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for events that occur close together (Toh et al., 2018).
Accordingly, the development of classification methods based
on deterministic measures is difficult.

Machine learning (ML) approaches have been applied to
detect and classify seismic signals for various source types and
tectonic settings (e.g., Dowla et al., 1990; Dysart and Pulli,
1990; Wang and Teng, 1995; Del Pezzo et al., 2003). Recent
improvements of ML methodologies and computer perfor-
mance (e.g., LeCun et al., 2015) greatly improved the accuracy
of the detection and classification of various seismic signals (e.g.,
Yoon et al., 2015; Kong et al., 2016; Rouet-Leduc et al., 2017;
Holtzman et al., 2018; Perol et al., 2018).

Tremor signals are characterized by frequencies dominantly
in the 2–8 Hz band that continue for tens of seconds to several
minutes, whereas earthquakes produce signals at frequencies up
to tens of hertz, and have durations shorter than several tens of
seconds (Fig. 1). These differences arise from the different source
processes generating these signals. Simultaneous analyses of these
different characteristics using running spectra, rather than raw
waveforms, should better distinguish tremor signals from those
of regular earthquakes. Among the various ML methodologies,
the convolutional neural network (CNN) can recognize char-
acteristic features embedded in images of a given class and is
thus suitable for image classification (LeCun et al., 1999, 2015).
The few studies that have applied the CNN to seismic data have
used time-series seismic waveforms as input (Li et al., 2018; Perol
et al., 2018).

Here, we developed a method to distinguish
seismic signals based on frequency–time series.
We applied this method to seismometer record-
ings obtained from the Dense Oceanfloor
Network System for Earthquakes and Tsunamis
(DONET; Fig. 2) installed along the Nankai
trough (Kaneda et al., 2015; Kawaguchi et al.,
2015), where shallow tremor occurs at intervals
of several years (Sugioka et al., 2012; To et al.,
2015; Annoura et al., 2017). Our objective was
to distinguish between signals from regular earth-
quakes, tectonic tremor, and noise by applying
CNN-based image recognition to running spectra
of these signals. Because the frequency content of
a seismic signal reflects the physical properties of
its source, we developed a CNN that senses the
frequencies of such signals.

The CNN is a supervised learning pro-
cedure wherein the network is first trained to rec-
ognize the characteristic features of each known
class by using a training dataset. We created our
training dataset from existing seismic event
catalogs. After training, we evaluated perfor-
mance of the method by applying it to images
that had not been included in the training data-
set. Our CNN successfully distinguished the seis-
mic signals of local earthquakes, tremors, and
noise with 99.5% accuracy. Use of the method

presented herein will improve our ability to monitor tectonic
tremor activities.

METHOD

The CNN focuses on spatial correlations of pixel data in an
image to extract the characteristic features of a given object by
using learnable filters (LeCun et al., 1999, 2015; Ross et al.,
2018). This approach provides more effective recognition of
objects in images than the traditional fully connected (FC)
feedforward neural networks. CNNs are generally composed
of convolutional, pooling, and FC layers: convolutional layers
apply sets of filters to an input image (or the output of a pre-
vious layer) to extract characteristic features, pooling layers
reduce the sensitivity to the location and scale where the char-
acteristic feature appears, and FC layers perform reasoning
based on the output of the convolutional and pooling layers.
Sequential connection of these layers constitutes a CNN that
places input images in given categories.

CNNs are normally designed to be insensitive to the loca-
tion of signal appearance in an image. For application of a
CNN to running spectra of seismic signals, it is the frequency
component that reflects the physical properties of the signal.
Hence, we needed to develop a CNN that is sensitive to fre-
quency but insensitive to the onset time of the signal. To achieve
this end, we developed a new CNN-based approach to categorize
seismic waveforms of local earthquakes, tectonic tremor, and
noise from running spectra, which we named seismic running
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▴ Figure 1. Comparison of waveforms and spectral features of events recorded at
Dense Oceanfloor Network System for Earthquakes and Tsunamis (DONET) station
KMD13 (location in Fig. 2): (a,b) a local earthquake (ML 1.9) about 17 km below the
station, (c,d) a slow earthquake about 7 km below the station that shows both
tremor and very-low-frequency signals. PSD, power spectral density. The color
version of this figure is available only in the electronic edition.
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▴ Figure 1. Comparison of waveforms and spectral features of events recorded at
Dense Oceanfloor Network System for Earthquakes and Tsunamis (DONET) station
KMD13 (location in Fig. 2): (a,b) a local earthquake (ML 1.9) about 17 km below the
station, (c,d) a slow earthquake about 7 km below the station that shows both
tremor and very-low-frequency signals. PSD, power spectral density. The color
version of this figure is available only in the electronic edition.
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spectra-CNN (SRSpec-CNN), using
TensorFlow (Abadi et al., 2016), an open-source
library provided by Google LLC, and referring to
learning and object identification as described by
LeCun et al. (1998, 1999). The architecture of
SRSpec-CNN (Fig. 3) includes a special form in
its pooling layers to downsample the images but
retain frequency sensitivity. The input image has
64 × 64 pixels, each corresponding to a particu-
lar time and frequency pair, with intensity pro-
portional to the power of the seismic signal (see
the Data section).

The convolutional layers map an input
image to an output by using convolutional fil-
ters. We used convolutional filters of dimen-
sions 5 × 5 × n represented by:
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in which ui;j;k and zi;j;k are the #i; j$-th pixel of
the kth channel in the output and input images
for the layer, respectively. The weights wi′ ;j′;k′ ;k
constitute a filter that is applied to the k’th
channel of the input image, bk is the bias for the
kth channel, and n is the number of channels in
the input layer. f #x$ is an activation function of
the form

▴ Figure 3. Data flow and architecture of the seismic running spectra-convolutional neural network (SRSpec-CNN) used in this study.
The dimensions of the matrices, width and height of input images, and channels, namely the number of parallel images in each layer, are
annotated along the sides of the rectangles representing each layer. Conv, Pool, and FC represent convolutional, pooling, and fully
connected (FC) layers, respectively. The color version of this figure is available only in the electronic edition.
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▴ Figure 2. Map showing the distribution of DONET stations (gray triangles), hypo-
centers of regular earthquakes (circles), and slow earthquakes (inverted triangles)
used in this study. (Inset) Location of the plotted area. The color version of this
figure is available only in the electronic edition.
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Unsupervised Learning: Finding patterns in data

Unsupervised 
Learning Algorithm 

(e.g. PCA, k-means)
Structure in XData X

Images only 
(no labels)

Common patterns or 
features in images

Groups of 
similar images

OR



Clustering Algorithm 
(e.g. k-means, GMM, 

DBSCAN)

Cluster assignment
X	→	CData  X

Clustering
Identifying homogenous subgroups of samples

Dimensionality Reduction / Feature Learning

Dimensionality 
Reduction Algorithm 
(e.g. PCA, NMF, t-SNE)

Representation  
X	→	X’Data  X

Finding a new (low-dimensional) representation to characterize the data



Exploratory Data 
Analysis & Visualization

Preprocessing for 
Supervised Learning

Learning without Labels

Unsupervised learning 
When is it used ?



Unsupervised learning 
Why is it challenging ?



Cluster Analysis 
K-means & Hierarchical clustering



Class “A”

Class “B”

?

Groupings determined from the data itself, unlike classification

Clustering: identifies subgroups within data –
common within-group characteristics, differences across groups 



Types of clustering algorithms

Centroid-based 
Clustering

Hierarchical (Agglomerative) 
Clustering

Spectral Methods Density-based
Clustering Mixture Models





Centroid-based 
Clustering

Types of clustering algorithms

Hierarchical (Agglomerative) 
Clustering

Spectral Methods Density-based
Clustering Mixture Models



Sørlie, Therese, et al. (2003) "Repeated observation 
of breast tumor subtypes in independent gene 
expression data sets," PNAS.

§Merges clusters/observations that are “closest” together 

§ Represented as a hierarchy rather than a partition of data 
Figure 10.9 , ISL 2013

Hierarchical Clustering

Dendrogram



Hierarchical Clustering



Hierarchical Clustering



Average LinkageComplete-LinkageSingle-Linkage

Hierarchical Clustering is a family of clustering methods.

What does it mean for two clusters to be “close”?



Hierarchical Clustering

Advantages
§Don’t need to know # of clusters
§Can find non-spherical clusters

Disadvantages
§Doesn’t scale to large data sets
§# clusters can be difficult to determine
§Can be sensitive to noise/outliers



Mixture ModelsDensity-based
ClusteringSpectral Methods

Types of clustering algorithms

Centroid-based 
Clustering

Hierarchical (Agglomerative) 
Clustering

Hierarchical (Agglomerative) 
Clustering



§Groups data into K distinct clusters

§Cluster defined by a centroid vector (mean of samples in cluster), 
each observation assigned to single cluster (nearest centroid)

K-means Clustering



Pick initial centroids

K-means Algorithm



Pick initial centroids
Assign initial clusters

K-means Algorithm



Pick initial centroids
Assign initial clusters
Update centroids

K-means Algorithm



Pick initial centroids
Assign initial clusters
Update centroids
Reassign clusters

K-means Algorithm



Pick initial centroids
Assign initial clusters
Update centroids
Reassign clusters
Update centroids

K-means Algorithm



Pick initial centroids
Assign initial clusters
Update centroids
Reassign clusters
Update centroids
Reassign clusters

K-means Algorithm



Pick initial centroids
Assign initial clusters
Update centroids
Reassign clusters
Update centroids
Reassign clusters
Update centroids

K-means Algorithm



Pick initial centroids
Assign initial clusters
Update centroids
Reassign clusters
Update centroids
Reassign clusters
Update centroids
Reassign clusters

K-means Algorithm



Pick initial centroids
Assign initial clusters
Update centroids
Reassign clusters
Update centroids
Reassign clusters
Update centroids
Reassign clusters
Converged

K-means Algorithm



K-means clustering

Advantages
§ Easy to implement
§Converges quickly (few iterations)
§ Scales better than hierarchical clustering

Disadvantages
§# clusters must be specified
§ (Hyper-)spherical, similar-sized clusters
§ Sensitive to outliers in data
§ Sensitive to initialization of centroids



MNIST dataset: http://yann.lecun.com/exdb/mnist/

Handwritten digit clustering



Apply K-means to find K=10 clusters:

Handwritten digits: cluster centroids



Handwritten digits: visualizing clusters

Cluster centroid:

Sample of digits 
assigned to cluster :



Density-based Clustering
Identify high-density regions in feature space separated by low-density regions 

Mixture Models
Each cluster represented by parametric distribution – probabilistic (soft) clusters 

Spectral Methods
Encodes local neighborhoods in similarity graphs – clustering using graph cuts

Centroid-based 
Clustering

Hierarchical (Agglomerative) 
Clustering

Spectral Methods Density-based
Clustering Mixture Models

Types of clustering algorithms





Dimensionality Reduction / Feature Learning
Linear Methods



First principal component
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Dimensionality Reduction
Goal:  Find a linear transformation to lower-dimensional feature space that  

preserves the key characteristics of the original (high-dimensional) data.  



Projections



PCA: Maximal Variance Projection

What is principal component analysis?

Projection to lower dimensional feature 
space that captures the most variance in 
the data (orthogonal directions).

Principal components are linear 
combinations of original features.

Principal components are eigenvectors of 
covariance matrix.



Novembre et al. (2008), Nature

Example: PCA for high-dimensional data
500,000 DNA sites in human genome 
projected to 2 dimensions with PCA

Principal components correspond 
to geography à ancestry



First PC finds clusters First PC misses clusters 

PCA does not always give the “best” projection.



Non-negative Matrix Factorization (NMF)

X,W, H ≥ 0

Data approximated by positive linear combination of k vectors 
containing only non-negative values à k-dimensional representation

WX H≈ ×

Original 
Data Matrix Dictionary Low-dimensional

Data Matrix

k

m k ≪ m

x(i)

h(i)



Non-negative constraint à sparsity, interpretability

Each face approximated 
as sum of facial elements

Parts-based representation (sparse)

Lee & Seung (1999), Nature

PCs dense, less interpretable



Geoscience Example 1: 
NMF and K-means to characterize seismic source properties

1) Learn feature representation with NMF and Hidden Markov Model
2) Cluster 46,000 earthquakes in Geysers geothermal field

Holtzman et al. (2018)



Geoscience Example 1: 
NMF and K-means to characterize seismic source properties

1) Learn feature representation with NMF and Hidden Markov Model
2) Cluster 46,000 earthquakes in Geysers geothermal field

Holtzman et al. (2018)



Dictionary Learning & Sparse Coding
§Method for feature learning / representation learning – learns a sparse 

representation of the data
§Overcomplete basis à data sparse in a higher dimensional feature space

DX A≈ ×

Original 
Data Matrix

Overcomplete
Dictionary

Sparse, High-dimensional
Data Matrix

K

m K ≫ m

x(i)
α(i)



Dimensionality Reduction & Manifold Learning
Non-linear Methods



Assumption: data live on a non-linear, low-dimensional manifold. 

Dimensionality reduction by (linear) projection onto a 2D plane will 
not preserve structure (color progression).



Kernel PCA
Applies PCA to (implicit) higher-dimensional representation of data.

Original Data

X1 =  1st PC

X
2

=
 2

nd
PC

Polynomial Kernel

X
2

=
 2

nd
PC

(X1)2 + (X2)2 = 1st PC



Prototypes initialized along 
1st principal component axis Final result of SOM iteration

Self Organizing Maps (SOM)



39 features 
(development indicators)

2D map

Higher income Lower income

Self Organizing Map
in higher dimensions



Geoscience Example 2: 
PCA & SOM for interpretation of seismic reflection data

1) PCA used to select subset of seismic attributes
2) SOM (64 prototypes in 8x8 grid) identifies geologic features

Roden et al. (2015)



Geoscience Example 3: 
SOM clustering to visualize and discriminate wave phases

between 2003 and 2006. Due to a priori data selection, the
investigation is not unsupervised in a strict meaning. However,
even though not using the complete recordings, by making use of
known earthquake source times, we still pursue an unsupervised
approach. We want explore data inherent similarity properties to
allow seismic phase and event discrimination without using onset
times directly for learning. This approach is similar to the one of
Bardainne et al. (2006) and Esposito et al. (2008). However, these
authors used a single parametrization vector for each event (full
time structure) and not for short time windows as done in our
study.

We employ recordings lasting 6min and starting 2min before
the P wave onset. We select 44 earthquakes for which we could
identity and pick clear P and S onsets at a single station (RDO). The
picks will help us to evaluate our observations after feature
selection and SOM training. We compute the features for 6.5 s
long time slices (WINFAC ¼ 4). For each event we obtain 55 time
windows. Subsequently, the individual vector time series are
merged. Finally, we obtain a single data set of 2420 time slices.
Since we do not use a receiver network, only feature generation
Methods 3–7 are employed.

Fig. 6 summarizes the automatically selected features for both
a cross-validation experiment and using directly the complete
data set. The latter ones are also listed in Table 4 in detail. Cross-
validation is performed on feature selection and SOM training
using 44 folds, i.e. by leaving out time slices of one event each
fold. Unlike cross-validation for synthetics, feature selection Level
1 is included, since we do not permute the data. The histogram in
Fig. 6 presents the frequency an individual feature was selected
during validation. It shows that the selection procedure is stable
and robust since similar features are obtained for each fold.
Furthermore, the features selected using the complete data set

(white circles) are also frequently chosen during cross-validation.
The most frequent and most significant features (with respect to
Ztest) are those generated from the frequency spectrum of the
wavefield (e.g. Sonogram and instantaneous frequencies).
However, also polarization properties contribute to the final
feature set.

Fig. 7 presents the SOM U-matrix (Fig. 7a), automatic SOM
clustering (Fig. 7b), continuous SOM coloring (Fig. 7c), and data
hits on the SOM. For the latter we consider three manually labeled
classes: time slices after P wave onset, time slices after S wave
onset including surface waves, and finally the windows visually
defined as noise before and after the event. Furthermore, Fig. 8
shows the vertical seismograms of all 44 events using the color
scale of Fig. 7b for the background. The U-matrix shows a
clustered, more sparse region at the bottom. The observed
clustering is less clear for the remaining SOM. Considering only
the onset time windows (black hits in Fig. 7d) shows that P wave
time slices are located within the clustered area. Most S wave
onset windows (black hits in Fig. 7e) are also well separated from
P wave and noise. However, the spread for all signal windows after
onset is higher for S waves than for the P wave coda (white hits).
Furthermore, there is an expected continuous transition from the
S wave to the background noise class and no distinct cluster
boundaries (Fig. 7f). The noise hits after the event (white) are
mainly located on the right-hand area of the SOM. Thus, these
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Fig. 6. Cross-validation selection statistic for each feature for earthquake data set. Background coloring distinguishes different feature generation methods (see gray and
white numbers). Vertical lines denote frequency bands. White circles correspond to feature set obtained using complete data (no cross-validation).

Table 4
Features automatically selected for earthquake data set.

Feature Ztest

ifh3 37.90
sonoh10 36.52
bbh 34.65
ratiolf 34.16
b9 33.35
sonoh1 27.20
sonoh4 17.45
sonoh3 17.04
H/V3 15.98
sonoh5 15.90
planII3 12.57
ifh1 6.59
planII1 5.57
rect2 5.12

Short name (see Table 2) and runs test statistic Ztest are given.

Fig. 7. SOM visualizations for earthquake data set. (a) SOM U-Matrix, (b) SOM
Clustering, and (c) SOM Similarity Coloring. (d) P wave hits. Hits of P wave time
windows on SOM for all events (white). Black symbols show first onset window for
each event. (e) S wave hits. Same meaning as for P wave hits. (f) Noise hits. Hits of
noise class (white). Black hits represent noise time windows after event.
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time windows are still affected by the event. In fact, Fig. 8 shows
that differences between background noise before and after the
event are highlighted for some seismograms, which are not
visible from the amplitudes alone. A further observed pattern is
the seasonal variation of the background wavefield before P onset.
Fig. 8 shows a correlation between the autumn and winter
months and the dark green and blue cluster colors. Since also
surface waves with longer periods seem to belong to the same
cluster (dark green), a likely reasons for that observation is the
increasing power of microseismicity caused by increasing storm
activity in the Mediterranean Sea during autumn and winter.

In order to quantify seismic phase discrimination on the SOM,
a further cross-validation experiment is conducted for two feature
sets. We employ the automatically selected feature set, which
is composed of attributes from different generation methods
(Table 4), and the spectral features alone (Method 5). The latter
one is the best performing (see synthetics) and most common
feature generation method in seismology (e.g. Joswig, 1990;
Riggelsen et al., 2007). Validation is only carried out for SOM
training (no clustering). Hence, classification is made based on the
best matching SOM prototype vectors, which are labeled after
training using the hand-picked onsets and duration of each event.
We compute median false positive and false negative classifica-
tion errors for the noise, P wave, and S wave class.

Although the uncertainties of the results are rather high, due to
the simplification of splitting the complete records into three
classes, we can derive some qualitative insights from Table 5. The
highest misclassification rate is obtained for the S wave time
windows, which confirms the observations from Fig. 7 (high
spread). Furthermore, for the noise class, the false positive are
about 10 percentage points higher than the false negative errors,
for both the complete feature selection (FS) and Method 5.
Most probably, there are time windows which are presented as S
waves, but are classified as noise. Probably, a manual labeling is

not reasonable due to the continuous transition from coda to the
background wavefield, or because the coda is longer or shorter
than suggested by the seismogram amplitudes, respectively.
Considering P and S waves as a single class (signal and noise)
has a clear tendency to improve classification results. Comparing
Method 5 and the automatically selected feature set (FS), only
classification errors for the S wave class, and therefore also
the class-averaged rates, are higher for the spectral features.
Thus, those features alone would be sufficient and suitable for
event detection. However, for S wave recognition we obviously
need additional polarization information to improve phase
discrimination.

Employing the same data base, Riggelsen et al. (2007) tested
dynamic Bayesian networks, an advanced supervised and context-
dependent learning technique, as a signal detection technique
(two classes: P and non-P wave). Using 50 s long time windows for
each event (25 s before and 25 s after P wave onset), they obtained
an accuracy from cross-validation about 0.95 ðCE ¼ 5%Þ on average
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Fig. 8. Vertical component seismograms of 44 events recorded between 2003 and 2006 at station RDO. Y-axis label indicates month in which an event occurred.
Amplitudes are normalized by maximum of each trace. SOM cluster coloring in Fig. 7b is used for background.

Table 5
Cross-validation results for earthquake data set.

Class FS Method 5

Percent CVCE FP Percent CVCE FN Percent CVCE FP Percent CVCE FN

P 28:6 $ 19:9 32:1 $ 19:3 32:1 $ 23:5 31:2 $ 21:3
S 41:0 $ 20:9 43:2 $ 15:8 55:1 $ 19:4 68:8 $ 14:1
Noise 30:8 $ 16:2 20:1 $ 13:2 34:5 $ 19:3 17:3 $ 10:6
Signal 25:4 $ 16:8 19:2 $ 16:0 23:6 $ 16:2 33:3 $ 18:3

False positive (FP) and negative (FN) classification errors are given for each class
and for two feature subsets. A set obtained by feature selection (FS) and features
from generation Method 5 (spectral features) are used. Signal class contains P and
S wave class.
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months and the dark green and blue cluster colors. Since also
surface waves with longer periods seem to belong to the same
cluster (dark green), a likely reasons for that observation is the
increasing power of microseismicity caused by increasing storm
activity in the Mediterranean Sea during autumn and winter.

In order to quantify seismic phase discrimination on the SOM,
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is composed of attributes from different generation methods
(Table 4), and the spectral features alone (Method 5). The latter
one is the best performing (see synthetics) and most common
feature generation method in seismology (e.g. Joswig, 1990;
Riggelsen et al., 2007). Validation is only carried out for SOM
training (no clustering). Hence, classification is made based on the
best matching SOM prototype vectors, which are labeled after
training using the hand-picked onsets and duration of each event.
We compute median false positive and false negative classifica-
tion errors for the noise, P wave, and S wave class.

Although the uncertainties of the results are rather high, due to
the simplification of splitting the complete records into three
classes, we can derive some qualitative insights from Table 5. The
highest misclassification rate is obtained for the S wave time
windows, which confirms the observations from Fig. 7 (high
spread). Furthermore, for the noise class, the false positive are
about 10 percentage points higher than the false negative errors,
for both the complete feature selection (FS) and Method 5.
Most probably, there are time windows which are presented as S
waves, but are classified as noise. Probably, a manual labeling is

not reasonable due to the continuous transition from coda to the
background wavefield, or because the coda is longer or shorter
than suggested by the seismogram amplitudes, respectively.
Considering P and S waves as a single class (signal and noise)
has a clear tendency to improve classification results. Comparing
Method 5 and the automatically selected feature set (FS), only
classification errors for the S wave class, and therefore also
the class-averaged rates, are higher for the spectral features.
Thus, those features alone would be sufficient and suitable for
event detection. However, for S wave recognition we obviously
need additional polarization information to improve phase
discrimination.

Employing the same data base, Riggelsen et al. (2007) tested
dynamic Bayesian networks, an advanced supervised and context-
dependent learning technique, as a signal detection technique
(two classes: P and non-P wave). Using 50 s long time windows for
each event (25 s before and 25 s after P wave onset), they obtained
an accuracy from cross-validation about 0.95 ðCE ¼ 5%Þ on average
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Fig. 8. Vertical component seismograms of 44 events recorded between 2003 and 2006 at station RDO. Y-axis label indicates month in which an event occurred.
Amplitudes are normalized by maximum of each trace. SOM cluster coloring in Fig. 7b is used for background.

Table 5
Cross-validation results for earthquake data set.

Class FS Method 5

Percent CVCE FP Percent CVCE FN Percent CVCE FP Percent CVCE FN

P 28:6 $ 19:9 32:1 $ 19:3 32:1 $ 23:5 31:2 $ 21:3
S 41:0 $ 20:9 43:2 $ 15:8 55:1 $ 19:4 68:8 $ 14:1
Noise 30:8 $ 16:2 20:1 $ 13:2 34:5 $ 19:3 17:3 $ 10:6
Signal 25:4 $ 16:8 19:2 $ 16:0 23:6 $ 16:2 33:3 $ 18:3

False positive (FP) and negative (FN) classification errors are given for each class
and for two feature subsets. A set obtained by feature selection (FS) and features
from generation Method 5 (spectral features) are used. Signal class contains P and
S wave class.
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Neural Network: Autoencoder

Autoencoder learns an approximate identity operator, composed 
of an encoder (reduces dimensionality) and a decoder
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Neural Network: Autoencoder

Autoencoder learns an approximate identity operator, composed 
of an encoder (reduces dimensionality) and a decoder
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Geoscience Example 4: 
Autoencoder for waveform data

Valentine & Trampert (2012)

Autoencoder learns to reconstruct
earthquake waveforms from low-
dimensional representation (encoding)



Geoscience Example 5: 
Autoencoder for finding seamounts in bathymetric data

1) Autoencoder learns features to reconstruct seamount bathymetry
2) Seamount discovery à reconstruction quality as classification metric

Valentine et al. (2013)



Common ML
Algorithms

Do you have 
labeled data?

Group or 
reduce dimension?

Predict quantity 
or category?
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