar moments. Thus,
the Landau free energy of the multipolar moments shown
in Eqs. 11, 17 gets augmented by the following lattice
elastic energy and coupling terms to quadrupolar mo-
ments,
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� gQ [✏⌫,Ah⌧yAi + ✏⌫,Bh⌧yBi] , (21)

where gQ is the coe�cient of coupling between the
quadrupolar moments and lattice strain tensors. Note
that we include the coupling of the lattice strain on each
sublattice to its corresponding quadrupole moment on
the same sublattice. Expressing this in terms of the AFQ
and FQ order parameters (�̃,�) using Eq. 10 and min-
imizing with respect to the lattice degrees of freedom
( �Fstrain,Q
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etc.) yields the following set of equations
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The total strain for each normal mode is thus
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and substituting the expression for the minimized lattice
strains from Eqs. 22 back into Eq. 21, yields
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Thus, the coupling of the lattice degrees of freedom to the
quadrupolar moments results in renormalizing the mass
terms of the quadrupolar moments.

eg symmetry distortion}

Fstrain[h = 0] =
(1)

4

multipolar moments (F ) is constructed subject to sym-
metries of the local Td environment. The symmetry con-
straints on F ensure that in principle only select normal
modes of the crystal that transform as the irreps. of Td

are permitted to couple to the multipolar moments. In
the present case, all the cubic normal modes presented
in Eq. 1 also transform as irreps. under Td (as can be ex-
plicitly verified), and so all of the aforementioned strain
modes can participate in the coupling.

Coupling of quadrupolar moment to lattice strain

Coupling between the quadrupolar moments and the
lattice normal modes appears as a natural choice, as the
quadrupolar moments and the lattice strains are both
even under time-reversal. Moreover, both the normal
modes {✏µ, ✏⌫} and the quadrupolar moments {O
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}
transform as �

3g irreps. of Td (the aforementioned lat-
tice normal modes also transform as �

3g in Oh, as Td is a
subgroup of Oh). This similarity in how they transform
under Td allows a linear coupling between the aforesaid
lattice normal modes and quadrupolar moments. Thus,
the Landau free energy of the multipolar moments gets
augmented by the following lattice elastic energy and
coupling terms to quadrupolar moments,
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� gQ✏⌫ [h⌧yAi + h⌧yBi] , (4)

where gQ is the coe�cient of coupling between the
quadrupolar moments and lattice strain tensors. Note
that we include the coupling of the lattice strain to the
quadrupole moment on each sublattice. Using the defini-
tion of the order parameter � from Eq. 3, and minimizing
F
strain,Q with respect to ✏µ, ✏⌫ yields the total strain for

each normal mode
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Substituting these expressions back into Eq. 4, we find

that the strain-optimized F
strain,Q[�] = � g2

Q
2(c11�c12)

|�|2
renormalizes the mass term of the FQ order.

Coupling of octupolar moment to lattice strain

A direct linear coupling between the octupolar moment
Txyz and the lattice normal modes is not permitted, as
the octupolar moment is odd under time-reversal. How-
ever, this potential di�culty can be alleviated by the
introduction of the time-reversal odd magnetic field ~h
which assists in the coupling between the lattice degrees
of freedom and octupolar moment. Thus, the Landau
free energy of the multipolar moments gets augmented

by the following lattice elastic energy and the coupling
terms to the octupolar moments,

F
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� gOm [hx✏yz + hy✏xz + hz✏xy]

� �c [hxhy✏xy + hxhz✏xz + hyhz✏yz] ,

where we use the definition of m from Eq. 3, and gO is
the coe�cient of coupling between the octupolar moment
and lattice strain. We also include another symmetry
allowed direct coupling between the magnetic field and
the same lattice normal modes (with proportionality con-
stant �c, equivalent on both sublattices). Physically, this
kind of term could arise from the independent coupling
of the magnetic field and lattice strain to the conduc-
tion electrons (and after integrating out the conduction
electrons).
Minimizing with respect to the lattice degrees of free-

dom yields the following expressions for the (total) lattice
strains
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Substituting the expression for the minimized lattice
strains from Eqs. 7 into Eq. 6 yields F

strain,O[m], where
the mass term of the octupolar moment is renormalized
by a term quadratic in h; it also introduces an O(h3)
coupling term between the octupolar moment and the
magnetic field, which renormalizes the coe�cient of the
already present hxhyhzm from third-order in perturba-

tion theory in ~h · ~J .

Relative Length Change Under Magnetic Field
Along Di↵erent Directions

Equipped with the necessary ingredients in the previ-
ous subsections, we can now examine the relative length
change, �L/L, for magnetic fields applied along [100],
[110], [111] directions and examine the scaling in mag-
netic field strength, h. For the sake of clarity, we stress
that we consider here the complete Landau theory of
multipolar moments coupled to lattice strain fields (af-
ter having integrated out the lattice degrees of freedom):
F [�, �̃,m] = FQ,O[�, �̃,m] + F

mag

[�, �̃] + F
strain,Q[�] +

F
strain,O[m]. We present in SI C, the values of the Lan-

dau parameters chosen for the study in this work. The
scaling relations can be inferred by substituting the ex-
pressions for the (extremized) strain in Eqs. 5 and 7
into (�L/L)
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j . We stress that from Eq. 7,

the o↵-diagonal strain components involve the octupo-
lar moment; thus to have any possibility of observing m,
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multipolar moments (F ) is constructed subject to sym-
metries of the local Td environment. The symmetry con-
straints on F ensure that in principle only select normal
modes of the crystal that transform as the irreps. of Td

are permitted to couple to the multipolar moments. In
the present case, all the cubic normal modes presented
in Eq. 1 also transform as irreps. under Td (as can be ex-
plicitly verified), and so all of the aforementioned strain
modes can participate in the coupling.

Coupling of quadrupolar moment to lattice strain

Coupling between the quadrupolar moments and the
lattice normal modes appears as a natural choice, as the
quadrupolar moments and the lattice strains are both
even under time-reversal. Moreover, both the normal
modes {✏µ, ✏⌫} and the quadrupolar moments {O
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}
transform as �

3g irreps. of Td (the aforementioned lat-
tice normal modes also transform as �

3g in Oh, as Td is a
subgroup of Oh). This similarity in how they transform
under Td allows a linear coupling between the aforesaid
lattice normal modes and quadrupolar moments. Thus,
the Landau free energy of the multipolar moments gets
augmented by the following lattice elastic energy and
coupling terms to quadrupolar moments,
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where gQ is the coe�cient of coupling between the
quadrupolar moments and lattice strain tensors. Note
that we include the coupling of the lattice strain to the
quadrupole moment on each sublattice. Using the defini-
tion of the order parameter � from Eq. 3, and minimizing
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strain,Q with respect to ✏µ, ✏⌫ yields the total strain for
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Substituting these expressions back into Eq. 4, we find

that the strain-optimized F
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renormalizes the mass term of the FQ order.

Coupling of octupolar moment to lattice strain

A direct linear coupling between the octupolar moment
Txyz and the lattice normal modes is not permitted, as
the octupolar moment is odd under time-reversal. How-
ever, this potential di�culty can be alleviated by the
introduction of the time-reversal odd magnetic field ~h
which assists in the coupling between the lattice degrees
of freedom and octupolar moment. Thus, the Landau
free energy of the multipolar moments gets augmented

by the following lattice elastic energy and the coupling
terms to the octupolar moments,
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where we use the definition of m from Eq. 3, and gO is
the coe�cient of coupling between the octupolar moment
and lattice strain. We also include another symmetry
allowed direct coupling between the magnetic field and
the same lattice normal modes (with proportionality con-
stant �c, equivalent on both sublattices). Physically, this
kind of term could arise from the independent coupling
of the magnetic field and lattice strain to the conduc-
tion electrons (and after integrating out the conduction
electrons).
Minimizing with respect to the lattice degrees of free-

dom yields the following expressions for the (total) lattice
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Substituting the expression for the minimized lattice
strains from Eqs. 7 into Eq. 6 yields F

strain,O[m], where
the mass term of the octupolar moment is renormalized
by a term quadratic in h; it also introduces an O(h3)
coupling term between the octupolar moment and the
magnetic field, which renormalizes the coe�cient of the
already present hxhyhzm from third-order in perturba-

tion theory in ~h · ~J .

Relative Length Change Under Magnetic Field
Along Di↵erent Directions

Equipped with the necessary ingredients in the previ-
ous subsections, we can now examine the relative length
change, �L/L, for magnetic fields applied along [100],
[110], [111] directions and examine the scaling in mag-
netic field strength, h. For the sake of clarity, we stress
that we consider here the complete Landau theory of
multipolar moments coupled to lattice strain fields (af-
ter having integrated out the lattice degrees of freedom):
F [�, �̃,m] = FQ,O[�, �̃,m] + F

mag

[�, �̃] + F
strain,Q[�] +

F
strain,O[m]. We present in SI C, the values of the Lan-

dau parameters chosen for the study in this work. The
scaling relations can be inferred by substituting the ex-
pressions for the (extremized) strain in Eqs. 5 and 7
into (�L/L)
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the o↵-diagonal strain components involve the octupo-
lar moment; thus to have any possibility of observing m,
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multipolar moments (F ) is constructed subject to sym-
metries of the local Td environment. The symmetry con-
straints on F ensure that in principle only select normal
modes of the crystal that transform as the irreps. of Td

are permitted to couple to the multipolar moments. In
the present case, all the cubic normal modes presented
in Eq. 1 also transform as irreps. under Td (as can be ex-
plicitly verified), and so all of the aforementioned strain
modes can participate in the coupling.

Coupling of quadrupolar moment to lattice strain

Coupling between the quadrupolar moments and the
lattice normal modes appears as a natural choice, as the
quadrupolar moments and the lattice strains are both
even under time-reversal. Moreover, both the normal
modes {✏µ, ✏⌫} and the quadrupolar moments {O
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transform as �

3g irreps. of Td (the aforementioned lat-
tice normal modes also transform as �

3g in Oh, as Td is a
subgroup of Oh). This similarity in how they transform
under Td allows a linear coupling between the aforesaid
lattice normal modes and quadrupolar moments. Thus,
the Landau free energy of the multipolar moments gets
augmented by the following lattice elastic energy and
coupling terms to quadrupolar moments,
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where gQ is the coe�cient of coupling between the
quadrupolar moments and lattice strain tensors. Note
that we include the coupling of the lattice strain to the
quadrupole moment on each sublattice. Using the defini-
tion of the order parameter � from Eq. 3, and minimizing
F
strain,Q with respect to ✏µ, ✏⌫ yields the total strain for

each normal mode
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Substituting these expressions back into Eq. 4, we find

that the strain-optimized F
strain,Q[�] = � g2
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2(c11�c12)

|�|2
renormalizes the mass term of the FQ order.

Coupling of octupolar moment to lattice strain

A direct linear coupling between the octupolar moment
Txyz and the lattice normal modes is not permitted, as
the octupolar moment is odd under time-reversal. How-
ever, this potential di�culty can be alleviated by the
introduction of the time-reversal odd magnetic field ~h
which assists in the coupling between the lattice degrees
of freedom and octupolar moment. Thus, the Landau
free energy of the multipolar moments gets augmented

by the following lattice elastic energy and the coupling
terms to the octupolar moments,
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� �c [hxhy✏xy + hxhz✏xz + hyhz✏yz] ,

where we use the definition of m from Eq. 3, and gO is
the coe�cient of coupling between the octupolar moment
and lattice strain. We also include another symmetry
allowed direct coupling between the magnetic field and
the same lattice normal modes (with proportionality con-
stant �c, equivalent on both sublattices). Physically, this
kind of term could arise from the independent coupling
of the magnetic field and lattice strain to the conduc-
tion electrons (and after integrating out the conduction
electrons).
Minimizing with respect to the lattice degrees of free-

dom yields the following expressions for the (total) lattice
strains
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Substituting the expression for the minimized lattice
strains from Eqs. 7 into Eq. 6 yields F

strain,O[m], where
the mass term of the octupolar moment is renormalized
by a term quadratic in h; it also introduces an O(h3)
coupling term between the octupolar moment and the
magnetic field, which renormalizes the coe�cient of the
already present hxhyhzm from third-order in perturba-

tion theory in ~h · ~J .

Relative Length Change Under Magnetic Field
Along Di↵erent Directions

Equipped with the necessary ingredients in the previ-
ous subsections, we can now examine the relative length
change, �L/L, for magnetic fields applied along [100],
[110], [111] directions and examine the scaling in mag-
netic field strength, h. For the sake of clarity, we stress
that we consider here the complete Landau theory of
multipolar moments coupled to lattice strain fields (af-
ter having integrated out the lattice degrees of freedom):
F [�, �̃,m] = FQ,O[�, �̃,m] + F

mag

[�, �̃] + F
strain,Q[�] +

F
strain,O[m]. We present in SI C, the values of the Lan-

dau parameters chosen for the study in this work. The
scaling relations can be inferred by substituting the ex-
pressions for the (extremized) strain in Eqs. 5 and 7
into (�L/L)
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j . We stress that from Eq. 7,

the o↵-diagonal strain components involve the octupo-
lar moment; thus to have any possibility of observing m,
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multipolar moments (F ) is constructed subject to sym-
metries of the local Td environment. The symmetry con-
straints on F ensure that in principle only select normal
modes of the crystal that transform as the irreps. of Td

are permitted to couple to the multipolar moments. In
the present case, all the cubic normal modes presented
in Eq. 1 also transform as irreps. under Td (as can be ex-
plicitly verified), and so all of the aforementioned strain
modes can participate in the coupling.

Coupling of quadrupolar moment to lattice strain

Coupling between the quadrupolar moments and the
lattice normal modes appears as a natural choice, as the
quadrupolar moments and the lattice strains are both
even under time-reversal. Moreover, both the normal
modes {✏µ, ✏⌫} and the quadrupolar moments {O
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transform as �

3g irreps. of Td (the aforementioned lat-
tice normal modes also transform as �

3g in Oh, as Td is a
subgroup of Oh). This similarity in how they transform
under Td allows a linear coupling between the aforesaid
lattice normal modes and quadrupolar moments. Thus,
the Landau free energy of the multipolar moments gets
augmented by the following lattice elastic energy and
coupling terms to quadrupolar moments,
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c
11

� c
12

2

�
✏2µ + ✏2⌫

�
� gQ✏µ [h⌧xAi + h⌧xBi]

� gQ✏⌫ [h⌧yAi + h⌧yBi] , (4)

where gQ is the coe�cient of coupling between the
quadrupolar moments and lattice strain tensors. Note
that we include the coupling of the lattice strain to the
quadrupole moment on each sublattice. Using the defini-
tion of the order parameter � from Eq. 3, and minimizing
F
strain,Q with respect to ✏µ, ✏⌫ yields the total strain for

each normal mode
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Substituting these expressions back into Eq. 4, we find

that the strain-optimized F
strain,Q[�] = � g2
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2(c11�c12)

|�|2
renormalizes the mass term of the FQ order.

Coupling of octupolar moment to lattice strain

A direct linear coupling between the octupolar moment
Txyz and the lattice normal modes is not permitted, as
the octupolar moment is odd under time-reversal. How-
ever, this potential di�culty can be alleviated by the
introduction of the time-reversal odd magnetic field ~h
which assists in the coupling between the lattice degrees
of freedom and octupolar moment. Thus, the Landau
free energy of the multipolar moments gets augmented

by the following lattice elastic energy and the coupling
terms to the octupolar moments,
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� gOm [hx✏yz + hy✏xz + hz✏xy]

� �c [hxhy✏xy + hxhz✏xz + hyhz✏yz] ,

where we use the definition of m from Eq. 3, and gO is
the coe�cient of coupling between the octupolar moment
and lattice strain. We also include another symmetry
allowed direct coupling between the magnetic field and
the same lattice normal modes (with proportionality con-
stant �c, equivalent on both sublattices). Physically, this
kind of term could arise from the independent coupling
of the magnetic field and lattice strain to the conduc-
tion electrons (and after integrating out the conduction
electrons).
Minimizing with respect to the lattice degrees of free-

dom yields the following expressions for the (total) lattice
strains
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Substituting the expression for the minimized lattice
strains from Eqs. 7 into Eq. 6 yields F

strain,O[m], where
the mass term of the octupolar moment is renormalized
by a term quadratic in h; it also introduces an O(h3)
coupling term between the octupolar moment and the
magnetic field, which renormalizes the coe�cient of the
already present hxhyhzm from third-order in perturba-

tion theory in ~h · ~J .

Relative Length Change Under Magnetic Field
Along Di↵erent Directions

Equipped with the necessary ingredients in the previ-
ous subsections, we can now examine the relative length
change, �L/L, for magnetic fields applied along [100],
[110], [111] directions and examine the scaling in mag-
netic field strength, h. For the sake of clarity, we stress
that we consider here the complete Landau theory of
multipolar moments coupled to lattice strain fields (af-
ter having integrated out the lattice degrees of freedom):
F [�, �̃,m] = FQ,O[�, �̃,m] + F

mag

[�, �̃] + F
strain,Q[�] +

F
strain,O[m]. We present in SI C, the values of the Lan-

dau parameters chosen for the study in this work. The
scaling relations can be inferred by substituting the ex-
pressions for the (extremized) strain in Eqs. 5 and 7
into (�L/L)
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the o↵-diagonal strain components involve the octupo-
lar moment; thus to have any possibility of observing m,
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multipolar moments (F ) is constructed subject to sym-
metries of the local Td environment. The symmetry con-
straints on F ensure that in principle only select normal
modes of the crystal that transform as the irreps. of Td

are permitted to couple to the multipolar moments. In
the present case, all the cubic normal modes presented
in Eq. 1 also transform as irreps. under Td (as can be ex-
plicitly verified), and so all of the aforementioned strain
modes can participate in the coupling.

Coupling of quadrupolar moment to lattice strain

Coupling between the quadrupolar moments and the
lattice normal modes appears as a natural choice, as the
quadrupolar moments and the lattice strains are both
even under time-reversal. Moreover, both the normal
modes {✏µ, ✏⌫} and the quadrupolar moments {O
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transform as �

3g irreps. of Td (the aforementioned lat-
tice normal modes also transform as �

3g in Oh, as Td is a
subgroup of Oh). This similarity in how they transform
under Td allows a linear coupling between the aforesaid
lattice normal modes and quadrupolar moments. Thus,
the Landau free energy of the multipolar moments gets
augmented by the following lattice elastic energy and
coupling terms to quadrupolar moments,
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where gQ is the coe�cient of coupling between the
quadrupolar moments and lattice strain tensors. Note
that we include the coupling of the lattice strain to the
quadrupole moment on each sublattice. Using the defini-
tion of the order parameter � from Eq. 3, and minimizing
F
strain,Q with respect to ✏µ, ✏⌫ yields the total strain for
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Substituting these expressions back into Eq. 4, we find

that the strain-optimized F
strain,Q[�] = � g2
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renormalizes the mass term of the FQ order.

Coupling of octupolar moment to lattice strain

A direct linear coupling between the octupolar moment
Txyz and the lattice normal modes is not permitted, as
the octupolar moment is odd under time-reversal. How-
ever, this potential di�culty can be alleviated by the
introduction of the time-reversal odd magnetic field ~h
which assists in the coupling between the lattice degrees
of freedom and octupolar moment. Thus, the Landau
free energy of the multipolar moments gets augmented

by the following lattice elastic energy and the coupling
terms to the octupolar moments,
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where we use the definition of m from Eq. 3, and gO is
the coe�cient of coupling between the octupolar moment
and lattice strain. We also include another symmetry
allowed direct coupling between the magnetic field and
the same lattice normal modes (with proportionality con-
stant �c, equivalent on both sublattices). Physically, this
kind of term could arise from the independent coupling
of the magnetic field and lattice strain to the conduc-
tion electrons (and after integrating out the conduction
electrons).
Minimizing with respect to the lattice degrees of free-

dom yields the following expressions for the (total) lattice
strains
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Substituting the expression for the minimized lattice
strains from Eqs. 7 into Eq. 6 yields F

strain,O[m], where
the mass term of the octupolar moment is renormalized
by a term quadratic in h; it also introduces an O(h3)
coupling term between the octupolar moment and the
magnetic field, which renormalizes the coe�cient of the
already present hxhyhzm from third-order in perturba-

tion theory in ~h · ~J .

Relative Length Change Under Magnetic Field
Along Di↵erent Directions

Equipped with the necessary ingredients in the previ-
ous subsections, we can now examine the relative length
change, �L/L, for magnetic fields applied along [100],
[110], [111] directions and examine the scaling in mag-
netic field strength, h. For the sake of clarity, we stress
that we consider here the complete Landau theory of
multipolar moments coupled to lattice strain fields (af-
ter having integrated out the lattice degrees of freedom):
F [�, �̃,m] = FQ,O[�, �̃,m] + F
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[�, �̃] + F
strain,Q[�] +
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strain,O[m]. We present in SI C, the values of the Lan-

dau parameters chosen for the study in this work. The
scaling relations can be inferred by substituting the ex-
pressions for the (extremized) strain in Eqs. 5 and 7
into (�L/L)
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the o↵-diagonal strain components involve the octupo-
lar moment; thus to have any possibility of observing m,
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multipolar moments (F ) is constructed subject to sym-
metries of the local Td environment. The symmetry con-
straints on F ensure that in principle only select normal
modes of the crystal that transform as the irreps. of Td

are permitted to couple to the multipolar moments. In
the present case, all the cubic normal modes presented
in Eq. 1 also transform as irreps. under Td (as can be ex-
plicitly verified), and so all of the aforementioned strain
modes can participate in the coupling.

Coupling of quadrupolar moment to lattice strain

Coupling between the quadrupolar moments and the
lattice normal modes appears as a natural choice, as the
quadrupolar moments and the lattice strains are both
even under time-reversal. Moreover, both the normal
modes {✏µ, ✏⌫} and the quadrupolar moments {O
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transform as �

3g irreps. of Td (the aforementioned lat-
tice normal modes also transform as �

3g in Oh, as Td is a
subgroup of Oh). This similarity in how they transform
under Td allows a linear coupling between the aforesaid
lattice normal modes and quadrupolar moments. Thus,
the Landau free energy of the multipolar moments gets
augmented by the following lattice elastic energy and
coupling terms to quadrupolar moments,
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where gQ is the coe�cient of coupling between the
quadrupolar moments and lattice strain tensors. Note
that we include the coupling of the lattice strain to the
quadrupole moment on each sublattice. Using the defini-
tion of the order parameter � from Eq. 3, and minimizing
F
strain,Q with respect to ✏µ, ✏⌫ yields the total strain for
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Substituting these expressions back into Eq. 4, we find

that the strain-optimized F
strain,Q[�] = � g2
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renormalizes the mass term of the FQ order.

Coupling of octupolar moment to lattice strain

A direct linear coupling between the octupolar moment
Txyz and the lattice normal modes is not permitted, as
the octupolar moment is odd under time-reversal. How-
ever, this potential di�culty can be alleviated by the
introduction of the time-reversal odd magnetic field ~h
which assists in the coupling between the lattice degrees
of freedom and octupolar moment. Thus, the Landau
free energy of the multipolar moments gets augmented

by the following lattice elastic energy and the coupling
terms to the octupolar moments,
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� �c [hxhy✏xy + hxhz✏xz + hyhz✏yz] ,

where we use the definition of m from Eq. 3, and gO is
the coe�cient of coupling between the octupolar moment
and lattice strain. We also include another symmetry
allowed direct coupling between the magnetic field and
the same lattice normal modes (with proportionality con-
stant �c, equivalent on both sublattices). Physically, this
kind of term could arise from the independent coupling
of the magnetic field and lattice strain to the conduc-
tion electrons (and after integrating out the conduction
electrons).
Minimizing with respect to the lattice degrees of free-

dom yields the following expressions for the (total) lattice
strains
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Substituting the expression for the minimized lattice
strains from Eqs. 7 into Eq. 6 yields F

strain,O[m], where
the mass term of the octupolar moment is renormalized
by a term quadratic in h; it also introduces an O(h3)
coupling term between the octupolar moment and the
magnetic field, which renormalizes the coe�cient of the
already present hxhyhzm from third-order in perturba-

tion theory in ~h · ~J .

Relative Length Change Under Magnetic Field
Along Di↵erent Directions

Equipped with the necessary ingredients in the previ-
ous subsections, we can now examine the relative length
change, �L/L, for magnetic fields applied along [100],
[110], [111] directions and examine the scaling in mag-
netic field strength, h. For the sake of clarity, we stress
that we consider here the complete Landau theory of
multipolar moments coupled to lattice strain fields (af-
ter having integrated out the lattice degrees of freedom):
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mag
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F
strain,O[m]. We present in SI C, the values of the Lan-

dau parameters chosen for the study in this work. The
scaling relations can be inferred by substituting the ex-
pressions for the (extremized) strain in Eqs. 5 and 7
into (�L/L)

ˆ` =
P

ij ✏ij
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ˆ̀
j . We stress that from Eq. 7,

the o↵-diagonal strain components involve the octupo-
lar moment; thus to have any possibility of observing m,
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the unit cell of the diamond lattice. Thus, we consider
FerroQuadrupole (FQ), AntiFerroQuadrupole (AFQ),
FerroOctupole (FO) and AntiFerroOctupole (AFO)
broken symmetry states. Some of these orders could
potentially coexist. Let us introduce uniform and stag-
gered multipolar order parameters
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Here, the complex scalars �
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denote, respectively, the
uniform (for FQ) and staggered parts (for AFQ) of the
XY quadrupolar order, while the real scalars m
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The symmetry-allowed terms in the Landau free energy
with independent order parameters are thus:
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where the ellipses denote dropped higher order terms.
The important di↵erence between the FQ versus AFQ
free energies appears in the “clock” anisotropy terms
which break XY symmetry for �
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respectively; this
is cubic for FQ and sixth order for AFQ. This free
energy must be supplemented by Fint which encapsu-
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Such terms can lead to coexistence of quadrupolar and
octupolar order parameters depending on the signs of
the coe�cients. Below, we will analyze this Landau
free energy in various cases, starting from the simplest
example.

A. FQ order in PrTi2Al20

PrTi2Al20 exhibits FQ order, so we can focus on the
single term F
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in Eq. (16) above.12,30,31 For r
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either sign of v favors O20 order over O22 order, which
is consistent with nuclear magnetic resonance (NMR)
experiments35 on PrTi2Al20. In the ‘hard-spin’ limit,
the theory for the PM-to-FQ transition is a Z3 clock
model which is known to exhibit a first-order transi-
tion in three dimensions (3D).44,45 However, disorder
e↵ects46 may modify this expectation, leading to a con-
tinuous transition as appears to be observed in experi-
ments; this needs further theoretical investigation.
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In this Letter, we consider a frustrated local-moment
model with two-spin and four-spin interactions, that are
allowed by symmetry associated with the local envi-
ronment of Pr3+ ions and their coupling to the con-
duction electrons. Since our main interest is the in-
terplay between di↵erent multipolar orders and their
thermal phase transitions, we employ mean field theory
and Monte Carlo simulations to investigate the thermal
phase diagram of this model. Our key result is that such
interactions can lead to ground states with coexisting

multipolar orders; we show that this can lead to a single
or two-stage multipolar thermal transitions, and present
results on the e↵ect of a magnetic field. We discuss how
this provides a natural framework to interpret the exper-
iments on PrTi2Al20 and PrV2Al20, which is thus also of
potential importance for other heavy fermion materials.

Model.— In Pr(TM)2Al20 (with TM=Ti, V), the 4f2

Pr3+ ion lives in a T
d

local environment, arising from
the Frank Kasper cage formed by 16 neighboring Al
ions [22]. Inelastic neutron scattering and specific heat
studies have shed light on the local spectrum of the Pr3+

ion, arising from crystal field splitting of the J = 4
angular momentum multiplet [18, 21]. These indicate
a �3 non-Kramers doublet ground state separated from
the next �4 triplet of states by an energy gap ⇠ 50K. At
temperatures T ⌧ 50K, we can e↵ectively ignore these
excited crystal field multiplets [18]. Thus, for the low
energy physics of these materials, especially the broken
symmetry phases found at T . 5K, it is su�cient to
consider a model of conduction electrons Kondo-coupled
to this �3 doublet, whose wavefunctions are [21, 45]
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[46, 47]. Here, (⌧
x

, ⌧
y

)⌘ ~⌧? describes

a time-reversal invariant quadrupolar moment, while ⌧
z

describes a time-reversal odd octupolar moment. In ad-
dition, the point group symmetry of the Pr3+ ion in-
cludes an S4z operation under which ⌧± ! �⌧±, and a
C31 operation under which ⌧± ! e±i2⇡/3⌧±.

With this in mind, we consider a symmetry-allowed
model of short-distance two-spin exchange between the
pseudospin-1/2 local moments ~⌧ , supplemented with the

simplest four-spin interaction that couples quadrupolar
and octupolar degrees of freedom,
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We will assume J
ij

= J1, J2 for nearest and next-nearest
neighbors respectively, and ignore further neighbor two-
spin interactions. For the four-spin coupling, the no-
tation hhijihkmii means that we consider a nearest-
neighbor pair hiji coupled to a distinct nearest-neighbor
pair hkmi, such that the two pairs are separated by a
single bond, leading to the shortest four-site cluster [48].

We consider the easy-plane regime, � < 1, so that
the two-spin interactions favor quadrupolar ⌧x,y order
over octupolar ⌧z order as is observed in many of these
compounds. While J1 < 0 will drive FQ order, as ob-
served in PrTi2Al20, increasing pressure might lead to
AFQ orders, either via a frustrating J2/|J1|> 0 which
leads to incommensurate spiral order (SpQ), or via a
sign change J1>0 which will lead to commensurate Néel
quadrupolar order (NQ) [18, 21]. Our main insight is
that while the two-spin interactions alone will favor pure
quadrupolar order, four-spin interactions will generi-
cally lead to coexisting multipolar orders. For K > 0,
quadrupolar orders with nearest-neighbor h~⌧?

i

· ~⌧?
j

i>0

will favor ferro-octupolar (FO) order, while h~⌧?
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j

i<0
will favor Néel octupolar (NO) order; the FO and
NO orders get switched when we consider K < 0.

Motivated by constructing the simplest model to cap-
ture the phenomenology of PrTM2Al20, we will set
J1<0 for PrTi2Al20 which favors FQ order, and J1>0
for PrV2Al20 favoring NQ order. In both cases, we fix
J2>0 andK>0, and study the phases and their proper-
ties as we vary J2/|J1| and K/|J1|. At the classical level
of the analysis done here, we note that the model with
J1 < 0 maps onto the model with J1 > 0 by changing
~⌧ ! �~⌧ on one sublattice; with this understanding, we
will mainly focus on fixed J1 = +1, but present results
which are applicable for both systems.
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In this Letter, we consider a frustrated local-moment
model with two-spin and four-spin interactions, that are
allowed by symmetry associated with the local envi-
ronment of Pr3+ ions and their coupling to the con-
duction electrons. Since our main interest is the in-
terplay between di↵erent multipolar orders and their
thermal phase transitions, we employ mean field theory
and Monte Carlo simulations to investigate the thermal
phase diagram of this model. Our key result is that such
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multipolar orders; we show that this can lead to a single
or two-stage multipolar thermal transitions, and present
results on the e↵ect of a magnetic field. We discuss how
this provides a natural framework to interpret the exper-
iments on PrTi2Al20 and PrV2Al20, which is thus also of
potential importance for other heavy fermion materials.
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angular momentum multiplet [18, 21]. These indicate
a �3 non-Kramers doublet ground state separated from
the next �4 triplet of states by an energy gap ⇠ 50K. At
temperatures T ⌧ 50K, we can e↵ectively ignore these
excited crystal field multiplets [18]. Thus, for the low
energy physics of these materials, especially the broken
symmetry phases found at T . 5K, it is su�cient to
consider a model of conduction electrons Kondo-coupled
to this �3 doublet, whose wavefunctions are [21, 45]
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We will assume J
ij

= J1, J2 for nearest and next-nearest
neighbors respectively, and ignore further neighbor two-
spin interactions. For the four-spin coupling, the no-
tation hhijihkmii means that we consider a nearest-
neighbor pair hiji coupled to a distinct nearest-neighbor
pair hkmi, such that the two pairs are separated by a
single bond, leading to the shortest four-site cluster [48].

We consider the easy-plane regime, � < 1, so that
the two-spin interactions favor quadrupolar ⌧x,y order
over octupolar ⌧z order as is observed in many of these
compounds. While J1 < 0 will drive FQ order, as ob-
served in PrTi2Al20, increasing pressure might lead to
AFQ orders, either via a frustrating J2/|J1|> 0 which
leads to incommensurate spiral order (SpQ), or via a
sign change J1>0 which will lead to commensurate Néel
quadrupolar order (NQ) [18, 21]. Our main insight is
that while the two-spin interactions alone will favor pure
quadrupolar order, four-spin interactions will generi-
cally lead to coexisting multipolar orders. For K > 0,
quadrupolar orders with nearest-neighbor h~⌧?

i

· ~⌧?
j

i>0

will favor ferro-octupolar (FO) order, while h~⌧?
i

·~⌧?
j

i<0
will favor Néel octupolar (NO) order; the FO and
NO orders get switched when we consider K < 0.

Motivated by constructing the simplest model to cap-
ture the phenomenology of PrTM2Al20, we will set
J1<0 for PrTi2Al20 which favors FQ order, and J1>0
for PrV2Al20 favoring NQ order. In both cases, we fix
J2>0 andK>0, and study the phases and their proper-
ties as we vary J2/|J1| and K/|J1|. At the classical level
of the analysis done here, we note that the model with
J1 < 0 maps onto the model with J1 > 0 by changing
~⌧ ! �~⌧ on one sublattice; with this understanding, we
will mainly focus on fixed J1 = +1, but present results
which are applicable for both systems.

Ground state phase diagram.— For J1 > 0, con-
sider an ansatz ~⌧+

A/B

=
p

1�⌘2 exp(iq · r ± �

2 ) for

unit length spins on A/B sublattices, with ⌧z
A/B

=

±⌘. Here q,� specify a spiral of ~⌧? which is a
generic SpQ order with magnitude

p
1� ⌘2. The

limit Q = 0 corresponds to the NQ state. This co-
exists with NO order of strength ⌘. Let us define
F ⌘cos� cos q

x

4 cos q

y

4 cos q

z

4�sin� sin q

x

4 sin q

y

4 sin q

z

4 and
G⌘cos q

x

2 cos q

y

2 + cos q

y

2 cos q

z

2 + cos q

z

2 cos q

x

2 , in terms

time-reversal odd
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B. Coupling of octupolar moment to lattice strain

The coupling between the octupolar moment Txyz and
the lattice normal modes does not appear to be a natu-
ral choice as the octupolar moment is odd under time-
reversal. However, this potential di�culty can be allevi-
ated by the introduction of the time-reversal odd mag-
netic field ~h which assists in the coupling between the
lattice degrees of freedom and octupolar moment. Thus,
the Landau free energy of the multipolar moments shown
in Eqs. 11, 17 gets augmented by the following lattice
elastic energy and the coupling terms to the octupolar
moments,

F
strain,O[m, {✏xy,yz,xz}] =

c
44

2

�
✏2xy + ✏2yz + ✏2xz

�

� gOm [hx✏yz + hy✏xz + hz✏xy]

� � [hxhy✏xy + hxhz✏xz + hyhz✏yz] ,
(25)

where we notice that since we only assume FO, the
octupolar moment is the same on each sublattice i.e.
m = hTxyzi = hTxyz,Ai = hTxyz,Bi, and so we neglect
the writing of the sublattice index for the normal modes.
We also include another symmetry allowed direct cou-
pling between the magnetic field and the same lattice
normal modes (with proportionality constant �, equiva-
lent on both sublattices). Physically, this kind of term
could arise from the independent coupling of the mag-
netic field and lattice strain to the conduction electrons
(and after integrating out the conduction electrons); we
discuss this matter briefly in Sec. VII.

Minimizing with respect to the lattice degrees of free-
dom yields the following expressions for the (total) lattice
strains

✏xy =

✓
gOhz

c
44

◆
m+ �

hxhy

c
44

,

✏xz =

✓
gOhy

c
44

◆
m+ �

hxhz

c
44

,

✏yz =

✓
gOhx

c
44

◆
m+ �

hyhz

c
44

.

(26)

Substituting the expression for the minimized lattice
strains from Eqs. 26 into Eq. 25, yields

F
strain,O[m] = � g2O

2c
44

�
h2

x + h2

y + h2

z

�
m2

�
✓
3gO�
c
44

hxhyhz

◆
m+ O(h4) .

(27)

Thus, the coupling of the lattice degrees of freedom to
the octupolar moment results in renormalizing the mass
term of the octupolar moment quadratically in h; it also
introduces an O(h3) coupling term between the octupolar
moment and the magnetic field, which renormalizes the
coe�cient of the already present hxhyhzm from third-

order in perturbation theory in ~h · ~J .
V. RELATIVE LENGTH CHANGE UNDER
MAGNETIC FIELD ALONG DIFFERENT

DIRECTIONS

In this section, we examine the relative length change,
�L/L, for magnetic fields applied along [100], [110],
[111] directions and examine the scaling in magnetic field
strength, h. For the sake of clarity, we write down the
complete Landau theory, including the magnetic field
couplings, and after having integrated out the lattice de-
grees of freedom (as discussed in the previous section,
resulting in renormalizing the mass terms of the order
parameters)

F [�, �̃,m] = FQ,O[�, �̃,m] + F
mag

[�, �̃]

+ F
strain,Q[�̃,�] + F

strain,O[m] ,
(28)

where FQ,O[�, �̃,m] is defined in Eq. 11, F
mag

[�, �̃] is de-
fined in Eq. 17, and the terms from the strain couplings
F
strain,Q[�̃,�] and F

strain,O[m] are defined in Eqs. 24 and
27, respectively. We present in Appendix C, the values of
the Landau parameters chosen for the study conducted
in this and the subsequent sections. For each magnetic
field direction, we examine three temperature regimes,
namely: above all critical temperatures, between the
quadrupolar and octupolar critical temperatures, and be-
low both quadrupolar and octupolar temperature regime.

The scaling relations can be inferred by substituting
the expressions for the (extremized) strain in Eqs. 23
and 26 into Eq. 20 to yield the following expressions in
Eqs. 29.

Fstrain[h 6= 0] =
(2)

4

multipolar moments (F ) is constructed subject to sym-
metries of the local Td environment. The symmetry con-
straints on F ensure that in principle only select normal
modes of the crystal that transform as the irreps. of Td

are permitted to couple to the multipolar moments. In
the present case, all the cubic normal modes presented
in Eq. 1 also transform as irreps. under Td (as can be ex-
plicitly verified), and so all of the aforementioned strain
modes can participate in the coupling.

Coupling of quadrupolar moment to lattice strain

Coupling between the quadrupolar moments and the
lattice normal modes appears as a natural choice, as the
quadrupolar moments and the lattice strains are both
even under time-reversal. Moreover, both the normal
modes {✏µ, ✏⌫} and the quadrupolar moments {O

22

,O
20

}
transform as �

3g irreps. of Td (the aforementioned lat-
tice normal modes also transform as �

3g in Oh, as Td is a
subgroup of Oh). This similarity in how they transform
under Td allows a linear coupling between the aforesaid
lattice normal modes and quadrupolar moments. Thus,
the Landau free energy of the multipolar moments gets
augmented by the following lattice elastic energy and
coupling terms to quadrupolar moments,

F
strain,Q =

c
11

� c
12

2

�
✏2µ + ✏2⌫

�
� gQ✏µ [h⌧xAi + h⌧xBi]

� gQ✏⌫ [h⌧yAi + h⌧yBi] , (4)

where gQ is the coe�cient of coupling between the
quadrupolar moments and lattice strain tensors. Note
that we include the coupling of the lattice strain to the
quadrupole moment on each sublattice. Using the defini-
tion of the order parameter � from Eq. 3, and minimizing
F
strain,Q with respect to ✏µ, ✏⌫ yields the total strain for

each normal mode

✏µ =
gQ

(c
11

� c
12

)
|�| cos↵ ,

✏⌫ =
gQ

(c
11

� c
12

)
|�| sin↵ .

(5)

Substituting these expressions back into Eq. 4, we find

that the strain-optimized F
strain,Q[�] = � g2

Q
2(c11�c12)

|�|2
renormalizes the mass term of the FQ order.

Coupling of octupolar moment to lattice strain

A direct linear coupling between the octupolar moment
Txyz and the lattice normal modes is not permitted, as
the octupolar moment is odd under time-reversal. How-
ever, this potential di�culty can be alleviated by the
introduction of the time-reversal odd magnetic field ~h
which assists in the coupling between the lattice degrees
of freedom and octupolar moment. Thus, the Landau
free energy of the multipolar moments gets augmented

by the following lattice elastic energy and the coupling
terms to the octupolar moments,

F
strain,O =

c
44

2

�
✏2xy + ✏2yz + ✏2xz

�
(6)

� gOm [hx✏yz + hy✏xz + hz✏xy]

� �c [hxhy✏xy + hxhz✏xz + hyhz✏yz] ,

where we use the definition of m from Eq. 3, and gO is
the coe�cient of coupling between the octupolar moment
and lattice strain. We also include another symmetry
allowed direct coupling between the magnetic field and
the same lattice normal modes (with proportionality con-
stant �c, equivalent on both sublattices). Physically, this
kind of term could arise from the independent coupling
of the magnetic field and lattice strain to the conduc-
tion electrons (and after integrating out the conduction
electrons).
Minimizing with respect to the lattice degrees of free-

dom yields the following expressions for the (total) lattice
strains

✏xy =

✓
gOhz

c
44

◆
m+ �c

hxhy

c
44

,

✏xz =

✓
gOhy

c
44

◆
m+ �c

hxhz

c
44

,

✏yz =

✓
gOhx

c
44

◆
m+ �c

hyhz

c
44

.

(7)

Substituting the expression for the minimized lattice
strains from Eqs. 7 into Eq. 6 yields F

strain,O[m], where
the mass term of the octupolar moment is renormalized
by a term quadratic in h; it also introduces an O(h3)
coupling term between the octupolar moment and the
magnetic field, which renormalizes the coe�cient of the
already present hxhyhzm from third-order in perturba-

tion theory in ~h · ~J .

Relative Length Change Under Magnetic Field
Along Di↵erent Directions

Equipped with the necessary ingredients in the previ-
ous subsections, we can now examine the relative length
change, �L/L, for magnetic fields applied along [100],
[110], [111] directions and examine the scaling in mag-
netic field strength, h. For the sake of clarity, we stress
that we consider here the complete Landau theory of
multipolar moments coupled to lattice strain fields (af-
ter having integrated out the lattice degrees of freedom):
F [�, �̃,m] = FQ,O[�, �̃,m] + F

mag

[�, �̃] + F
strain,Q[�] +

F
strain,O[m]. We present in SI C, the values of the Lan-

dau parameters chosen for the study in this work. The
scaling relations can be inferred by substituting the ex-
pressions for the (extremized) strain in Eqs. 5 and 7
into (�L/L)

ˆ` =
P

ij ✏ij
ˆ̀
i
ˆ̀
j . We stress that from Eq. 7,

the o↵-diagonal strain components involve the octupo-
lar moment; thus to have any possibility of observing m,

4

multipolar moments (F ) is constructed subject to sym-
metries of the local Td environment. The symmetry con-
straints on F ensure that in principle only select normal
modes of the crystal that transform as the irreps. of Td

are permitted to couple to the multipolar moments. In
the present case, all the cubic normal modes presented
in Eq. 1 also transform as irreps. under Td (as can be ex-
plicitly verified), and so all of the aforementioned strain
modes can participate in the coupling.

Coupling of quadrupolar moment to lattice strain

Coupling between the quadrupolar moments and the
lattice normal modes appears as a natural choice, as the
quadrupolar moments and the lattice strains are both
even under time-reversal. Moreover, both the normal
modes {✏µ, ✏⌫} and the quadrupolar moments {O

22

,O
20

}
transform as �

3g irreps. of Td (the aforementioned lat-
tice normal modes also transform as �

3g in Oh, as Td is a
subgroup of Oh). This similarity in how they transform
under Td allows a linear coupling between the aforesaid
lattice normal modes and quadrupolar moments. Thus,
the Landau free energy of the multipolar moments gets
augmented by the following lattice elastic energy and
coupling terms to quadrupolar moments,

F
strain,Q =

c
11

� c
12

2

�
✏2µ + ✏2⌫

�
� gQ✏µ [h⌧xAi + h⌧xBi]

� gQ✏⌫ [h⌧yAi + h⌧yBi] , (4)

where gQ is the coe�cient of coupling between the
quadrupolar moments and lattice strain tensors. Note
that we include the coupling of the lattice strain to the
quadrupole moment on each sublattice. Using the defini-
tion of the order parameter � from Eq. 3, and minimizing
F
strain,Q with respect to ✏µ, ✏⌫ yields the total strain for

each normal mode

✏µ =
gQ

(c
11

� c
12

)
|�| cos↵ ,

✏⌫ =
gQ

(c
11

� c
12

)
|�| sin↵ .

(5)

Substituting these expressions back into Eq. 4, we find

that the strain-optimized F
strain,Q[�] = � g2

Q
2(c11�c12)

|�|2
renormalizes the mass term of the FQ order.

Coupling of octupolar moment to lattice strain

A direct linear coupling between the octupolar moment
Txyz and the lattice normal modes is not permitted, as
the octupolar moment is odd under time-reversal. How-
ever, this potential di�culty can be alleviated by the
introduction of the time-reversal odd magnetic field ~h
which assists in the coupling between the lattice degrees
of freedom and octupolar moment. Thus, the Landau
free energy of the multipolar moments gets augmented

by the following lattice elastic energy and the coupling
terms to the octupolar moments,

F
strain,O =

c
44

2

�
✏2xy + ✏2yz + ✏2xz

�
(6)

� gOm [hx✏yz + hy✏xz + hz✏xy]

� �c [hxhy✏xy + hxhz✏xz + hyhz✏yz] ,

where we use the definition of m from Eq. 3, and gO is
the coe�cient of coupling between the octupolar moment
and lattice strain. We also include another symmetry
allowed direct coupling between the magnetic field and
the same lattice normal modes (with proportionality con-
stant �c, equivalent on both sublattices). Physically, this
kind of term could arise from the independent coupling
of the magnetic field and lattice strain to the conduc-
tion electrons (and after integrating out the conduction
electrons).
Minimizing with respect to the lattice degrees of free-

dom yields the following expressions for the (total) lattice
strains

✏xy =

✓
gOhz

c
44

◆
m+ �c

hxhy

c
44

,

✏xz =

✓
gOhy

c
44

◆
m+ �c

hxhz

c
44

,

✏yz =

✓
gOhx

c
44

◆
m+ �c

hyhz

c
44

.

(7)

Substituting the expression for the minimized lattice
strains from Eqs. 7 into Eq. 6 yields F

strain,O[m], where
the mass term of the octupolar moment is renormalized
by a term quadratic in h; it also introduces an O(h3)
coupling term between the octupolar moment and the
magnetic field, which renormalizes the coe�cient of the
already present hxhyhzm from third-order in perturba-

tion theory in ~h · ~J .

Relative Length Change Under Magnetic Field
Along Di↵erent Directions

Equipped with the necessary ingredients in the previ-
ous subsections, we can now examine the relative length
change, �L/L, for magnetic fields applied along [100],
[110], [111] directions and examine the scaling in mag-
netic field strength, h. For the sake of clarity, we stress
that we consider here the complete Landau theory of
multipolar moments coupled to lattice strain fields (af-
ter having integrated out the lattice degrees of freedom):
F [�, �̃,m] = FQ,O[�, �̃,m] + F

mag

[�, �̃] + F
strain,Q[�] +

F
strain,O[m]. We present in SI C, the values of the Lan-

dau parameters chosen for the study in this work. The
scaling relations can be inferred by substituting the ex-
pressions for the (extremized) strain in Eqs. 5 and 7
into (�L/L)

ˆ` =
P

ij ✏ij
ˆ̀
i
ˆ̀
j . We stress that from Eq. 7,

the o↵-diagonal strain components involve the octupo-
lar moment; thus to have any possibility of observing m,

m = h⌧zi



Coupling to Octupolar Order Parameter 

Measurement of  
elastic tensor

Measurement of  
multipolar order

✏
xy

= Mh
z

+ �h
x

h
y

✏
zx

= Mh
y

+ �h
z

h
x

✏
yz

= Mh
x

+ �h
y

h
z

M = gOm/c44

� = �c/c44
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B. Coupling of octupolar moment to lattice strain

The coupling between the octupolar moment Txyz and
the lattice normal modes does not appear to be a natu-
ral choice as the octupolar moment is odd under time-
reversal. However, this potential di�culty can be allevi-
ated by the introduction of the time-reversal odd mag-
netic field ~h which assists in the coupling between the
lattice degrees of freedom and octupolar moment. Thus,
the Landau free energy of the multipolar moments shown
in Eqs. 11, 17 gets augmented by the following lattice
elastic energy and the coupling terms to the octupolar
moments,

F
strain,O[m, {✏xy,yz,xz}] =

c
44

2

�
✏2xy + ✏2yz + ✏2xz

�

� gOm [hx✏yz + hy✏xz + hz✏xy]

� � [hxhy✏xy + hxhz✏xz + hyhz✏yz] ,
(25)

where we notice that since we only assume FO, the
octupolar moment is the same on each sublattice i.e.
m = hTxyzi = hTxyz,Ai = hTxyz,Bi, and so we neglect
the writing of the sublattice index for the normal modes.
We also include another symmetry allowed direct cou-
pling between the magnetic field and the same lattice
normal modes (with proportionality constant �, equiva-
lent on both sublattices). Physically, this kind of term
could arise from the independent coupling of the mag-
netic field and lattice strain to the conduction electrons
(and after integrating out the conduction electrons); we
discuss this matter briefly in Sec. VII.

Minimizing with respect to the lattice degrees of free-
dom yields the following expressions for the (total) lattice
strains

✏xy =

✓
gOhz

c
44

◆
m+ �

hxhy

c
44

,

✏xz =

✓
gOhy

c
44

◆
m+ �

hxhz

c
44

,

✏yz =

✓
gOhx

c
44

◆
m+ �

hyhz

c
44

.

(26)

Substituting the expression for the minimized lattice
strains from Eqs. 26 into Eq. 25, yields

F
strain,O[m] = � g2O

2c
44

�
h2

x + h2

y + h2

z

�
m2

�
✓
3gO�
c
44

hxhyhz

◆
m+ O(h4) .

(27)

Thus, the coupling of the lattice degrees of freedom to
the octupolar moment results in renormalizing the mass
term of the octupolar moment quadratically in h; it also
introduces an O(h3) coupling term between the octupolar
moment and the magnetic field, which renormalizes the
coe�cient of the already present hxhyhzm from third-

order in perturbation theory in ~h · ~J .
V. RELATIVE LENGTH CHANGE UNDER
MAGNETIC FIELD ALONG DIFFERENT

DIRECTIONS

In this section, we examine the relative length change,
�L/L, for magnetic fields applied along [100], [110],
[111] directions and examine the scaling in magnetic field
strength, h. For the sake of clarity, we write down the
complete Landau theory, including the magnetic field
couplings, and after having integrated out the lattice de-
grees of freedom (as discussed in the previous section,
resulting in renormalizing the mass terms of the order
parameters)

F [�, �̃,m] = FQ,O[�, �̃,m] + F
mag

[�, �̃]

+ F
strain,Q[�̃,�] + F

strain,O[m] ,
(28)

where FQ,O[�, �̃,m] is defined in Eq. 11, F
mag

[�, �̃] is de-
fined in Eq. 17, and the terms from the strain couplings
F
strain,Q[�̃,�] and F

strain,O[m] are defined in Eqs. 24 and
27, respectively. We present in Appendix C, the values of
the Landau parameters chosen for the study conducted
in this and the subsequent sections. For each magnetic
field direction, we examine three temperature regimes,
namely: above all critical temperatures, between the
quadrupolar and octupolar critical temperatures, and be-
low both quadrupolar and octupolar temperature regime.

The scaling relations can be inferred by substituting
the expressions for the (extremized) strain in Eqs. 23
and 26 into Eq. 20 to yield the following expressions in
Eqs. 29.

Fstrain[h 6= 0] =
(2)

4

multipolar moments (F ) is constructed subject to sym-
metries of the local Td environment. The symmetry con-
straints on F ensure that in principle only select normal
modes of the crystal that transform as the irreps. of Td

are permitted to couple to the multipolar moments. In
the present case, all the cubic normal modes presented
in Eq. 1 also transform as irreps. under Td (as can be ex-
plicitly verified), and so all of the aforementioned strain
modes can participate in the coupling.

Coupling of quadrupolar moment to lattice strain

Coupling between the quadrupolar moments and the
lattice normal modes appears as a natural choice, as the
quadrupolar moments and the lattice strains are both
even under time-reversal. Moreover, both the normal
modes {✏µ, ✏⌫} and the quadrupolar moments {O

22

,O
20

}
transform as �

3g irreps. of Td (the aforementioned lat-
tice normal modes also transform as �

3g in Oh, as Td is a
subgroup of Oh). This similarity in how they transform
under Td allows a linear coupling between the aforesaid
lattice normal modes and quadrupolar moments. Thus,
the Landau free energy of the multipolar moments gets
augmented by the following lattice elastic energy and
coupling terms to quadrupolar moments,

F
strain,Q =

c
11

� c
12

2

�
✏2µ + ✏2⌫

�
� gQ✏µ [h⌧xAi + h⌧xBi]

� gQ✏⌫ [h⌧yAi + h⌧yBi] , (4)

where gQ is the coe�cient of coupling between the
quadrupolar moments and lattice strain tensors. Note
that we include the coupling of the lattice strain to the
quadrupole moment on each sublattice. Using the defini-
tion of the order parameter � from Eq. 3, and minimizing
F
strain,Q with respect to ✏µ, ✏⌫ yields the total strain for

each normal mode

✏µ =
gQ

(c
11

� c
12

)
|�| cos↵ ,

✏⌫ =
gQ

(c
11

� c
12

)
|�| sin↵ .

(5)

Substituting these expressions back into Eq. 4, we find

that the strain-optimized F
strain,Q[�] = � g2

Q
2(c11�c12)

|�|2
renormalizes the mass term of the FQ order.

Coupling of octupolar moment to lattice strain

A direct linear coupling between the octupolar moment
Txyz and the lattice normal modes is not permitted, as
the octupolar moment is odd under time-reversal. How-
ever, this potential di�culty can be alleviated by the
introduction of the time-reversal odd magnetic field ~h
which assists in the coupling between the lattice degrees
of freedom and octupolar moment. Thus, the Landau
free energy of the multipolar moments gets augmented

by the following lattice elastic energy and the coupling
terms to the octupolar moments,

F
strain,O =

c
44

2

�
✏2xy + ✏2yz + ✏2xz

�
(6)

� gOm [hx✏yz + hy✏xz + hz✏xy]

� �c [hxhy✏xy + hxhz✏xz + hyhz✏yz] ,

where we use the definition of m from Eq. 3, and gO is
the coe�cient of coupling between the octupolar moment
and lattice strain. We also include another symmetry
allowed direct coupling between the magnetic field and
the same lattice normal modes (with proportionality con-
stant �c, equivalent on both sublattices). Physically, this
kind of term could arise from the independent coupling
of the magnetic field and lattice strain to the conduc-
tion electrons (and after integrating out the conduction
electrons).
Minimizing with respect to the lattice degrees of free-

dom yields the following expressions for the (total) lattice
strains

✏xy =

✓
gOhz

c
44

◆
m+ �c

hxhy

c
44

,

✏xz =

✓
gOhy

c
44

◆
m+ �c

hxhz

c
44

,

✏yz =

✓
gOhx

c
44

◆
m+ �c

hyhz

c
44

.

(7)

Substituting the expression for the minimized lattice
strains from Eqs. 7 into Eq. 6 yields F

strain,O[m], where
the mass term of the octupolar moment is renormalized
by a term quadratic in h; it also introduces an O(h3)
coupling term between the octupolar moment and the
magnetic field, which renormalizes the coe�cient of the
already present hxhyhzm from third-order in perturba-

tion theory in ~h · ~J .

Relative Length Change Under Magnetic Field
Along Di↵erent Directions

Equipped with the necessary ingredients in the previ-
ous subsections, we can now examine the relative length
change, �L/L, for magnetic fields applied along [100],
[110], [111] directions and examine the scaling in mag-
netic field strength, h. For the sake of clarity, we stress
that we consider here the complete Landau theory of
multipolar moments coupled to lattice strain fields (af-
ter having integrated out the lattice degrees of freedom):
F [�, �̃,m] = FQ,O[�, �̃,m] + F

mag

[�, �̃] + F
strain,Q[�] +

F
strain,O[m]. We present in SI C, the values of the Lan-

dau parameters chosen for the study in this work. The
scaling relations can be inferred by substituting the ex-
pressions for the (extremized) strain in Eqs. 5 and 7
into (�L/L)

ˆ` =
P

ij ✏ij
ˆ̀
i
ˆ̀
j . We stress that from Eq. 7,

the o↵-diagonal strain components involve the octupo-
lar moment; thus to have any possibility of observing m,
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multipolar moments (F ) is constructed subject to sym-
metries of the local Td environment. The symmetry con-
straints on F ensure that in principle only select normal
modes of the crystal that transform as the irreps. of Td

are permitted to couple to the multipolar moments. In
the present case, all the cubic normal modes presented
in Eq. 1 also transform as irreps. under Td (as can be ex-
plicitly verified), and so all of the aforementioned strain
modes can participate in the coupling.

Coupling of quadrupolar moment to lattice strain

Coupling between the quadrupolar moments and the
lattice normal modes appears as a natural choice, as the
quadrupolar moments and the lattice strains are both
even under time-reversal. Moreover, both the normal
modes {✏µ, ✏⌫} and the quadrupolar moments {O

22

,O
20

}
transform as �

3g irreps. of Td (the aforementioned lat-
tice normal modes also transform as �

3g in Oh, as Td is a
subgroup of Oh). This similarity in how they transform
under Td allows a linear coupling between the aforesaid
lattice normal modes and quadrupolar moments. Thus,
the Landau free energy of the multipolar moments gets
augmented by the following lattice elastic energy and
coupling terms to quadrupolar moments,

F
strain,Q =

c
11

� c
12

2

�
✏2µ + ✏2⌫

�
� gQ✏µ [h⌧xAi + h⌧xBi]

� gQ✏⌫ [h⌧yAi + h⌧yBi] , (4)

where gQ is the coe�cient of coupling between the
quadrupolar moments and lattice strain tensors. Note
that we include the coupling of the lattice strain to the
quadrupole moment on each sublattice. Using the defini-
tion of the order parameter � from Eq. 3, and minimizing
F
strain,Q with respect to ✏µ, ✏⌫ yields the total strain for

each normal mode

✏µ =
gQ

(c
11

� c
12

)
|�| cos↵ ,

✏⌫ =
gQ

(c
11

� c
12

)
|�| sin↵ .

(5)

Substituting these expressions back into Eq. 4, we find

that the strain-optimized F
strain,Q[�] = � g2

Q
2(c11�c12)

|�|2
renormalizes the mass term of the FQ order.

Coupling of octupolar moment to lattice strain

A direct linear coupling between the octupolar moment
Txyz and the lattice normal modes is not permitted, as
the octupolar moment is odd under time-reversal. How-
ever, this potential di�culty can be alleviated by the
introduction of the time-reversal odd magnetic field ~h
which assists in the coupling between the lattice degrees
of freedom and octupolar moment. Thus, the Landau
free energy of the multipolar moments gets augmented

by the following lattice elastic energy and the coupling
terms to the octupolar moments,

F
strain,O =

c
44

2

�
✏2xy + ✏2yz + ✏2xz

�
(6)

� gOm [hx✏yz + hy✏xz + hz✏xy]

� �c [hxhy✏xy + hxhz✏xz + hyhz✏yz] ,

where we use the definition of m from Eq. 3, and gO is
the coe�cient of coupling between the octupolar moment
and lattice strain. We also include another symmetry
allowed direct coupling between the magnetic field and
the same lattice normal modes (with proportionality con-
stant �c, equivalent on both sublattices). Physically, this
kind of term could arise from the independent coupling
of the magnetic field and lattice strain to the conduc-
tion electrons (and after integrating out the conduction
electrons).
Minimizing with respect to the lattice degrees of free-

dom yields the following expressions for the (total) lattice
strains
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c
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✏xz =

✓
gOhy
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44

,
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44
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m+ �c
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c
44

.

(7)

Substituting the expression for the minimized lattice
strains from Eqs. 7 into Eq. 6 yields F

strain,O[m], where
the mass term of the octupolar moment is renormalized
by a term quadratic in h; it also introduces an O(h3)
coupling term between the octupolar moment and the
magnetic field, which renormalizes the coe�cient of the
already present hxhyhzm from third-order in perturba-

tion theory in ~h · ~J .

Relative Length Change Under Magnetic Field
Along Di↵erent Directions

Equipped with the necessary ingredients in the previ-
ous subsections, we can now examine the relative length
change, �L/L, for magnetic fields applied along [100],
[110], [111] directions and examine the scaling in mag-
netic field strength, h. For the sake of clarity, we stress
that we consider here the complete Landau theory of
multipolar moments coupled to lattice strain fields (af-
ter having integrated out the lattice degrees of freedom):
F [�, �̃,m] = FQ,O[�, �̃,m] + F

mag

[�, �̃] + F
strain,Q[�] +

F
strain,O[m]. We present in SI C, the values of the Lan-

dau parameters chosen for the study in this work. The
scaling relations can be inferred by substituting the ex-
pressions for the (extremized) strain in Eqs. 5 and 7
into (�L/L)

ˆ` =
P

ij ✏ij
ˆ̀
i
ˆ̀
j . We stress that from Eq. 7,

the o↵-diagonal strain components involve the octupo-
lar moment; thus to have any possibility of observing m,

m = h⌧zi
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where cB is the bulk modulus, ✏B ⌘ ✏xx + ✏yy + ✏zz is
the volume expansion of the crystal, ✏⌫ ⌘ (2✏zz � ✏xx �
✏yy)/

p
3 and ✏µ ⌘ (✏xx � ✏yy) are lattice strains that

transform as the �
3g irrep. of the Oh group, and the o↵-

diagonal strain components transform as the �
5g irrep. of

Oh group; here the subscript g indicates even under time-
reversal and spatial inversion (parity). We henceforth use
Eq. 19 for the cubic crystal’s elastic energy.

B. General expression for relative length change

The relative length change, �L/L, of the crystal can
be shown to be related to the components of the strain
tensor, as described in more detail in Appendix B. The
general expression of the length change along a direction
~l is

✓
�L

L

◆

~l

=
3X

i,j=1

✏ij l̂i l̂j , (20)

where ✏ij ⌘ ⌃i,j
1

2

⇣
@ui

@xj
+ @uj

@xi

⌘
is the familiar strain ten-

sor, and l̂i is the ith component of unit vector l̂. For ease
of understanding the strain tensor, we use the conven-
tion that ✏

11

= ✏xx, ✏12 = ✏xy etc. We apply Eq. 20 to
particular length change directions in Sec. V.

IV. SYMMETRY ALLOWED COUPLING OF
MULTIPOLAR MOMENTS AND CUBIC

CRYSTAL NORMAL MODES

We now turn our attention to the problem of coupling
the lattice normal modes of the cubic crystal to the mul-
tipolar moments. We recall that the cubic crystal struc-
ture supports normal modes that transform as irreps. of
Oh, while the Landau free energy of the multipolar mo-
ments (F ) is constructed subject to the symmetries of
Td. The symmetry requirements in constructing F ensure
that any new terms (such as coupling of lattice strains to
the multipolar moments, or the lattice elastic energies)
added to F must be invariant under Td. Thus, only se-

lect normal modes of the crystal that transform as the
irreps. of Td are permitted to couple to the multipolar
moments in F . In the present case, all the cubic nor-
mal modes presented in Eq. 19 also transform as irreps.
under Td (as can be explicitly verified), and thus their as-
sociated lattice elastic energies (along with the couplings
discussed below) are admitted into F . In the next two
subsections, we consider the direct coupling of quadrupo-
lar moments to the cubic normal modes, and then tackle
the magnetic field assisted octupolar coupling to the lat-
tice normal modes.

A. Coupling of quadrupolar moment to lattice
strain

Coupling between the quadrupolar moments and the
lattice normal modes appears as a natural choice, as the
quadrupolar moments and the lattice strains are both
even under time-reversal. Moreover, both the normal
modes {✏µ, ✏⌫} and the quadrupolar moments {O

22
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20

}
transform as �

3g irreps. of Td (the aforementioned lat-
tice normal modes also transform as �

3g in Oh, as Td is a
subgroup of Oh). This similarity in how they transform
under Td allows a linear coupling between the aforesaid
lattice normal modes and quadrupolar moments. Thus,
the Landau free energy of the multipolar moments shown
in Eqs. 11, 17 gets augmented by the following lattice
elastic energy and coupling terms to quadrupolar mo-
ments,

F
strain,Q[�̃,�, ✏µ,⌫ ] =

c
11

� c
12

2

�
✏2µ,A + ✏2µ,B + ✏2⌫,A + ✏2⌫,B

�

� gQ [✏µ,Ah⌧xAi + ✏µ,Bh⌧xBi]
� gQ [✏⌫,Ah⌧yAi + ✏⌫,Bh⌧yBi] , (21)

where gQ is the coe�cient of coupling between the
quadrupolar moments and lattice strain tensors. Note
that we include the coupling of the lattice strain on each
sublattice to its corresponding quadrupole moment on
the same sublattice. Expressing this in terms of the AFQ
and FQ order parameters (�̃,�) using Eq. 10 and min-
imizing with respect to the lattice degrees of freedom
( �Fstrain,Q

�✏µ,A
etc.) yields the following set of equations

✏µ,A =
gQ

2(c
11

� c
12

)

⇣
|�| cos↵+ |�̃| cos ↵̃

⌘
,

✏µ,B =
gQ

2(c
11

� c
12

)

⇣
|�| cos↵ � |�̃| cos ↵̃

⌘
,

✏⌫,A =
gQ

2(c
11

� c
12

)

⇣
|�| sin↵+ |�̃| sin ↵̃

⌘
,

✏⌫,B =
gQ

2(c
11

� c
12

)

⇣
|�| sin↵ � |�̃| sin ↵̃

⌘
.

(22)

The total strain for each normal mode is thus

✏µ = ✏µ,A + ✏µ,B =
gQ

(c
11

� c
12

)
|�| cos↵ ,

✏⌫ = ✏⌫,A + ✏⌫,B =
gQ

(c
11

� c
12

)
|�| sin↵ ,

(23)

and substituting the expression for the minimized lattice
strains from Eqs. 22 back into Eq. 21, yields

F
strain,Q[�̃,�] = �

g2Q
4(c

11

� c
12

)

⇣
|�|2 + |�̃|2

⌘
. (24)

Thus, the coupling of the lattice degrees of freedom to the
quadrupolar moments results in renormalizing the mass
terms of the quadrupolar moments.
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where cB is the bulk modulus, ✏B ⌘ ✏xx + ✏yy + ✏zz is
the volume expansion of the crystal, ✏⌫ ⌘ (2✏zz � ✏xx �
✏yy)/

p
3 and ✏µ ⌘ (✏xx � ✏yy) are lattice strains that

transform as the �
3g irrep. of the Oh group, and the o↵-

diagonal strain components transform as the �
5g irrep. of

Oh group; here the subscript g indicates even under time-
reversal and spatial inversion (parity). We henceforth use
Eq. 19 for the cubic crystal’s elastic energy.

B. General expression for relative length change

The relative length change, �L/L, of the crystal can
be shown to be related to the components of the strain
tensor, as described in more detail in Appendix B. The
general expression of the length change along a direction
~l is
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=
3X

i,j=1

✏ij l̂i l̂j , (20)

where ✏ij ⌘ ⌃i,j
1

2

⇣
@ui

@xj
+ @uj

@xi

⌘
is the familiar strain ten-

sor, and l̂i is the ith component of unit vector l̂. For ease
of understanding the strain tensor, we use the conven-
tion that ✏

11

= ✏xx, ✏12 = ✏xy etc. We apply Eq. 20 to
particular length change directions in Sec. V.

IV. SYMMETRY ALLOWED COUPLING OF
MULTIPOLAR MOMENTS AND CUBIC

CRYSTAL NORMAL MODES

We now turn our attention to the problem of coupling
the lattice normal modes of the cubic crystal to the mul-
tipolar moments. We recall that the cubic crystal struc-
ture supports normal modes that transform as irreps. of
Oh, while the Landau free energy of the multipolar mo-
ments (F ) is constructed subject to the symmetries of
Td. The symmetry requirements in constructing F ensure
that any new terms (such as coupling of lattice strains to
the multipolar moments, or the lattice elastic energies)
added to F must be invariant under Td. Thus, only se-

lect normal modes of the crystal that transform as the
irreps. of Td are permitted to couple to the multipolar
moments in F . In the present case, all the cubic nor-
mal modes presented in Eq. 19 also transform as irreps.
under Td (as can be explicitly verified), and thus their as-
sociated lattice elastic energies (along with the couplings
discussed below) are admitted into F . In the next two
subsections, we consider the direct coupling of quadrupo-
lar moments to the cubic normal modes, and then tackle
the magnetic field assisted octupolar coupling to the lat-
tice normal modes.

A. Coupling of quadrupolar moment to lattice
strain

Coupling between the quadrupolar moments and the
lattice normal modes appears as a natural choice, as the
quadrupolar moments and the lattice strains are both
even under time-reversal. Moreover, both the normal
modes {✏µ, ✏⌫} and the quadrupolar moments {O

22
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}
transform as �

3g irreps. of Td (the aforementioned lat-
tice normal modes also transform as �

3g in Oh, as Td is a
subgroup of Oh). This similarity in how they transform
under Td allows a linear coupling between the aforesaid
lattice normal modes and quadrupolar moments. Thus,
the Landau free energy of the multipolar moments shown
in Eqs. 11, 17 gets augmented by the following lattice
elastic energy and coupling terms to quadrupolar mo-
ments,

F
strain,Q[�̃,�, ✏µ,⌫ ] =

c
11

� c
12

2

�
✏2µ,A + ✏2µ,B + ✏2⌫,A + ✏2⌫,B

�

� gQ [✏µ,Ah⌧xAi + ✏µ,Bh⌧xBi]
� gQ [✏⌫,Ah⌧yAi + ✏⌫,Bh⌧yBi] , (21)

where gQ is the coe�cient of coupling between the
quadrupolar moments and lattice strain tensors. Note
that we include the coupling of the lattice strain on each
sublattice to its corresponding quadrupole moment on
the same sublattice. Expressing this in terms of the AFQ
and FQ order parameters (�̃,�) using Eq. 10 and min-
imizing with respect to the lattice degrees of freedom
( �Fstrain,Q

�✏µ,A
etc.) yields the following set of equations

✏µ,A =
gQ

2(c
11

� c
12

)

⇣
|�| cos↵+ |�̃| cos ↵̃

⌘
,

✏µ,B =
gQ

2(c
11

� c
12

)

⇣
|�| cos↵ � |�̃| cos ↵̃

⌘
,

✏⌫,A =
gQ

2(c
11

� c
12

)

⇣
|�| sin↵+ |�̃| sin ↵̃

⌘
,

✏⌫,B =
gQ

2(c
11

� c
12

)

⇣
|�| sin↵ � |�̃| sin ↵̃

⌘
.

(22)

The total strain for each normal mode is thus

✏µ = ✏µ,A + ✏µ,B =
gQ

(c
11

� c
12

)
|�| cos↵ ,

✏⌫ = ✏⌫,A + ✏⌫,B =
gQ

(c
11

� c
12

)
|�| sin↵ ,

(23)

and substituting the expression for the minimized lattice
strains from Eqs. 22 back into Eq. 21, yields

F
strain,Q[�̃,�] = �

g2Q
4(c
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� c
12

)

⇣
|�|2 + |�̃|2

⌘
. (24)

Thus, the coupling of the lattice degrees of freedom to the
quadrupolar moments results in renormalizing the mass
terms of the quadrupolar moments.
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where cB is the bulk modulus, ✏B ⌘ ✏xx + ✏yy + ✏zz is
the volume expansion of the crystal, ✏⌫ ⌘ (2✏zz � ✏xx �
✏yy)/

p
3 and ✏µ ⌘ (✏xx � ✏yy) are lattice strains that

transform as the �
3g irrep. of the Oh group, and the o↵-

diagonal strain components transform as the �
5g irrep. of

Oh group; here the subscript g indicates even under time-
reversal and spatial inversion (parity). We henceforth use
Eq. 19 for the cubic crystal’s elastic energy.

B. General expression for relative length change

The relative length change, �L/L, of the crystal can
be shown to be related to the components of the strain
tensor, as described in more detail in Appendix B. The
general expression of the length change along a direction
~l is
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✏ij l̂i l̂j , (20)

where ✏ij ⌘ ⌃i,j
1

2

⇣
@ui

@xj
+ @uj

@xi

⌘
is the familiar strain ten-

sor, and l̂i is the ith component of unit vector l̂. For ease
of understanding the strain tensor, we use the conven-
tion that ✏

11

= ✏xx, ✏12 = ✏xy etc. We apply Eq. 20 to
particular length change directions in Sec. V.

IV. SYMMETRY ALLOWED COUPLING OF
MULTIPOLAR MOMENTS AND CUBIC

CRYSTAL NORMAL MODES

We now turn our attention to the problem of coupling
the lattice normal modes of the cubic crystal to the mul-
tipolar moments. We recall that the cubic crystal struc-
ture supports normal modes that transform as irreps. of
Oh, while the Landau free energy of the multipolar mo-
ments (F ) is constructed subject to the symmetries of
Td. The symmetry requirements in constructing F ensure
that any new terms (such as coupling of lattice strains to
the multipolar moments, or the lattice elastic energies)
added to F must be invariant under Td. Thus, only se-

lect normal modes of the crystal that transform as the
irreps. of Td are permitted to couple to the multipolar
moments in F . In the present case, all the cubic nor-
mal modes presented in Eq. 19 also transform as irreps.
under Td (as can be explicitly verified), and thus their as-
sociated lattice elastic energies (along with the couplings
discussed below) are admitted into F . In the next two
subsections, we consider the direct coupling of quadrupo-
lar moments to the cubic normal modes, and then tackle
the magnetic field assisted octupolar coupling to the lat-
tice normal modes.

A. Coupling of quadrupolar moment to lattice
strain

Coupling between the quadrupolar moments and the
lattice normal modes appears as a natural choice, as the
quadrupolar moments and the lattice strains are both
even under time-reversal. Moreover, both the normal
modes {✏µ, ✏⌫} and the quadrupolar moments {O
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}
transform as �

3g irreps. of Td (the aforementioned lat-
tice normal modes also transform as �

3g in Oh, as Td is a
subgroup of Oh). This similarity in how they transform
under Td allows a linear coupling between the aforesaid
lattice normal modes and quadrupolar moments. Thus,
the Landau free energy of the multipolar moments shown
in Eqs. 11, 17 gets augmented by the following lattice
elastic energy and coupling terms to quadrupolar mo-
ments,

F
strain,Q[�̃,�, ✏µ,⌫ ] =

c
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� c
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2

�
✏2µ,A + ✏2µ,B + ✏2⌫,A + ✏2⌫,B

�

� gQ [✏µ,Ah⌧xAi + ✏µ,Bh⌧xBi]
� gQ [✏⌫,Ah⌧yAi + ✏⌫,Bh⌧yBi] , (21)

where gQ is the coe�cient of coupling between the
quadrupolar moments and lattice strain tensors. Note
that we include the coupling of the lattice strain on each
sublattice to its corresponding quadrupole moment on
the same sublattice. Expressing this in terms of the AFQ
and FQ order parameters (�̃,�) using Eq. 10 and min-
imizing with respect to the lattice degrees of freedom
( �Fstrain,Q

�✏µ,A
etc.) yields the following set of equations
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The total strain for each normal mode is thus
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and substituting the expression for the minimized lattice
strains from Eqs. 22 back into Eq. 21, yields

F
strain,Q[�̃,�] = �
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Thus, the coupling of the lattice degrees of freedom to the
quadrupolar moments results in renormalizing the mass
terms of the quadrupolar moments.
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where cB is the bulk modulus, ✏B ⌘ ✏xx + ✏yy + ✏zz is
the volume expansion of the crystal, ✏⌫ ⌘ (2✏zz � ✏xx �
✏yy)/

p
3 and ✏µ ⌘ (✏xx � ✏yy) are lattice strains that

transform as the �
3g irrep. of the Oh group, and the o↵-

diagonal strain components transform as the �
5g irrep. of

Oh group; here the subscript g indicates even under time-
reversal and spatial inversion (parity). We henceforth use
Eq. 19 for the cubic crystal’s elastic energy.

B. General expression for relative length change

The relative length change, �L/L, of the crystal can
be shown to be related to the components of the strain
tensor, as described in more detail in Appendix B. The
general expression of the length change along a direction
~l is
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is the familiar strain ten-

sor, and l̂i is the ith component of unit vector l̂. For ease
of understanding the strain tensor, we use the conven-
tion that ✏
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= ✏xx, ✏12 = ✏xy etc. We apply Eq. 20 to
particular length change directions in Sec. V.

IV. SYMMETRY ALLOWED COUPLING OF
MULTIPOLAR MOMENTS AND CUBIC

CRYSTAL NORMAL MODES

We now turn our attention to the problem of coupling
the lattice normal modes of the cubic crystal to the mul-
tipolar moments. We recall that the cubic crystal struc-
ture supports normal modes that transform as irreps. of
Oh, while the Landau free energy of the multipolar mo-
ments (F ) is constructed subject to the symmetries of
Td. The symmetry requirements in constructing F ensure
that any new terms (such as coupling of lattice strains to
the multipolar moments, or the lattice elastic energies)
added to F must be invariant under Td. Thus, only se-

lect normal modes of the crystal that transform as the
irreps. of Td are permitted to couple to the multipolar
moments in F . In the present case, all the cubic nor-
mal modes presented in Eq. 19 also transform as irreps.
under Td (as can be explicitly verified), and thus their as-
sociated lattice elastic energies (along with the couplings
discussed below) are admitted into F . In the next two
subsections, we consider the direct coupling of quadrupo-
lar moments to the cubic normal modes, and then tackle
the magnetic field assisted octupolar coupling to the lat-
tice normal modes.

A. Coupling of quadrupolar moment to lattice
strain

Coupling between the quadrupolar moments and the
lattice normal modes appears as a natural choice, as the
quadrupolar moments and the lattice strains are both
even under time-reversal. Moreover, both the normal
modes {✏µ, ✏⌫} and the quadrupolar moments {O
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}
transform as �

3g irreps. of Td (the aforementioned lat-
tice normal modes also transform as �

3g in Oh, as Td is a
subgroup of Oh). This similarity in how they transform
under Td allows a linear coupling between the aforesaid
lattice normal modes and quadrupolar moments. Thus,
the Landau free energy of the multipolar moments shown
in Eqs. 11, 17 gets augmented by the following lattice
elastic energy and coupling terms to quadrupolar mo-
ments,

F
strain,Q[�̃,�, ✏µ,⌫ ] =
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2
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✏2µ,A + ✏2µ,B + ✏2⌫,A + ✏2⌫,B
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� gQ [✏µ,Ah⌧xAi + ✏µ,Bh⌧xBi]
� gQ [✏⌫,Ah⌧yAi + ✏⌫,Bh⌧yBi] , (21)

where gQ is the coe�cient of coupling between the
quadrupolar moments and lattice strain tensors. Note
that we include the coupling of the lattice strain on each
sublattice to its corresponding quadrupole moment on
the same sublattice. Expressing this in terms of the AFQ
and FQ order parameters (�̃,�) using Eq. 10 and min-
imizing with respect to the lattice degrees of freedom
( �Fstrain,Q

�✏µ,A
etc.) yields the following set of equations

✏µ,A =
gQ

2(c
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� c
12

)

⇣
|�| cos↵+ |�̃| cos ↵̃

⌘
,

✏µ,B =
gQ

2(c
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)
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⌘
,

✏⌫,A =
gQ

2(c
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� c
12

)

⇣
|�| sin↵+ |�̃| sin ↵̃

⌘
,

✏⌫,B =
gQ

2(c
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� c
12

)

⇣
|�| sin↵ � |�̃| sin ↵̃

⌘
.

(22)

The total strain for each normal mode is thus

✏µ = ✏µ,A + ✏µ,B =
gQ

(c
11

� c
12

)
|�| cos↵ ,

✏⌫ = ✏⌫,A + ✏⌫,B =
gQ

(c
11

� c
12

)
|�| sin↵ ,

(23)

and substituting the expression for the minimized lattice
strains from Eqs. 22 back into Eq. 21, yields

F
strain,Q[�̃,�] = �

g2Q
4(c

11

� c
12

)

⇣
|�|2 + |�̃|2

⌘
. (24)

Thus, the coupling of the lattice degrees of freedom to the
quadrupolar moments results in renormalizing the mass
terms of the quadrupolar moments.
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where cB is the bulk modulus, ✏B ⌘ ✏xx + ✏yy + ✏zz is
the volume expansion of the crystal, ✏⌫ ⌘ (2✏zz � ✏xx �
✏yy)/

p
3 and ✏µ ⌘ (✏xx � ✏yy) are lattice strains that

transform as the �
3g irrep. of the Oh group, and the o↵-

diagonal strain components transform as the �
5g irrep. of

Oh group; here the subscript g indicates even under time-
reversal and spatial inversion (parity). We henceforth use
Eq. 19 for the cubic crystal’s elastic energy.

B. General expression for relative length change

The relative length change, �L/L, of the crystal can
be shown to be related to the components of the strain
tensor, as described in more detail in Appendix B. The
general expression of the length change along a direction
~l is
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~l

=
3X

i,j=1

✏ij l̂i l̂j , (20)

where ✏ij ⌘ ⌃i,j
1

2

⇣
@ui

@xj
+ @uj

@xi

⌘
is the familiar strain ten-

sor, and l̂i is the ith component of unit vector l̂. For ease
of understanding the strain tensor, we use the conven-
tion that ✏

11

= ✏xx, ✏12 = ✏xy etc. We apply Eq. 20 to
particular length change directions in Sec. V.

IV. SYMMETRY ALLOWED COUPLING OF
MULTIPOLAR MOMENTS AND CUBIC

CRYSTAL NORMAL MODES

We now turn our attention to the problem of coupling
the lattice normal modes of the cubic crystal to the mul-
tipolar moments. We recall that the cubic crystal struc-
ture supports normal modes that transform as irreps. of
Oh, while the Landau free energy of the multipolar mo-
ments (F ) is constructed subject to the symmetries of
Td. The symmetry requirements in constructing F ensure
that any new terms (such as coupling of lattice strains to
the multipolar moments, or the lattice elastic energies)
added to F must be invariant under Td. Thus, only se-

lect normal modes of the crystal that transform as the
irreps. of Td are permitted to couple to the multipolar
moments in F . In the present case, all the cubic nor-
mal modes presented in Eq. 19 also transform as irreps.
under Td (as can be explicitly verified), and thus their as-
sociated lattice elastic energies (along with the couplings
discussed below) are admitted into F . In the next two
subsections, we consider the direct coupling of quadrupo-
lar moments to the cubic normal modes, and then tackle
the magnetic field assisted octupolar coupling to the lat-
tice normal modes.

A. Coupling of quadrupolar moment to lattice
strain

Coupling between the quadrupolar moments and the
lattice normal modes appears as a natural choice, as the
quadrupolar moments and the lattice strains are both
even under time-reversal. Moreover, both the normal
modes {✏µ, ✏⌫} and the quadrupolar moments {O

22

,O
20

}
transform as �

3g irreps. of Td (the aforementioned lat-
tice normal modes also transform as �

3g in Oh, as Td is a
subgroup of Oh). This similarity in how they transform
under Td allows a linear coupling between the aforesaid
lattice normal modes and quadrupolar moments. Thus,
the Landau free energy of the multipolar moments shown
in Eqs. 11, 17 gets augmented by the following lattice
elastic energy and coupling terms to quadrupolar mo-
ments,

F
strain,Q[�̃,�, ✏µ,⌫ ] =

c
11

� c
12

2

�
✏2µ,A + ✏2µ,B + ✏2⌫,A + ✏2⌫,B

�

� gQ [✏µ,Ah⌧xAi + ✏µ,Bh⌧xBi]
� gQ [✏⌫,Ah⌧yAi + ✏⌫,Bh⌧yBi] , (21)

where gQ is the coe�cient of coupling between the
quadrupolar moments and lattice strain tensors. Note
that we include the coupling of the lattice strain on each
sublattice to its corresponding quadrupole moment on
the same sublattice. Expressing this in terms of the AFQ
and FQ order parameters (�̃,�) using Eq. 10 and min-
imizing with respect to the lattice degrees of freedom
( �Fstrain,Q

�✏µ,A
etc.) yields the following set of equations

✏µ,A =
gQ

2(c
11

� c
12

)

⇣
|�| cos↵+ |�̃| cos ↵̃

⌘
,

✏µ,B =
gQ

2(c
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)
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⌘
,

✏⌫,A =
gQ

2(c
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� c
12

)

⇣
|�| sin↵+ |�̃| sin ↵̃

⌘
,

✏⌫,B =
gQ

2(c
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� c
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)
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|�| sin↵ � |�̃| sin ↵̃

⌘
.

(22)

The total strain for each normal mode is thus

✏µ = ✏µ,A + ✏µ,B =
gQ

(c
11

� c
12

)
|�| cos↵ ,

✏⌫ = ✏⌫,A + ✏⌫,B =
gQ

(c
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� c
12

)
|�| sin↵ ,

(23)

and substituting the expression for the minimized lattice
strains from Eqs. 22 back into Eq. 21, yields

F
strain,Q[�̃,�] = �

g2Q
4(c

11

� c
12

)

⇣
|�|2 + |�̃|2

⌘
. (24)

Thus, the coupling of the lattice degrees of freedom to the
quadrupolar moments results in renormalizing the mass
terms of the quadrupolar moments.
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where cB is the bulk modulus, ✏B ⌘ ✏xx + ✏yy + ✏zz is
the volume expansion of the crystal, ✏⌫ ⌘ (2✏zz � ✏xx �
✏yy)/

p
3 and ✏µ ⌘ (✏xx � ✏yy) are lattice strains that

transform as the �
3g irrep. of the Oh group, and the o↵-

diagonal strain components transform as the �
5g irrep. of

Oh group; here the subscript g indicates even under time-
reversal and spatial inversion (parity). We henceforth use
Eq. 19 for the cubic crystal’s elastic energy.

B. General expression for relative length change

The relative length change, �L/L, of the crystal can
be shown to be related to the components of the strain
tensor, as described in more detail in Appendix B. The
general expression of the length change along a direction
~l is
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✏ij l̂i l̂j , (20)

where ✏ij ⌘ ⌃i,j
1
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⇣
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@xj
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@xi

⌘
is the familiar strain ten-

sor, and l̂i is the ith component of unit vector l̂. For ease
of understanding the strain tensor, we use the conven-
tion that ✏

11

= ✏xx, ✏12 = ✏xy etc. We apply Eq. 20 to
particular length change directions in Sec. V.

IV. SYMMETRY ALLOWED COUPLING OF
MULTIPOLAR MOMENTS AND CUBIC

CRYSTAL NORMAL MODES

We now turn our attention to the problem of coupling
the lattice normal modes of the cubic crystal to the mul-
tipolar moments. We recall that the cubic crystal struc-
ture supports normal modes that transform as irreps. of
Oh, while the Landau free energy of the multipolar mo-
ments (F ) is constructed subject to the symmetries of
Td. The symmetry requirements in constructing F ensure
that any new terms (such as coupling of lattice strains to
the multipolar moments, or the lattice elastic energies)
added to F must be invariant under Td. Thus, only se-

lect normal modes of the crystal that transform as the
irreps. of Td are permitted to couple to the multipolar
moments in F . In the present case, all the cubic nor-
mal modes presented in Eq. 19 also transform as irreps.
under Td (as can be explicitly verified), and thus their as-
sociated lattice elastic energies (along with the couplings
discussed below) are admitted into F . In the next two
subsections, we consider the direct coupling of quadrupo-
lar moments to the cubic normal modes, and then tackle
the magnetic field assisted octupolar coupling to the lat-
tice normal modes.

A. Coupling of quadrupolar moment to lattice
strain

Coupling between the quadrupolar moments and the
lattice normal modes appears as a natural choice, as the
quadrupolar moments and the lattice strains are both
even under time-reversal. Moreover, both the normal
modes {✏µ, ✏⌫} and the quadrupolar moments {O

22

,O
20

}
transform as �

3g irreps. of Td (the aforementioned lat-
tice normal modes also transform as �

3g in Oh, as Td is a
subgroup of Oh). This similarity in how they transform
under Td allows a linear coupling between the aforesaid
lattice normal modes and quadrupolar moments. Thus,
the Landau free energy of the multipolar moments shown
in Eqs. 11, 17 gets augmented by the following lattice
elastic energy and coupling terms to quadrupolar mo-
ments,

F
strain,Q[�̃,�, ✏µ,⌫ ] =

c
11

� c
12

2

�
✏2µ,A + ✏2µ,B + ✏2⌫,A + ✏2⌫,B

�

� gQ [✏µ,Ah⌧xAi + ✏µ,Bh⌧xBi]
� gQ [✏⌫,Ah⌧yAi + ✏⌫,Bh⌧yBi] , (21)

where gQ is the coe�cient of coupling between the
quadrupolar moments and lattice strain tensors. Note
that we include the coupling of the lattice strain on each
sublattice to its corresponding quadrupole moment on
the same sublattice. Expressing this in terms of the AFQ
and FQ order parameters (�̃,�) using Eq. 10 and min-
imizing with respect to the lattice degrees of freedom
( �Fstrain,Q

�✏µ,A
etc.) yields the following set of equations

✏µ,A =
gQ

2(c
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� c
12

)

⇣
|�| cos↵+ |�̃| cos ↵̃

⌘
,

✏µ,B =
gQ
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)
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⌘
,
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2(c
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� c
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)
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⌘
,
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2(c
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)
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⌘
.

(22)

The total strain for each normal mode is thus

✏µ = ✏µ,A + ✏µ,B =
gQ

(c
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12

)
|�| cos↵ ,

✏⌫ = ✏⌫,A + ✏⌫,B =
gQ

(c
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)
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(23)

and substituting the expression for the minimized lattice
strains from Eqs. 22 back into Eq. 21, yields

F
strain,Q[�̃,�] = �

g2Q
4(c

11

� c
12

)

⇣
|�|2 + |�̃|2

⌘
. (24)

Thus, the coupling of the lattice degrees of freedom to the
quadrupolar moments results in renormalizing the mass
terms of the quadrupolar moments.

Example:
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TABLE II. Scaling relation for relative length change of system �L/L~l along direction ~l for magnetic field applied along n̂
direction. For each n̂, we present the length change parallel and (the two) perpendicular directions with respect to n̂. FQ
moment is expressed as |�| = �

�0 + �hh
2
�
due to the even-in-h behaviour of the quadrupolar moment [described in main text].

�0,h are constants that arise from the parasitic FQ moment and are thus diminutive, as compared to the conduction electrons’
term (⇠ �/c44). The complex-angle (↵) dependent parts of Eq. 29 are included in the definition of the quadrupolar–lattice
strain coupling, gQ; the exact form of the complex angle term can be inferred from consulting Eq. 29 for the appropriate n̂

and ~l directions. The octupolar–lattice strain coupling is denoted by gO.

Magnetic field �L/L~l scaling
~h = h · n̂ ~l T > TQ, TO TO < T < TQ T < TQ, TO

n̂ = [100]

~l = (1, 0, 0) (gQ�h)h
2 gQ�0 + (gQ�h)h

2 gQ�0 + (gQ�h)h
2

~l = (0, 1,±1) (gQ�h)h
2 gQ�0 + (gQ�h)h

2 gQ�0 ±
⇣

gO
c44

m
⌘
h+ (gQ�h)h

2

n̂ = 1p
2
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⇣

�
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where we use the definition of the normal modes in-
troduced in Eq. 19, and define gQ ⌘ gQp

3(c11�c12)
(...),

wherein (...) includes the complex-angle dependent terms
in Eq. 29. The exact form of which complex angle term is

included ( sin(↵)

2

p
3(c11�c12)

or sin(↵)�p
3 cos(↵)

2

p
3(c11�c12)

) can be inferred

from context i.e. the direction of length change exam-
ined ~l under particular magnetic field direction n̂. The
parasitic FQ moment as |�| =

�
�
0

+ �hh2

�
due to the

even in-in-h behaviour of the quadrupolar moment [as
described later in the main text]. The constant (�

0

) and

quadratic (�h) scaling-coe�cients depend on the value of
the Landau parameters as well as the temperature being
probed; the quantitative value is thus not of great impor-
tance for the scaling behaviour. The key point to retain
is that the value of these coe�cients is small as com-
pared to the conduction electron generated terms (⇠ �),
reflecting the weak, parasitic nature of the FQ moment.
We present in Table II the scaling behaviours of length
change parallel and perpendicular to the three primary
magnetic field directions.

The conclusions that can be drawn from Eq. 29 and
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Predictions for different magnetic field directions 
+ different directions of length changes

Sign change !

5

TABLE I. Scaling relation for relative length change of system �L/L~̀ along direction ~̀ for magnetic field applied along n̂
direction. For each n̂, we present the length change parallel and (the two) perpendicular directions with respect to n̂. The FQ
moment term is expressed as gQ|�| ⌘ �

�
1,2 + 

1,2h
2

�
due to the even-in-h behaviour of the quadrupolar moment, where �

1,2

is the zero-magnetic field quadrupolar moment which arises due to AFQ spontaneously ordering. Here, the two types of gQ
(and 

1,2, �1,2) include the complex angle dependent parts (↵) and the quadrupolar–lattice strain coupling, as described in SI
E. Since �

1,2,1,2 arise from the parasitic FQ moment, they are diminutive, as compared to the conduction electrons’ term
(� ⌘ �c/c44). M ⌘ gO

c44
m is a re-defined octupolar moment, including the octupolar–lattice strain coupling.
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This equation has a striking conclusion as it pertains to
observing hidden order. The mysterious octupolar mo-
ment can now be determined (up to a proportionality
constant) by measuring the slope of the linear-in-h be-
haviour of the length change both parallel and perpen-
dicular to magnetic fields applied along the [111] direc-
tion. This provides a clear signature for the onset of the
octupolar ordering as well as a means to study the gen-
eral behaviour of the octupolar moment (up to a propor-
tionality constant) with respect to other external vari-
ables such as temperature, T . Moreover, we discover
that length change parallel to the magnetic field along
[111] has (negative) twice the slope of the linear-in-h
term and (negative) twice the quadratic background as

the length changes perpendicular ~̀= (1,�1, 0), (1, 1,�2)
to the field [111]. This provides a distinct verification as
to the validity of the theory.

Next, for magnetic fields along the [110] direction,

we find that the length changes parallel, ~̀ = (1, 1, 0),

and perpendicular, ~̀ = (1,�1, 1), (�1, 1, 2), to the field
are purely quadratic-in-h and do not possess a linear-
in-h scaling behaviour. Thus, these length changes (for

this choice of magnetic field) do not provide informa-
tion about the octupolar moment; the quadratic in h be-
haviour arises from the conduction electrons and/or the
quadrupolar moment. We provide in SI D a justification
of the scaling behaviours of the multipolar moments, and
in SI E the corresponding general length change expres-
sions.

We note that the scaling behaviours presented here and
in SI E neglect the cubic-in-h coupling, which breaks the
Z
2

symmetry (m $ �m) of the octupolar moment. This
introduces a ‘flip’ in the octupolar moment at h = 0
(and at T < TO where m has spontaneously ordered i.e.
m 6= 0): for h = 0+, the +|m| solution is ‘chosen’, and as
we crossover to h = 0�, the now physically distinct �|m|
solution is ‘chosen’ (this is seen in Fig. 2). A similar
phenomena is observed in usual ferromagnetism, below
the ordering temperature.

5

TABLE I. Scaling relation for relative length change of system �L/L~̀ along direction ~̀ for magnetic field applied along n̂
direction. For each n̂, we present the length change parallel and (the two) perpendicular directions with respect to n̂. The FQ
moment term is expressed as gQ|�| ⌘ �

�
1,2 + 

1,2h
2

�
due to the even-in-h behaviour of the quadrupolar moment, where �

1,2

is the zero-magnetic field quadrupolar moment which arises due to AFQ spontaneously ordering. Here, the two types of gQ
(and 

1,2, �1,2) include the complex angle dependent parts (↵) and the quadrupolar–lattice strain coupling, as described in SI
E. Since �

1,2,1,2 arise from the parasitic FQ moment, they are diminutive, as compared to the conduction electrons’ term
(� ⌘ �c/c44). M ⌘ gO

c44
m is a re-defined octupolar moment, including the octupolar–lattice strain coupling.

Magnetic field �L/L~̀ scaling
~h = h n̂ ~̀ T > TQ, TO TO < T < TQ T < TQ, TO

n̂ = [100]

~̀= (1, 0, 0) 
1

h2 �
1

+ 
1

h2 �
1

+ 
1

h2

~̀= (0, 1,±1) 
1

h2 �
1

+ 
1

h2 �
1

±Mh+ 
1

h2

n̂ = 1p
2

[110]

~̀= (1, 1, 0) 1

2

�h2 + 1

2


2

h2 �
2

+ 1

2

�h2 + 1

2


2

h2 �
2

+ 1

2

�h2 + 1

2


2

h2

~̀= (1,�1, 1) � 1

3

�h2 � 1

3

�h2 � 1

3

�h2

~̀= (�1, 1, 2) � 1

6

�h2 + 1

2


2

h2 �
2

� 1

6

�h2 + 1

2


2

h2 �
2

� 1

6

�h2 + 1

2


2

h2

n̂ = 1p
3

[111]

~̀= (1, 1, 1) 2

3

�h2

2

3

�h2

2p
3

Mh+ 2

3

�h2

~̀= (1,�1, 0) � 1

3

�h2 + 1

3


2

h2 �
2

� 1

3

�h2 + 1

3


2

h2 �
2

� 1p
3

Mh� 1

3

�h2 + 1

3


2

h2

~̀= (1, 1,�2)

it requires length change expressions that are not along
purely the crystal axes [100], [010], [001]. We summarize

the key results in Table I. Taking the example of length
changes along the (1,±1, 1) direction we have

✓
�L

L

◆

(1,±1,1)

=
✏B
3

+
2 (±✏xy ± ✏yz + ✏xz)

3
=

1

3
✏B +

2gOm
3c

44

[±hz ± hx + hy] +
2�

3c
44

[±hxhy ± hyhz + hxhz] . (8)

This equation has a striking conclusion as it pertains to
observing hidden order. The mysterious octupolar mo-
ment can now be determined (up to a proportionality
constant) by measuring the slope of the linear-in-h be-
haviour of the length change both parallel and perpen-
dicular to magnetic fields applied along the [111] direc-
tion. This provides a clear signature for the onset of the
octupolar ordering as well as a means to study the gen-
eral behaviour of the octupolar moment (up to a propor-
tionality constant) with respect to other external vari-
ables such as temperature, T . Moreover, we discover
that length change parallel to the magnetic field along
[111] has (negative) twice the slope of the linear-in-h
term and (negative) twice the quadratic background as

the length changes perpendicular ~̀= (1,�1, 0), (1, 1,�2)
to the field [111]. This provides a distinct verification as
to the validity of the theory.

Next, for magnetic fields along the [110] direction,

we find that the length changes parallel, ~̀ = (1, 1, 0),

and perpendicular, ~̀ = (1,�1, 1), (�1, 1, 2), to the field
are purely quadratic-in-h and do not possess a linear-
in-h scaling behaviour. Thus, these length changes (for

this choice of magnetic field) do not provide informa-
tion about the octupolar moment; the quadratic in h be-
haviour arises from the conduction electrons and/or the
quadrupolar moment. We provide in SI D a justification
of the scaling behaviours of the multipolar moments, and
in SI E the corresponding general length change expres-
sions.

We note that the scaling behaviours presented here and
in SI E neglect the cubic-in-h coupling, which breaks the
Z
2

symmetry (m $ �m) of the octupolar moment. This
introduces a ‘flip’ in the octupolar moment at h = 0
(and at T < TO where m has spontaneously ordered i.e.
m 6= 0): for h = 0+, the +|m| solution is ‘chosen’, and as
we crossover to h = 0�, the now physically distinct �|m|
solution is ‘chosen’ (this is seen in Fig. 2). A similar
phenomena is observed in usual ferromagnetism, below
the ordering temperature.

5

TABLE I. Scaling relation for relative length change of system �L/L~̀ along direction ~̀ for magnetic field applied along n̂
direction. For each n̂, we present the length change parallel and (the two) perpendicular directions with respect to n̂. The FQ
moment term is expressed as gQ|�| ⌘ �

�
1,2 + 

1,2h
2

�
due to the even-in-h behaviour of the quadrupolar moment, where �

1,2

is the zero-magnetic field quadrupolar moment which arises due to AFQ spontaneously ordering. Here, the two types of gQ
(and 

1,2, �1,2) include the complex angle dependent parts (↵) and the quadrupolar–lattice strain coupling, as described in SI
E. Since �

1,2,1,2 arise from the parasitic FQ moment, they are diminutive, as compared to the conduction electrons’ term
(� ⌘ �c/c44). M ⌘ gO

c44
m is a re-defined octupolar moment, including the octupolar–lattice strain coupling.

Magnetic field �L/L~̀ scaling
~h = h n̂ ~̀ T > TQ, TO TO < T < TQ T < TQ, TO

n̂ = [100]

~̀= (1, 0, 0) 
1

h2 �
1

+ 
1

h2 �
1

+ 
1

h2

~̀= (0, 1,±1) 
1

h2 �
1

+ 
1

h2 �
1

±Mh+ 
1

h2

n̂ = 1p
2

[110]

~̀= (1, 1, 0) 1

2

�h2 + 1

2


2

h2 �
2

+ 1

2

�h2 + 1

2


2

h2 �
2

+ 1

2

�h2 + 1

2


2

h2

~̀= (1,�1, 1) � 1

3

�h2 � 1

3

�h2 � 1

3

�h2

~̀= (�1, 1, 2) � 1

6

�h2 + 1

2


2

h2 �
2

� 1

6

�h2 + 1

2


2

h2 �
2

� 1

6

�h2 + 1

2


2

h2

n̂ = 1p
3

[111]

~̀= (1, 1, 1) 2

3

�h2

2

3

�h2

2p
3

Mh+ 2

3

�h2

~̀= (1,�1, 0) � 1

3

�h2 + 1

3


2

h2 �
2

� 1

3

�h2 + 1

3


2

h2 �
2

� 1p
3

Mh� 1

3

�h2 + 1

3


2

h2

~̀= (1, 1,�2)

it requires length change expressions that are not along
purely the crystal axes [100], [010], [001]. We summarize

the key results in Table I. Taking the example of length
changes along the (1,±1, 1) direction we have

✓
�L

L

◆

(1,±1,1)

=
✏B
3

+
2 (±✏xy ± ✏yz + ✏xz)

3
=

1

3
✏B +

2gOm
3c

44

[±hz ± hx + hy] +
2�

3c
44

[±hxhy ± hyhz + hxhz] . (8)

This equation has a striking conclusion as it pertains to
observing hidden order. The mysterious octupolar mo-
ment can now be determined (up to a proportionality
constant) by measuring the slope of the linear-in-h be-
haviour of the length change both parallel and perpen-
dicular to magnetic fields applied along the [111] direc-
tion. This provides a clear signature for the onset of the
octupolar ordering as well as a means to study the gen-
eral behaviour of the octupolar moment (up to a propor-
tionality constant) with respect to other external vari-
ables such as temperature, T . Moreover, we discover
that length change parallel to the magnetic field along
[111] has (negative) twice the slope of the linear-in-h
term and (negative) twice the quadratic background as

the length changes perpendicular ~̀= (1,�1, 0), (1, 1,�2)
to the field [111]. This provides a distinct verification as
to the validity of the theory.

Next, for magnetic fields along the [110] direction,

we find that the length changes parallel, ~̀ = (1, 1, 0),

and perpendicular, ~̀ = (1,�1, 1), (�1, 1, 2), to the field
are purely quadratic-in-h and do not possess a linear-
in-h scaling behaviour. Thus, these length changes (for

this choice of magnetic field) do not provide informa-
tion about the octupolar moment; the quadratic in h be-
haviour arises from the conduction electrons and/or the
quadrupolar moment. We provide in SI D a justification
of the scaling behaviours of the multipolar moments, and
in SI E the corresponding general length change expres-
sions.

We note that the scaling behaviours presented here and
in SI E neglect the cubic-in-h coupling, which breaks the
Z
2

symmetry (m $ �m) of the octupolar moment. This
introduces a ‘flip’ in the octupolar moment at h = 0
(and at T < TO where m has spontaneously ordered i.e.
m 6= 0): for h = 0+, the +|m| solution is ‘chosen’, and as
we crossover to h = 0�, the now physically distinct �|m|
solution is ‘chosen’ (this is seen in Fig. 2). A similar
phenomena is observed in usual ferromagnetism, below
the ordering temperature.

5

TABLE I. Scaling relation for relative length change of system �L/L~̀ along direction ~̀ for magnetic field applied along n̂
direction. For each n̂, we present the length change parallel and (the two) perpendicular directions with respect to n̂. The FQ
moment term is expressed as gQ|�| ⌘ �

�
1,2 + 

1,2h
2

�
due to the even-in-h behaviour of the quadrupolar moment, where �

1,2

is the zero-magnetic field quadrupolar moment which arises due to AFQ spontaneously ordering. Here, the two types of gQ
(and 

1,2, �1,2) include the complex angle dependent parts (↵) and the quadrupolar–lattice strain coupling, as described in SI
E. Since �

1,2,1,2 arise from the parasitic FQ moment, they are diminutive, as compared to the conduction electrons’ term
(� ⌘ �c/c44). M ⌘ gO

c44
m is a re-defined octupolar moment, including the octupolar–lattice strain coupling.

Magnetic field �L/L~̀ scaling
~h = h n̂ ~̀ T > TQ, TO TO < T < TQ T < TQ, TO

n̂ = [100]

~̀= (1, 0, 0) 
1

h2 �
1

+ 
1

h2 �
1

+ 
1

h2

~̀= (0, 1,±1) 
1

h2 �
1

+ 
1

h2 �
1

±Mh+ 
1

h2

n̂ = 1p
2

[110]

~̀= (1, 1, 0) 1

2

�h2 + 1

2


2

h2 �
2

+ 1

2

�h2 + 1

2


2

h2 �
2

+ 1

2

�h2 + 1

2


2

h2

~̀= (1,�1, 1) � 1

3

�h2 � 1

3

�h2 � 1

3

�h2

~̀= (�1, 1, 2) � 1

6

�h2 + 1

2


2

h2 �
2

� 1

6

�h2 + 1

2


2

h2 �
2

� 1

6

�h2 + 1

2


2

h2

n̂ = 1p
3

[111]

~̀= (1, 1, 1) 2

3

�h2

2

3

�h2

2p
3

Mh+ 2

3

�h2

~̀= (1,�1, 0) � 1

3

�h2 + 1

3


2

h2 �
2

� 1

3

�h2 + 1

3


2

h2 �
2

� 1p
3

Mh� 1

3

�h2 + 1

3


2

h2

~̀= (1, 1,�2)

it requires length change expressions that are not along
purely the crystal axes [100], [010], [001]. We summarize

the key results in Table I. Taking the example of length
changes along the (1,±1, 1) direction we have

✓
�L

L

◆

(1,±1,1)

=
✏B
3

+
2 (±✏xy ± ✏yz + ✏xz)

3
=

1

3
✏B +

2gOm
3c

44

[±hz ± hx + hy] +
2�

3c
44

[±hxhy ± hyhz + hxhz] . (8)

This equation has a striking conclusion as it pertains to
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ment can now be determined (up to a proportionality
constant) by measuring the slope of the linear-in-h be-
haviour of the length change both parallel and perpen-
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introduces a ‘flip’ in the octupolar moment at h = 0
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This equation has a striking conclusion as it pertains to
observing hidden order. The mysterious octupolar mo-
ment can now be determined (up to a proportionality
constant) by measuring the slope of the linear-in-h be-
haviour of the length change both parallel and perpen-
dicular to magnetic fields applied along the [111] direc-
tion. This provides a clear signature for the onset of the
octupolar ordering as well as a means to study the gen-
eral behaviour of the octupolar moment (up to a propor-
tionality constant) with respect to other external vari-
ables such as temperature, T . Moreover, we discover
that length change parallel to the magnetic field along
[111] has (negative) twice the slope of the linear-in-h
term and (negative) twice the quadratic background as

the length changes perpendicular ~̀= (1,�1, 0), (1, 1,�2)
to the field [111]. This provides a distinct verification as
to the validity of the theory.

Next, for magnetic fields along the [110] direction,

we find that the length changes parallel, ~̀ = (1, 1, 0),

and perpendicular, ~̀ = (1,�1, 1), (�1, 1, 2), to the field
are purely quadratic-in-h and do not possess a linear-
in-h scaling behaviour. Thus, these length changes (for

this choice of magnetic field) do not provide informa-
tion about the octupolar moment; the quadratic in h be-
haviour arises from the conduction electrons and/or the
quadrupolar moment. We provide in SI D a justification
of the scaling behaviours of the multipolar moments, and
in SI E the corresponding general length change expres-
sions.

We note that the scaling behaviours presented here and
in SI E neglect the cubic-in-h coupling, which breaks the
Z
2

symmetry (m $ �m) of the octupolar moment. This
introduces a ‘flip’ in the octupolar moment at h = 0
(and at T < TO where m has spontaneously ordered i.e.
m 6= 0): for h = 0+, the +|m| solution is ‘chosen’, and as
we crossover to h = 0�, the now physically distinct �|m|
solution is ‘chosen’ (this is seen in Fig. 2). A similar
phenomena is observed in usual ferromagnetism, below
the ordering temperature.
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Assume conduction electrons are mostly from 16 Al cage

For simplicity and symmetry reasons, we work with
E (eg molecular orbitals) and T2 (p molecular orbitals)

How to model conduction electrons ?

Local symmetry around Pr ion is Td

Molecular orbitals can be classified  
in terms of  

irreducible representation of Td

(Start) t d u s
Al # #Al1st n.n. #Al2nd n.n. #Al3rd n.n. #Al4th n.n.
1 ! 2, 8, 9 13, 16 3, 7, 10, 11 15
2 ! 1, 3, 10 13, 16 4, 8, 9, 12 14
3 ! 2, 4, 10 13, 14 1, 5, 11, 12 16
4 ! 3, 5, 11 13, 14 2, 6, 9, 10 15
5 ! 4, 6, 11 14, 15 3, 7, 9, 12 13
6 ! 5, 7, 12 14, 15 4, 8, 10, 11 16
7 ! 6, 8, 12 15, 16 1, 5, 9, 10 14
8 ! 1, 7, 9 15, 16 2, 6, 11, 12 13
9 ! 1, 8, 11 13, 15 2, 4, 5, 7 16
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Kondo coupling in E-representation (eg-orbital)

“Famous” two-channel Kondo model (Dan Cox)

9 eg only Model

If we were to just consider the eg model solely, we have the following Hamiltonian,
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and the corresponding flow equations,
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d lnD
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From which we have the following fixed points/lines:

(JQ, JO) = (0, 0) or [(JQ, J̃O) = (0, 0)] (78)

(JQ, JO) = (1/2,�1/2) or [(JQ, J̃O) = (1/2, 1/2)] (79)

(JQ, JO) = (�1/2,�1/2) or [(JQ, J̃O) = (�1/2, 1/2)] (80)

JQ = 0, JO 6= 0 [J̃O 6= 0] (81)

We present here the corresponding flow diagrams (Up-Down-basis on the left, and �-basis on the
right).

Orbital fluctuations Spectator Spin: two channels
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eg ORBITAL KONDO MODEL: TWO-CHANNEL KONDO MODEL

We first consider conduction electrons residing in the eg orbitals. The form of the Kondo coupling to the multipolar

moments is constrained by the local Td symmetry imposed by the FK cage; we detail in SI III the manner in which

the multipolar moments and the conduction electron degrees of freedom transform under the generating elements of

Td. The symmetry-permitted coupling is of the form,

H
eg
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where repeated Latin (Greek) indices are implicit summations over orbital (spin) degrees of freedom, and ⌧ is the

usual spin-1/2 Pauli matrix describing the eg orbital degree of freedom
�
x2 � y2, 2z2 � x2 � y2

 
as listed in SI IV.

The eg orbitals introduce two Kondo couplings: quadrupolar JQ and octupolar JO. We note that the coupling in Eq.

2 has precisely the same form as the two-channel Kondo model, where here the conduction electron spin plays the role

of a channel index. Although the sign structure in Eq. 2 may seem dissimilar to the usual two-channel Kondo model,

this is merely an artifact of the choice of multipolar basis; a unitary transformation of the multipolar moments’ basis

allows the familiar form to be recovered.

Performing the perturbative renormalization group analysis of the vertex function described in Methods A, we

obtain the following � functions for the coupling constants,

dJQ
d lnD

= 2JQJO + 2JQ
�
J2

Q + J2

O

�
,

dJO
d lnD

= 2J2

Q + 4JOJ
2

Q, (3)

whose fixed points are the decoupled Gaussian fixed point G⇤ ⌘ (JQ = JO = 0), and non-trivial fixed points

e⇤g± ⌘ (JQ, JO) = (±1/2,�1/2). e⇤g± are known as the Nozières fixed points, which were found in perturbative RG

computations of the two-channel Kondo model35. We also obtain a line of fixed points characterized by JQ = 0, JO 6= 0.

The Gaussian fixed point is saddle-like (one relevant and one irrelevant eigendirections), while the fixed line has regions

where the nearby flow is attractive (JO > 0) and repulsive (JO < 0). We present the RG flow diagram in SI V. The

non-trivial fixed points are related to each other by the transformation of Sx,y ! �Sx,y; this transformation preserves

the canonical commutation rules for the pseudospin-1/2 operators. The � function and the characteristics of the fixed

points/lines are precisely the same as the usual two-channel Kondo model. This leads to the same physical behaviour

and exponents, as will be discussed.

p ORBITAL KONDO MODEL

We now turn to the problem of coupling p orbital conduction electrons to the local moments. Due to the lack of

familiarity with this model, we first discuss the Hamiltonian in more detail, and then turn to the RG equations. The

symmetry allowed couplings are of the form,

Hp
Q1

= KQ1

X

j

c†j,a,↵

"
Sx
j �

0

↵� ⌦ �x2�y2

ab � Sy
jp
3
�0

↵� ⌦ �2z2�x2�y2

ab

#
cj,b,� ,

Hp
O = KO

X

j

Sz
j c

†
j,a,↵

h
�x
↵� ⌦ �yz,r

ab + �y
↵� ⌦ �xz,r

ab + �z
↵� ⌦ �xy,r

ab

i
cj,b,� , (4)

Hp
Q2

= KQ2

X

j

c†j,a,↵

h⇣p
3Sx

j � Sy
j

⌘
�x
↵� ⌦ �yz,i

ab +
⇣p

3Sx
j + Sy

j

⌘
�y
↵� ⌦ �xz,i

ab + 2Sy
j �

z
↵� ⌦ �xy,i

ab

i
cj,b,� ,

3

eg ORBITAL KONDO MODEL: TWO-CHANNEL KONDO MODEL

We first consider conduction electrons residing in the eg orbitals. The form of the Kondo coupling to the multipolar

moments is constrained by the local Td symmetry imposed by the FK cage; we detail in SI III the manner in which

the multipolar moments and the conduction electron degrees of freedom transform under the generating elements of

Td. The symmetry-permitted coupling is of the form,

H
eg
Q = JQ

X

j

c†j,a,↵
⇥
Sx
j �

0

↵� ⌦ ⌧xab � Sy
j �

0

↵� ⌦ ⌧zab
⇤
cj,b,� ,

H
eg
O = �JO

X

j

Sz
j c

†
j,a,↵

⇥
�0

↵� ⌦ ⌧yab
⇤
cj,b,� , (2)

where repeated Latin (Greek) indices are implicit summations over orbital (spin) degrees of freedom, and ⌧ is the

usual spin-1/2 Pauli matrix describing the eg orbital degree of freedom
�
x2 � y2, 2z2 � x2 � y2

 
as listed in SI IV.

The eg orbitals introduce two Kondo couplings: quadrupolar JQ and octupolar JO. We note that the coupling in Eq.

2 has precisely the same form as the two-channel Kondo model, where here the conduction electron spin plays the role

of a channel index. Although the sign structure in Eq. 2 may seem dissimilar to the usual two-channel Kondo model,

this is merely an artifact of the choice of multipolar basis; a unitary transformation of the multipolar moments’ basis

allows the familiar form to be recovered.

Performing the perturbative renormalization group analysis of the vertex function described in Methods A, we

obtain the following � functions for the coupling constants,

dJQ
d lnD

= 2JQJO + 2JQ
�
J2

Q + J2

O

�
,

dJO
d lnD

= 2J2

Q + 4JOJ
2

Q, (3)

whose fixed points are the decoupled Gaussian fixed point G⇤ ⌘ (JQ = JO = 0), and non-trivial fixed points

e⇤g± ⌘ (JQ, JO) = (±1/2,�1/2). e⇤g± are known as the Nozières fixed points, which were found in perturbative RG

computations of the two-channel Kondo model35. We also obtain a line of fixed points characterized by JQ = 0, JO 6= 0.

The Gaussian fixed point is saddle-like (one relevant and one irrelevant eigendirections), while the fixed line has regions

where the nearby flow is attractive (JO > 0) and repulsive (JO < 0). We present the RG flow diagram in SI V. The

non-trivial fixed points are related to each other by the transformation of Sx,y ! �Sx,y; this transformation preserves

the canonical commutation rules for the pseudospin-1/2 operators. The � function and the characteristics of the fixed

points/lines are precisely the same as the usual two-channel Kondo model. This leads to the same physical behaviour

and exponents, as will be discussed.

p ORBITAL KONDO MODEL

We now turn to the problem of coupling p orbital conduction electrons to the local moments. Due to the lack of

familiarity with this model, we first discuss the Hamiltonian in more detail, and then turn to the RG equations. The

symmetry allowed couplings are of the form,

Hp
Q1

= KQ1

X

j

c†j,a,↵

"
Sx
j �

0

↵� ⌦ �x2�y2

ab � Sy
jp
3
�0

↵� ⌦ �2z2�x2�y2

ab

#
cj,b,� ,

Hp
O = KO

X

j

Sz
j c

†
j,a,↵

h
�x
↵� ⌦ �yz,r

ab + �y
↵� ⌦ �xz,r

ab + �z
↵� ⌦ �xy,r

ab

i
cj,b,� , (4)

Hp
Q2

= KQ2

X

j

c†j,a,↵

h⇣p
3Sx

j � Sy
j

⌘
�x
↵� ⌦ �yz,i

ab +
⇣p

3Sx
j + Sy

j

⌘
�y
↵� ⌦ �xz,i

ab + 2Sy
j �

z
↵� ⌦ �xy,i

ab

i
cj,b,� ,



9 eg only Model

If we were to just consider the eg model solely, we have the following Hamiltonian,

H
eg
Q = JQ

X

i

n

Sx
i

⇣

c†
i,x2�y2,↵

ci,3z2�r2,� + c†
i,3z2�r2,↵

ci,x2�y2,�

⌘

�↵�

+ Sy
i

⇣

c†
i,x2�y2,↵

ci,x2�y2,� � c†
i,3z2�r2,↵

ci,3z2�r2,�

⌘

�↵�

o

(72)

H
eg
O = �iJO

X

i

Sz
i

⇣

c†
i,x2�y2,↵

ci,3z2�r2,� � c†
i,3z2�r2,↵

ci,x2�y2,�

⌘

�↵� (73)

H
eg
Q = JQ

X

i

n

S̃x
i

⇣

c†
i,x2�y2,↵

ci,3z2�r2,� + c†
i,3z2�r2,↵

ci,x2�y2,�

⌘

�↵�

� S̃z
i

⇣

c†
i,x2�y2,↵

ci,x2�y2,� � c†
i,3z2�r2,↵

ci,3z2�r2,�

⌘

�↵�

o

(74)

H
eg
O = +iJ̃O

X

i

S̃y
i

⇣

c†
i,x2�y2,↵

ci,3z2�r2,� � c†
i,3z2�r2,↵

ci,x2�y2,�

⌘

�↵� (75)

and the corresponding flow equations,

dJQ
d lnD

= 2JQJO + 2JQ
�

J2
Q + J2

O

�

(76)

dJO
d lnD

= 2J2
Q + 4JO4J

2
Q

dJQ
d lnD

= �2JQJ̃O + 2JQ
�

J2
Q + J2

O

�

(77)

dJ̃O
d lnD

= �2J2
Q + 4J̃O4J

2
Q

From which we have the following fixed points/lines:

(JQ, JO) = (0, 0) or [(JQ, J̃O) = (0, 0)] (78)

(JQ, JO) = (1/2,�1/2) or [(JQ, J̃O) = (1/2, 1/2)] (79)

(JQ, JO) = (�1/2,�1/2) or [(JQ, J̃O) = (�1/2, 1/2)] (80)

JQ = 0, JO 6= 0 [J̃O 6= 0] (81)

We present here the corresponding flow diagrams (Up-Down-basis on the left, and �-basis on the
right).

stable fixed points

(a) eg only flow diagram (Up-down-Basis)

(b) eg only flow diagram (�-Basis)

JQ

JO

3

eg ORBITAL KONDO MODEL: TWO-CHANNEL KONDO MODEL

We first consider conduction electrons residing in the eg orbitals. The form of the Kondo coupling to the multipolar

moments is constrained by the local Td symmetry imposed by the FK cage; we detail in SI III the manner in which

the multipolar moments and the conduction electron degrees of freedom transform under the generating elements of

Td. The symmetry-permitted coupling is of the form,

H
eg
Q = JQ

X

j

c†j,a,↵
⇥
Sx
j �

0

↵� ⌦ ⌧xab � Sy
j �

0

↵� ⌦ ⌧zab
⇤
cj,b,� ,

H
eg
O = �JO

X

j

Sz
j c

†
j,a,↵

⇥
�0

↵� ⌦ ⌧yab
⇤
cj,b,� , (2)

where repeated Latin (Greek) indices are implicit summations over orbital (spin) degrees of freedom, and ⌧ is the

usual spin-1/2 Pauli matrix describing the eg orbital degree of freedom
�
x2 � y2, 2z2 � x2 � y2

 
as listed in SI IV.

The eg orbitals introduce two Kondo couplings: quadrupolar JQ and octupolar JO. We note that the coupling in Eq.

2 has precisely the same form as the two-channel Kondo model, where here the conduction electron spin plays the role

of a channel index. Although the sign structure in Eq. 2 may seem dissimilar to the usual two-channel Kondo model,

this is merely an artifact of the choice of multipolar basis; a unitary transformation of the multipolar moments’ basis

allows the familiar form to be recovered.

Performing the perturbative renormalization group analysis of the vertex function described in Methods A, we

obtain the following � functions for the coupling constants,

dJQ
d lnD

= 2JQJO + 2JQ
�
J2

Q + J2

O

�
,

dJO
d lnD

= 2J2

Q + 4JOJ
2

Q, (3)

whose fixed points are the decoupled Gaussian fixed point G⇤ ⌘ (JQ = JO = 0), and non-trivial fixed points

e⇤g± ⌘ (JQ, JO) = (±1/2,�1/2). e⇤g± are known as the Nozières fixed points, which were found in perturbative RG

computations of the two-channel Kondo model35. We also obtain a line of fixed points characterized by JQ = 0, JO 6= 0.

The Gaussian fixed point is saddle-like (one relevant and one irrelevant eigendirections), while the fixed line has regions

where the nearby flow is attractive (JO > 0) and repulsive (JO < 0). We present the RG flow diagram in SI V. The

non-trivial fixed points are related to each other by the transformation of Sx,y ! �Sx,y; this transformation preserves

the canonical commutation rules for the pseudospin-1/2 operators. The � function and the characteristics of the fixed

points/lines are precisely the same as the usual two-channel Kondo model. This leads to the same physical behaviour

and exponents, as will be discussed.

p ORBITAL KONDO MODEL

We now turn to the problem of coupling p orbital conduction electrons to the local moments. Due to the lack of

familiarity with this model, we first discuss the Hamiltonian in more detail, and then turn to the RG equations. The

symmetry allowed couplings are of the form,

Hp
Q1

= KQ1

X

j

c†j,a,↵

"
Sx
j �

0

↵� ⌦ �x2�y2

ab � Sy
jp
3
�0

↵� ⌦ �2z2�x2�y2

ab

#
cj,b,� ,

Hp
O = KO

X

j

Sz
j c

†
j,a,↵

h
�x
↵� ⌦ �yz,r

ab + �y
↵� ⌦ �xz,r

ab + �z
↵� ⌦ �xy,r

ab

i
cj,b,� , (4)

Hp
Q2

= KQ2

X

j

c†j,a,↵

h⇣p
3Sx

j � Sy
j

⌘
�x
↵� ⌦ �yz,i

ab +
⇣p

3Sx
j + Sy

j

⌘
�y
↵� ⌦ �xz,i

ab + 2Sy
j �

z
↵� ⌦ �xy,i

ab

i
cj,b,� ,



Kondo coupling in T2-representation (p-orbital)

Entangled fluctuations of BOTH orbital and spin !
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with the corresponding fixed points (and lines) at
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We note that from linear stability analysis the non-trivial fixed points are stable, while the line
has one relevant, one irrelevant and one marginal (along the line) directions i.e. it is a ‘saddle-
line’.

Figure 6: RG Flow diagram in a particular 2D plane spanned by �
p
3
2 KQ1 +

1
2KQ2 and KO. As

seen, there is a line of fixed points, which very closely resembles that of the eg only case. The line
is saddle-like, as there are regions where the flow is away from the line and towards the stable FPs
in Region I and II, respectively.

Four fixed 
points !

10 T2 only Model
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and the corresponding flow equations (the same in both bases)
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and the corresponding flow equations (the same in both bases)

dKQ1

d lnD
= 6KQ2KO +KQ1

�

12K2
Q2 + 6K2

O + 2K2
Q1

�

(88)

dKQ2

d lnD
= KO

⇣

KQ1 �
p
3KQ2

⌘

+KQ2
�

12K2
Q2 + 6K2

O + 2K2
Q1

�

(89)

dKO

d lnD
= 4KQ1KQ2 � 2

p
3K2

Q2 +KO

�

24K2
Q2 + 4K2

Q1

�

(90)

10 T2 only Model

If we were to just consider the T2 model solely, we have the following Hamiltonian,
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RG flow

Only two are  
shown
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Fixed points in RG (up to third order)

Noziere’s two-channel  
Kondo fixed points  

in eg channel

eg channel (two coupling 
constants)

T2 channel (three 
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connected via another dimensions  
(additional 3 coupling constants)

New fixed points 
in T2 channel



Fixed points in RG (up to third order)

Noziere’s two-channel  
Kondo fixed points  

in eg channel

New fixed points 
in T2 channel

Cv ⇠ T + T 2

Cv ⇠ T 1/4 + T 1/2

(c.f. Cv ⇠ T 4/(k+2) k > 2,

Cv ⇠ T ln(1/T ) k = 2)
eg channel

T2 channel 

J. Gan, N. Andrei.  
P. Coleman

⇢ ⇠ const.� T

⇢ ⇠ const.� T 1/4



Summary

Pr2+ local moments - non-Kramers doublet   
XY - Quadrupolar Ising - Octupolar Pr(TM)2X20

Landau-Ginzburg Theory 

Coexisting Quadrupolar and Octupolar orders 
at low temperature, Two thermal transitions

Magnetostrsiction 

Very useful way to detect multipolar order !

Multipolar “Kondo" Effect 

Beyond two-channel Kondo effect


