Triangular rare-earth quantum magnets

Philipp Gegenwart

Institute of Physics Center for Electronic Correlations and Magnetism

Augsburg University

TRR 80

- Magnetic frustration
- Quantum spin liquids and fractionalized excitations
- The triangular lattice quantum magnet YbMgGaO₄
- Outlook

In collaboration with Yuesheng Li, Sebastian Bachus, Franziska Grußler, Yoshi Tokiwa, Alexander Tsirlin,...

Magnetic frustration

- No way to fully satisfy all of pairwise interactions
- \rightarrow macro degenerate states \rightarrow residual entropy, (classical) spin liquid freezes at low T
- Quantum spin liquid: quantum entanglement (no residual entropy and spin freezing), fractionalized excitations

Resonating Valence Bonds (RVB)

P.W. Anderson (1973):

- Spontaneous spin pairing to singlets
- Ground state as quantum superposition of all possible pair states

Spinon excitations in the RVB scenario

After breaking a bond, the two unpaired spins can move apart, since rearrangement of valence bonds conserves the energy.

- \rightarrow spin triplet S=1 excitation breaks into two S=1/2 excitations ("spinons")
- \rightarrow Broad excitations in E(q), entirely different to sharp magnons

Spin fractionalization in the Kitaev model

- No geometrical but **bond** frustration
- Exact solution by mapping spins to **Majorana fermions** itinerant M.: Dirac-like dispersion, localized M.: "flux order"
- In presence of magnetic field: Majoranas behave as "anyons" obeying non-Abelien statistics (application in topological quantum computation)

Fractionalization in the Kitaev model

Y. Motome et al. (2015,2016) Two-step entropy release

Observation of spin fractionalization?

P. Bourgeois-Hope et al. and J.M. Ni et al, arXiv 2019:
Sherbrooke and Shanghai groups in disagreement with previous Kyoto results on EtMe₃Sb[Pd(dmit)₂]₂
(M. Yamashita et al., Science 2010)

 $ZnCu_3(OH)_6Cl_2$: ~15% of Zn-sites filled by Cu spins

Majorana Fermions in Kitaev materials?

- Half-integer quantized thermal Hall effect (chiral edge current of charge neutral Majoranas)?
- Broad excitation continua (Raman, INS): role of offdiagonal Γ exchange?
- Hydrogenated iridate: strong bond randomness

Han et al., Nature 2012

Triangular rare-earth AFs

YbMgGaO₄

- Free from defects, spatial anisotropy, antisymmetric DM anisotropy
- Large single crystals for INS

Gapless low-energy excitations in YbMgGaO₄

- <u>no</u> order, freezing or gapping seen in M(T), C(T), α (T), μ SR down to 50 mK
- Cusp in χ_{ac} involves <1% entropy \rightarrow (only small fraction of frozen spins)

Spinons in YbMgGaO₄?

doi:10.1038/nature20614

Evidence for a spinon Fermi surface in a triangularlattice quantum-spin-liquid candidate

Yao Shen¹, Yao-Dong Li², Hongliang Wo¹, Yuesheng Li³, Shoudong Shen¹, Bingying Pan¹, Qisi Wang¹, H. C. Walker⁴, P. Steffens⁵, M. Boehm⁵, Yiqing Hao¹, D. L. Quintero-Castro⁶, L. W. Harriger⁷, M. D. Frontzek⁸, Lijie Hao⁹, Siqin Meng⁹, Qingming Zhang^{3,10,11}, Gang Chen^{1,11,12} & Jun Zhao^{1,11}

Broad excitations observed between 2 and $10J_0$ ($J_0 \approx 0.2$ meV) (cf. also Paddison et al., Nature Physics 13, 117–122 (2017))

Contradiction to mobile fermionic excitations (spinons): Xu, Y. et al.: Absence of magnetic thermal conductivity (Phys. Rev. Lett. 117, 267202 (2016))

ISIS LET data for YbMgGaO₄

- continuum persists up to 35 K and 2 meV
- $N|F(\mathbf{Q})|^2 = \frac{2}{3}N|f(\mathbf{Q})|^2 \{3 \cos(2\pi H) \cos(2\pi K) \cos[2\pi (H+K)]\}.$
- → breaking of <u>nearest-neighbor</u> valence bonds on triangular lattice
- \rightarrow expect different excitations at lower energy

Yuesheng Li, D. Adroja, D. Voneshen, R.I. Bewley, Q. Zhang, A.A. Tsirlin, P. Gegenwart, Nat. Commun. 8, 15814 (2017)

Cold triple axes data (PAND/

- gapless low-energy excitations at low T (consistent with heat cap and μSR relaxation rate)
- Nature of low-energy excitations??

 \rightarrow analysis of q-dependence at 0.2 meV...

Low-energy INS on YbMgGaO₄

Narrowing of q-dep

 \rightarrow increase in correlation length of excitations

$$S(\mathbf{Q}) = A \sum_{j=1}^{\infty} \sum_{l=1}^{Z_j} \frac{f_j}{Z_j} \sin^2 \left(\frac{\mathbf{Q} \cdot \mathbf{R}_l^j}{2}\right) + B$$

equal time correlation function, f_i: from jth neighbor

→ re-arrangement of valence bonds & propagation of unpaired spins

Y. Li, S. Bachus, B. Liu, I. Radelytskyi, A. Bertin, A. Schneidewind, Y. Tokiwa, A.A. Tsirlin, P. Gegenwart, PRL 122, 137201 (2019)

Complete excitation spectrum of YbMgGaO

- First direct observation of valence bonds on triangular lattice •
- Re-arrangement of VBs reminds to spinons, however, they must be localized (absence of \bullet thermal conductivity)

Y. Li et al., Nat. Commun. 8, 15814 (2017) and Phys. Rev. Lett. 122, 137201 (2019)

CEF randomness in YbMgGaO₄

- Randomness in Yb environment (Mg²⁺/Ga³⁺), distorted YbO₆ octahedra
 - → broadening of CEF excitations gives rise to distribution of g-values (g_{\perp} = 3.2 ± 0.15, g_{\parallel} = 3.45 ± 0.6) and probably also exchange interactions

Y. Li, D. Adroja, R.I. Bewley, D. Voneshen, A.A. Tsirlin, P. Gegenwart, Q. Zhang, PRL 118, 107202 (2017)

PHYSICAL REVIEW X 8, 031028 (2018)

Valence Bonds in Random Quantum Magnets: Theory and Application to YbMgGaO₄

Itamar Kimchi,^{1,*} Adam Nahum,^{1,2} and T. Senthil¹

- Valence-bond magnets unstable against the disorder, nucleation of defects (carrying S=1/2)
- Structural randomness enables observed excitations at low energy?!

getting rid of structural disorder...

Same triangular layers of Yb³⁺, replacing Mg/Ga by Na eliminates the structural disorder

L. Ding, P. Manuel, S. Bachus, F. Grußler, P. Gegenwart, J. Singleton, R.D. Johnson, H.C. Walker, D.T. Adroja, A.D. Hillier, A.A. Tsirlin, arXiv:1901.07810

- Similar triangular Yb-lattice but no site randomness → sharp CEF excitations
- Absence of order in zero field, broad excitations, however, only polycrystals available yet...

L. Ding, P. Manuel, S. Bachus, F. Grußler, P. Gegenwart, J. Singleton, R.D. Johnson, H.C. Walker, D.T. Adroja, A.D. Hillier, A.A. Tsirlin, arXiv:1901.07810

Summary

- Frustrated magnets promise novel quantum states with fractionalized excitations
- Triangular AF YbMgGaO₄: low-energy excitations indicating valence bond breaking and rearranging, however, structural randomness prevents truly mobile spinons
- → Comparison with disorder-free triangular rare-earth magnets
- \rightarrow Application of such materials for efficient and easy adiabatic demag cooling

Thanks

Alexander Tsirlin

Franziska Grußler

Mayukh Makjumder

Yoshi Tokiwa

Anton Jesche

Sebastian Bachus

External collaborators: Adroja, Baenitz, Schneidewind, Zhang, ...and their groups

Supported by DFG and AvH

Astrid Schneidewind