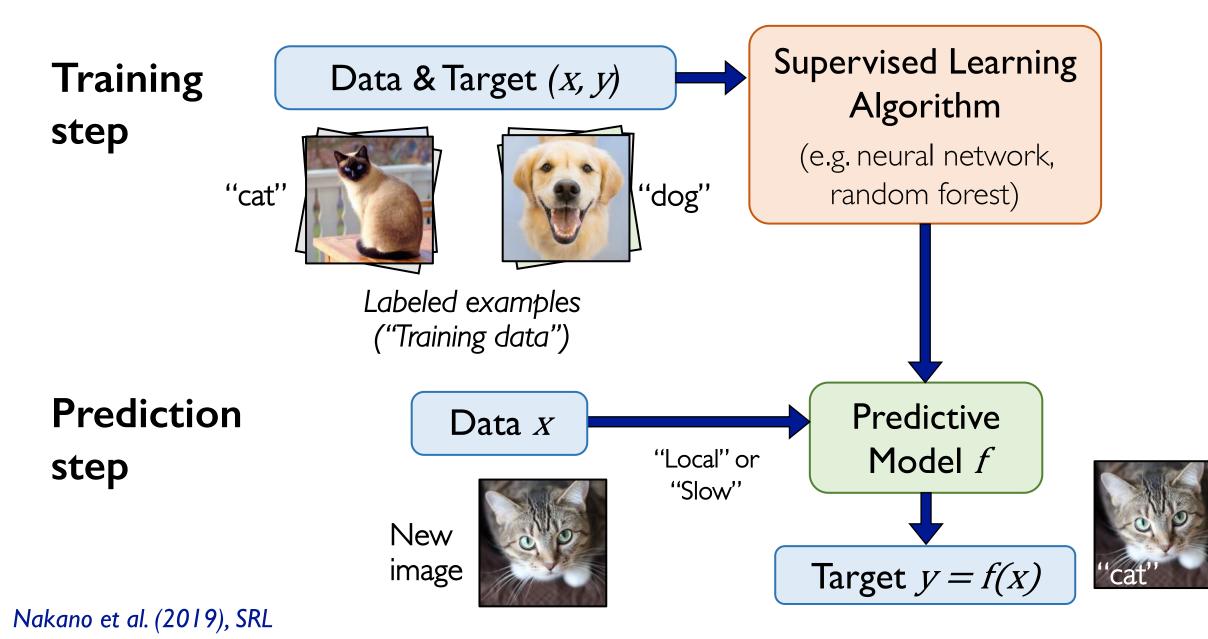
Acknowledgment: Alex Ioannidis (Stanford University) contributed slides to this presentation

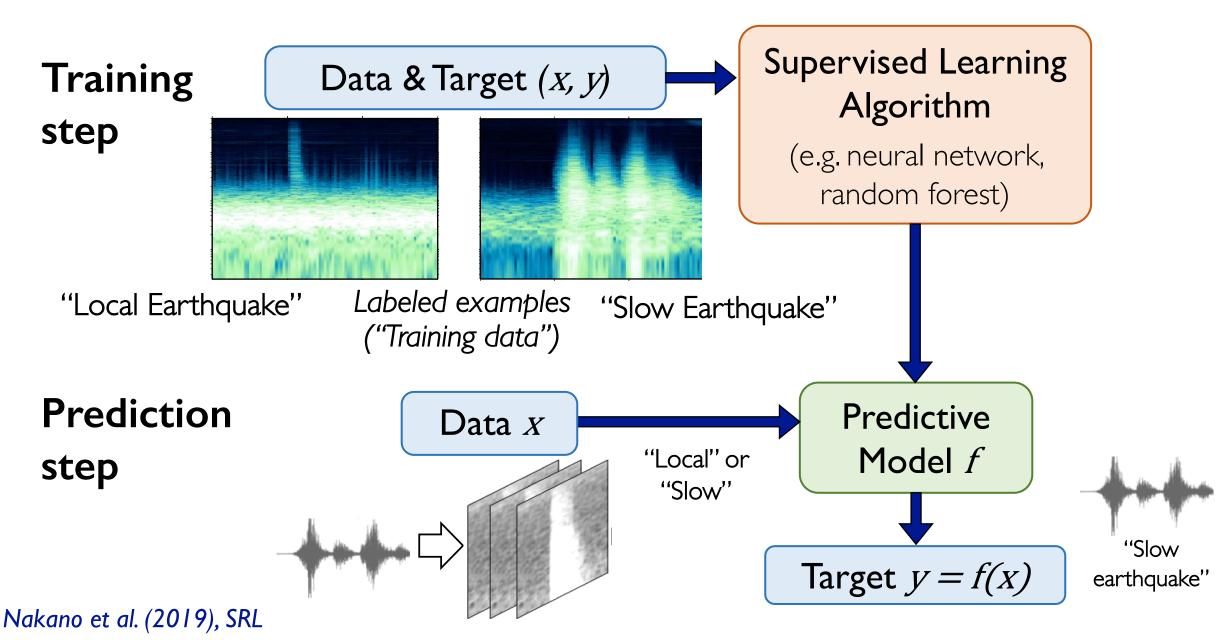
Unsupervised Learning for Geoscience Applications

Karianne J. Bergen Data Science Initiative Postdoctoral Fellow Harvard University

Supervised Learning: Building models from examples



Supervised Learning: Building models from examples



Unsupervised Learning: Finding patterns in data

Images only (no labels)

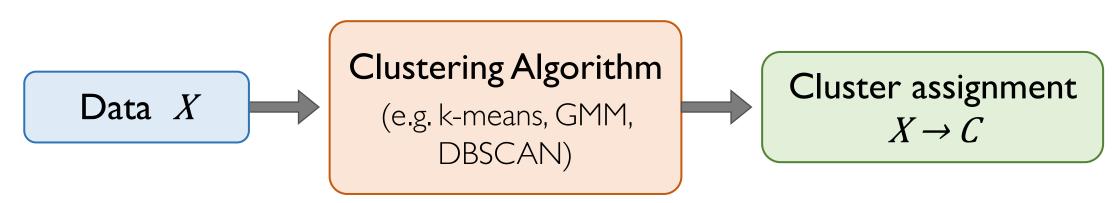
Groups of similar images

OR

Common patterns or features in images

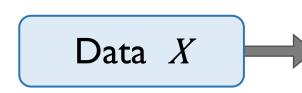
Clustering

Identifying homogenous subgroups of samples



Dimensionality Reduction / Feature Learning

Finding a new (low-dimensional) representation to characterize the data



Dimensionality Reduction Algorithm (e.g. PCA, NMF, t-SNE)

Representation
$$X \rightarrow X'$$

Unsupervised learning When is it used?

Exploratory Data Analysis & Visualization

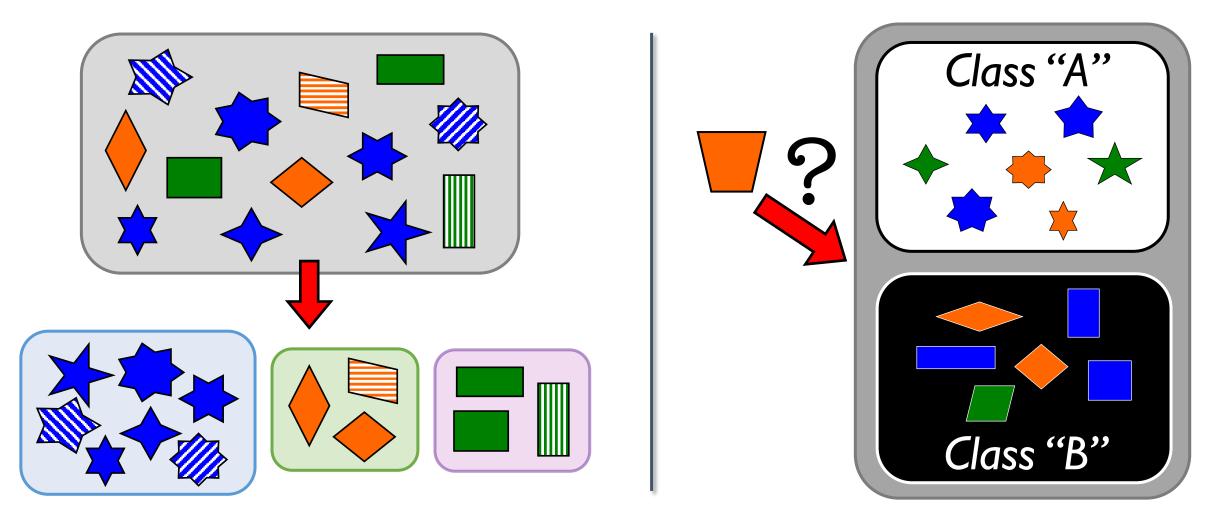
Preprocessing for Supervised Learning

Learning without Labels

Unsupervised learning Why is it challenging ?

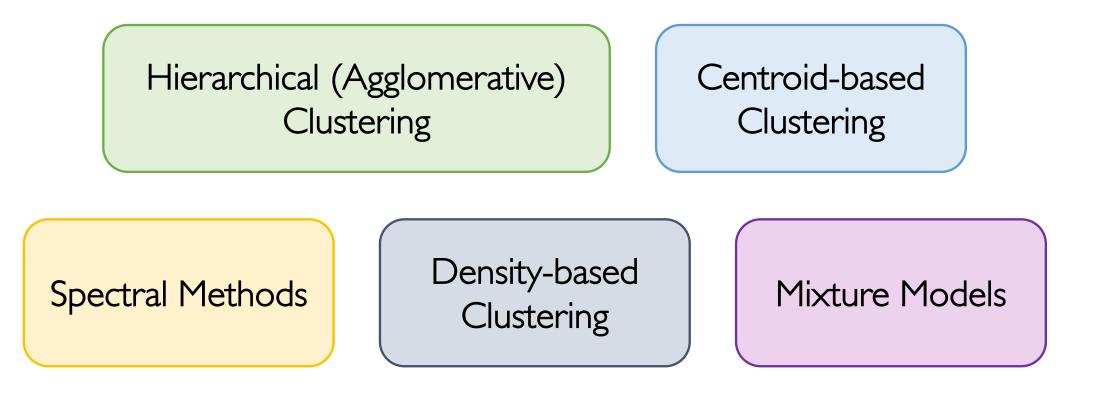
Cluster Analysis K-means & Hierarchical clustering

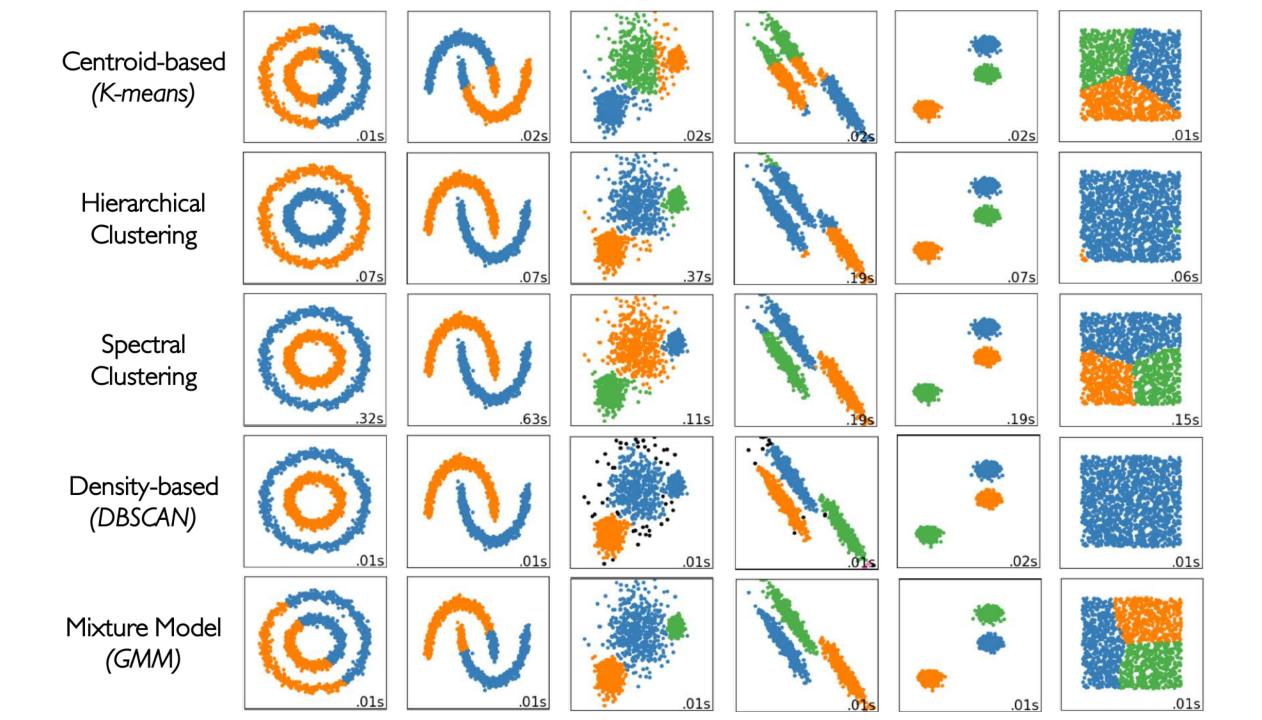
Clustering: identifies subgroups within data – common within-group characteristics, differences across groups



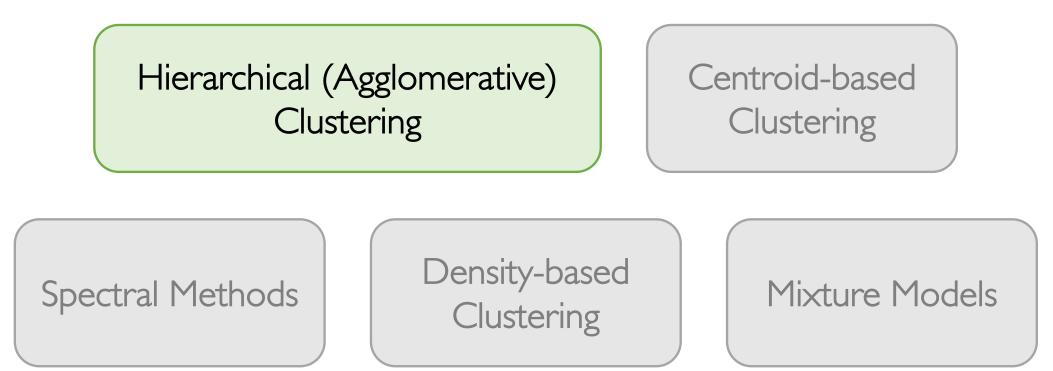
Groupings determined from the data itself, unlike classification

Types of clustering algorithms

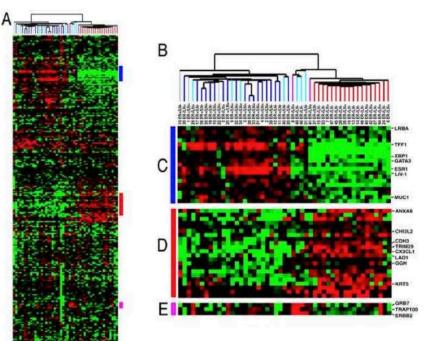




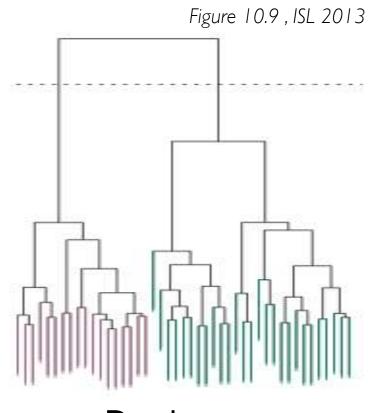
Types of clustering algorithms



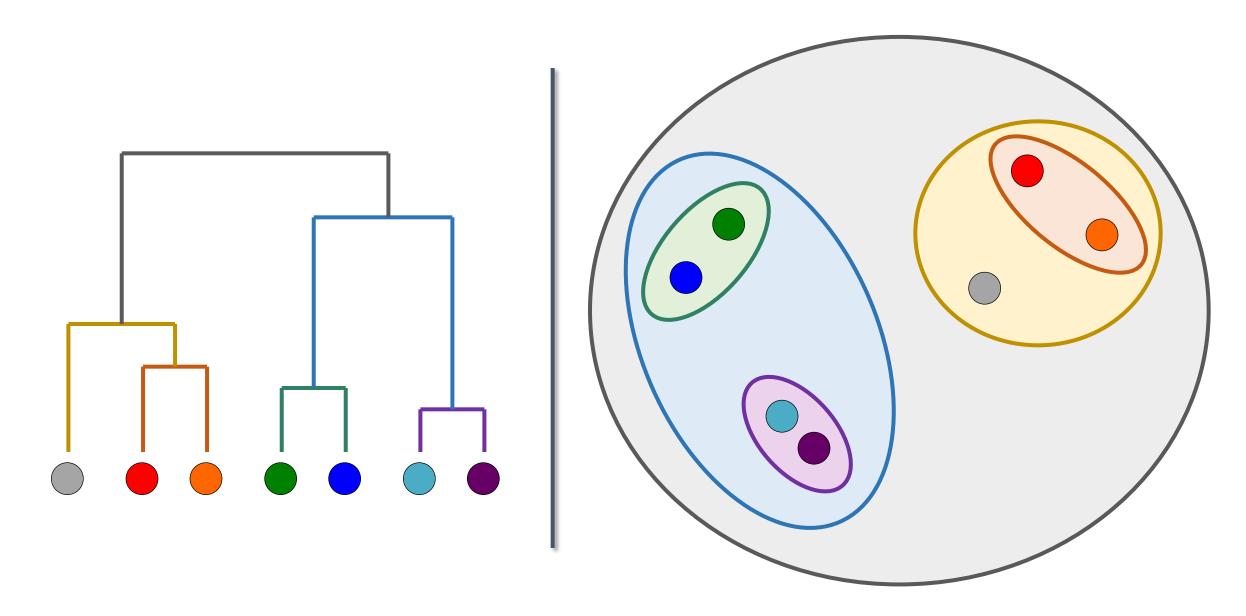
- Merges clusters/observations that are "closest" together
- Represented as a hierarchy rather than a partition of data

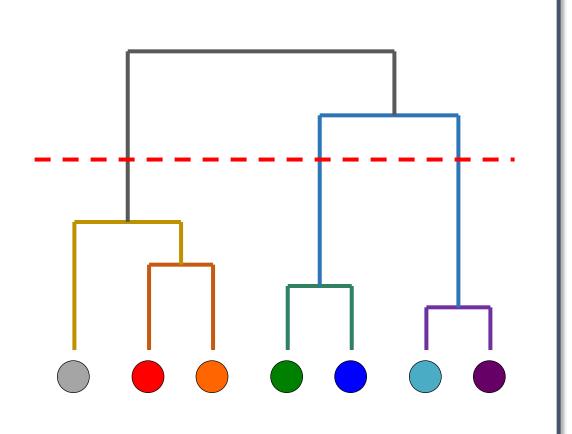


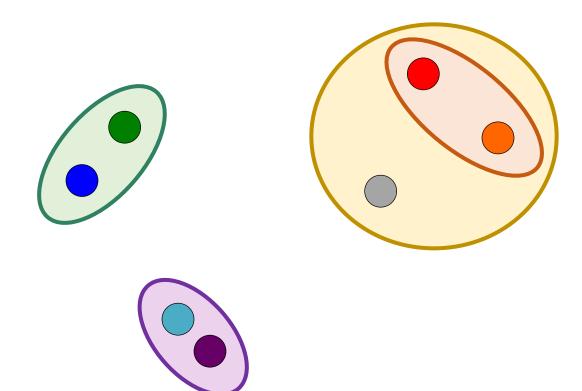
Sørlie, Therese, et al. (2003) "Repeated observation of breast tumor subtypes in independent gene expression data sets," PNAS.



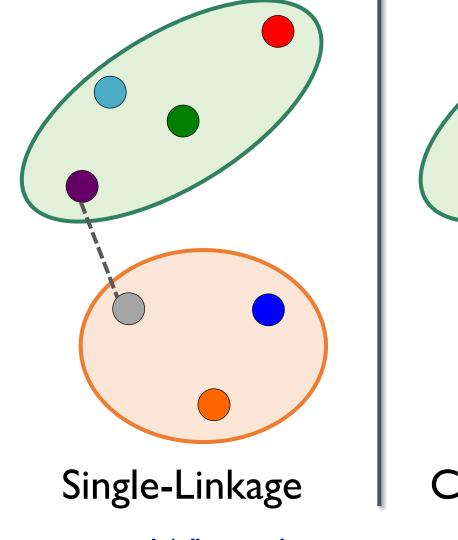
Dendrogram

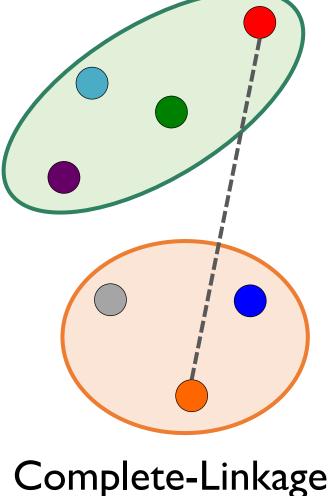


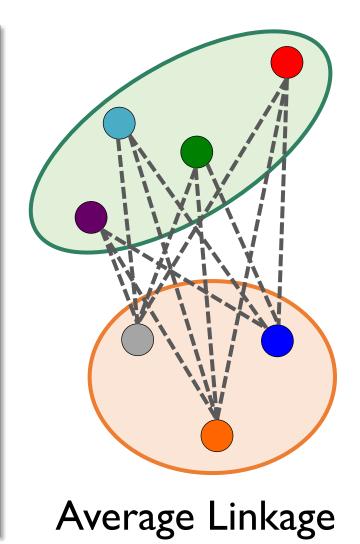




Hierarchical Clustering is a family of clustering methods.







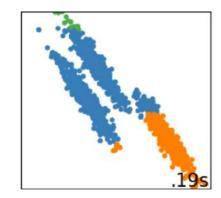
What does it mean for two clusters to be "close"?

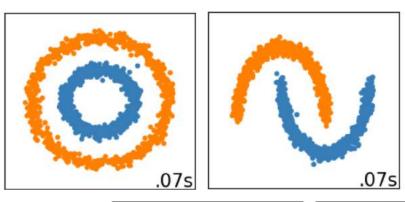
Advantages

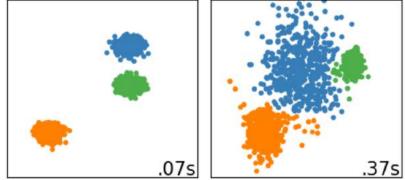
- Don't need to know # of clusters
- Can find non-spherical clusters

Disadvantages

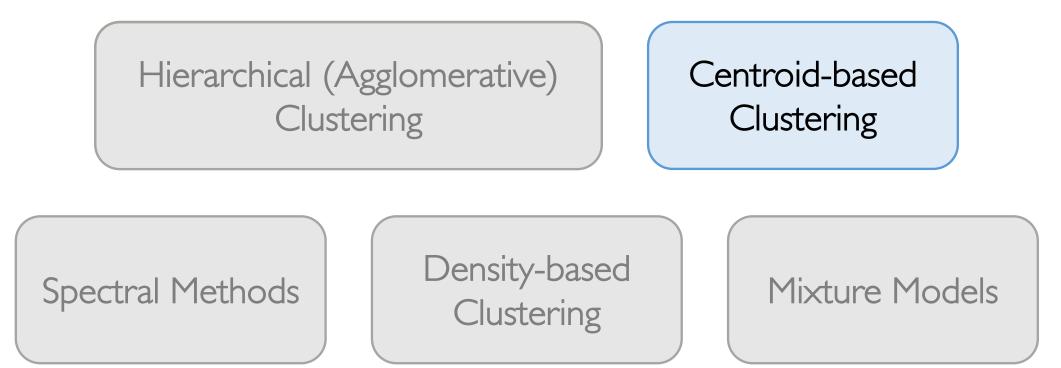
- Doesn't scale to large data sets
- # clusters can be difficult to determine
- Can be sensitive to noise/outliers



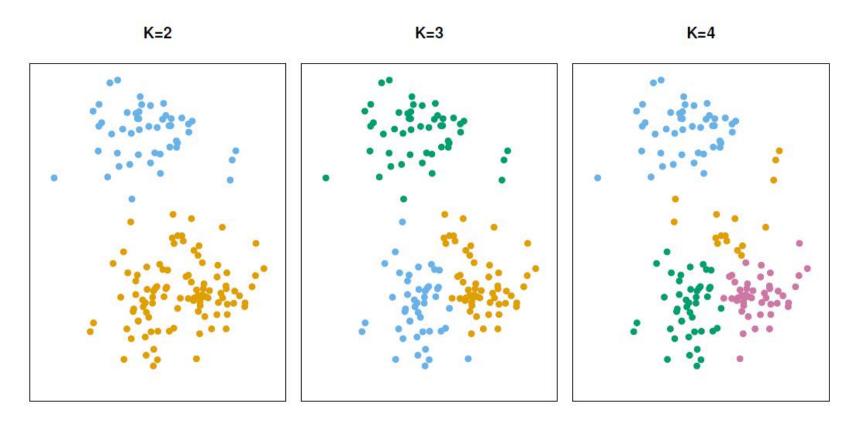




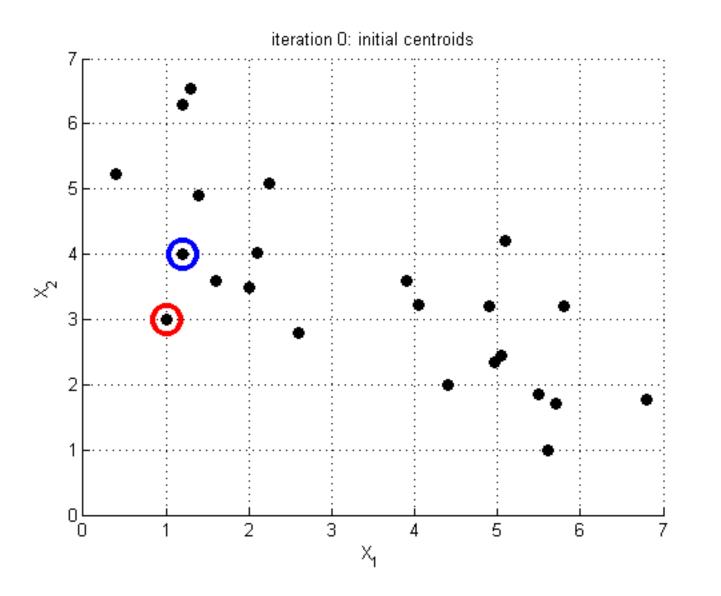
Types of clustering algorithms



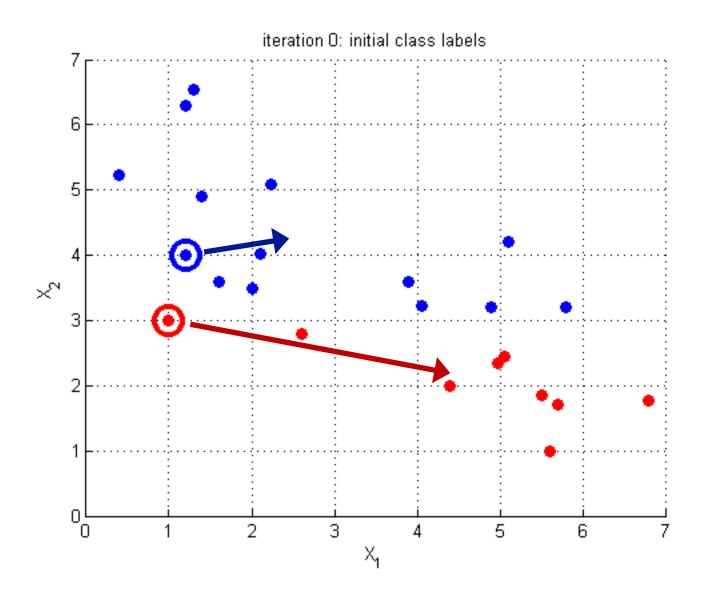
K-means Clustering



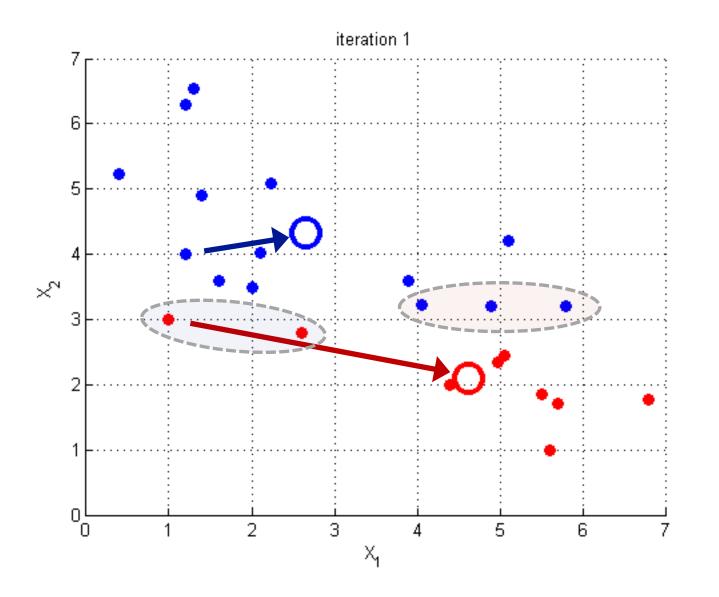
- Groups data into K distinct clusters
- Cluster defined by a centroid vector (mean of samples in cluster), each observation assigned to single cluster (nearest centroid)



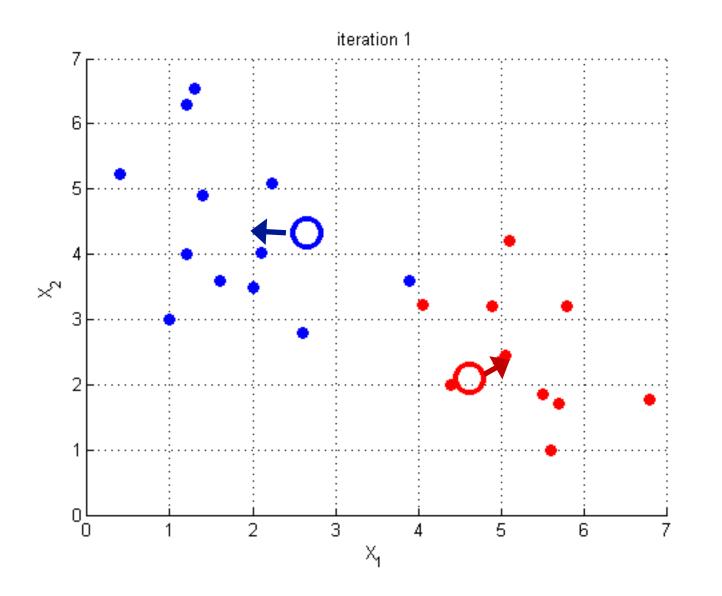
Pick initial centroids



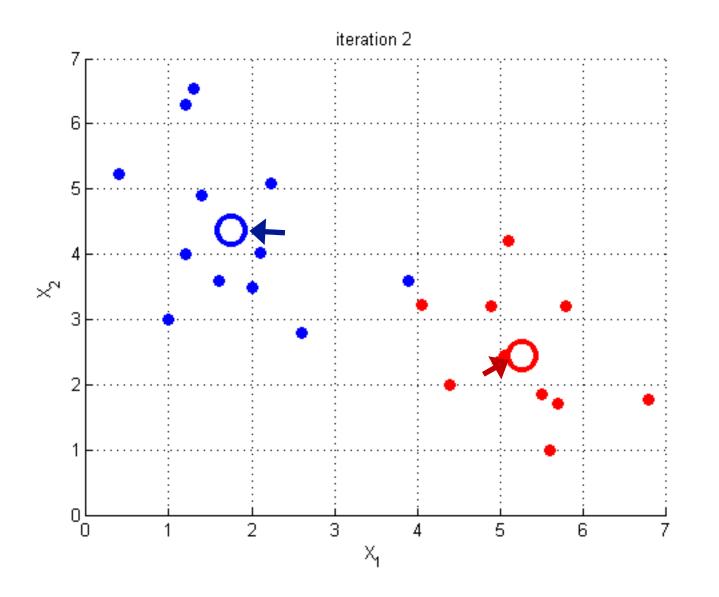
Pick initial centroids Assign initial clusters



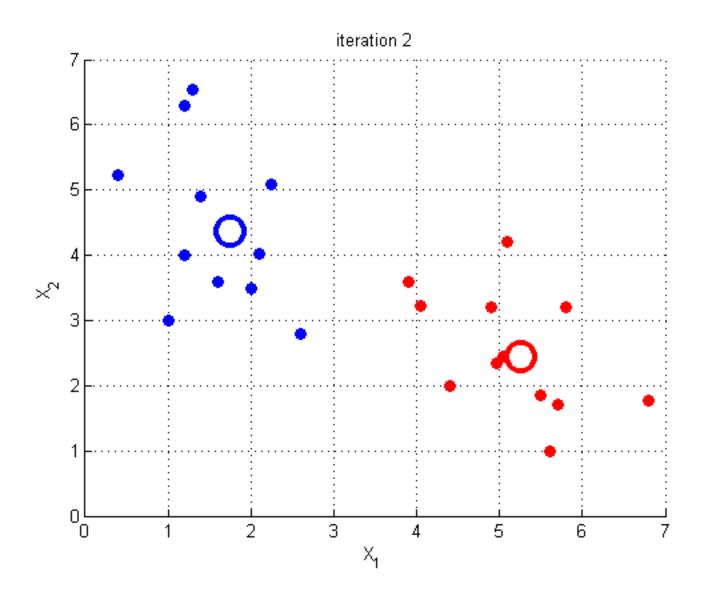
Pick initial centroids Assign initial clusters Update centroids



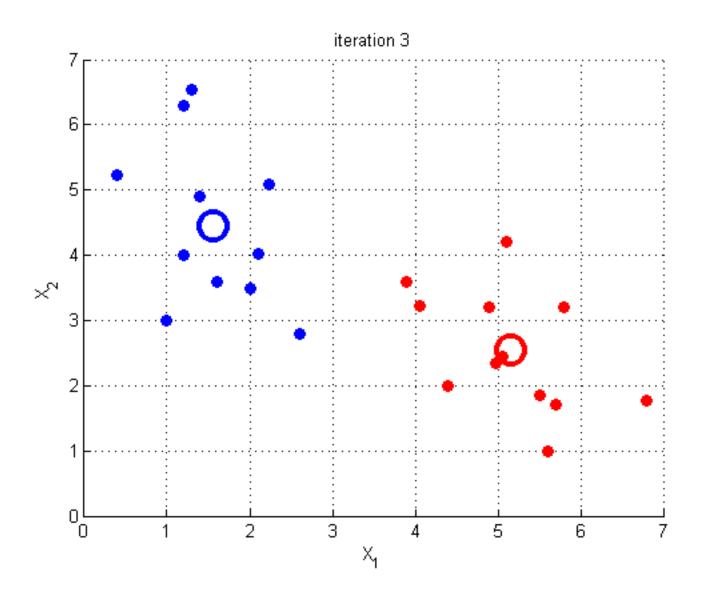
Pick initial centroids Assign initial clusters Update centroids Reassign clusters



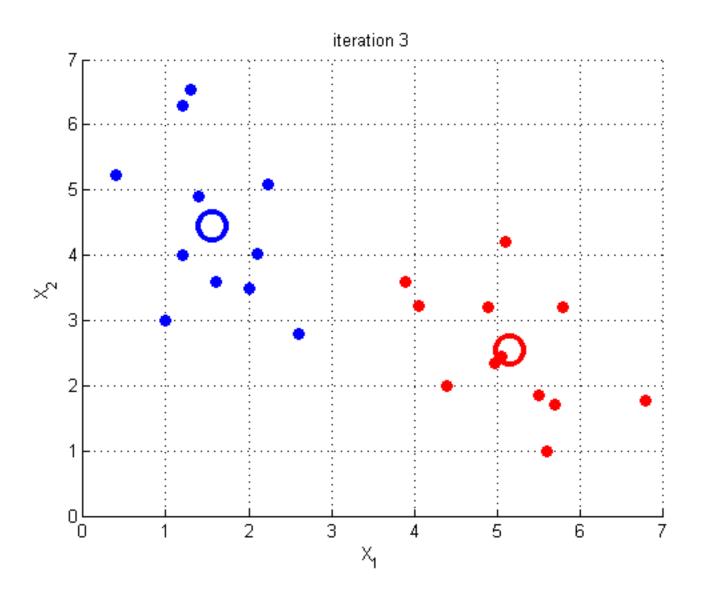
Pick initial centroids Assign initial clusters Update centroids Reassign clusters Update centroids



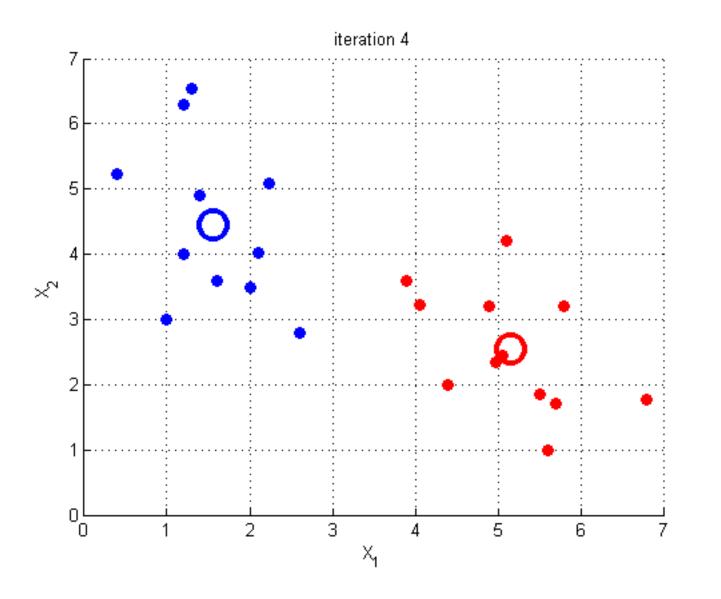
Pick initial centroids Assign initial clusters Update centroids Reassign clusters Update centroids Reassign clusters



Pick initial centroids Assign initial clusters Update centroids Reassign clusters Update centroids Reassign clusters Update centroids



Pick initial centroids Assign initial clusters Update centroids Reassign clusters Update centroids Reassign clusters Update centroids Reassign clusters



Pick initial centroids Assign initial clusters Update centroids Reassign clusters Update centroids Reassign clusters Update centroids Reassign clusters Converged

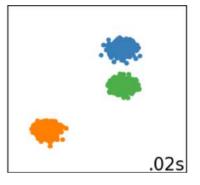
K-means clustering

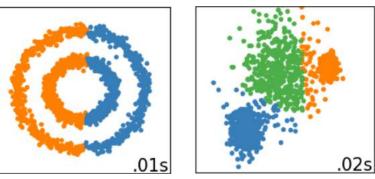
Advantages

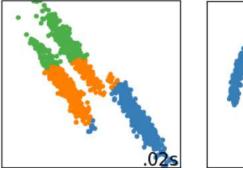
- Easy to implement
- Converges quickly (few iterations)
- Scales better than hierarchical clustering

Disadvantages

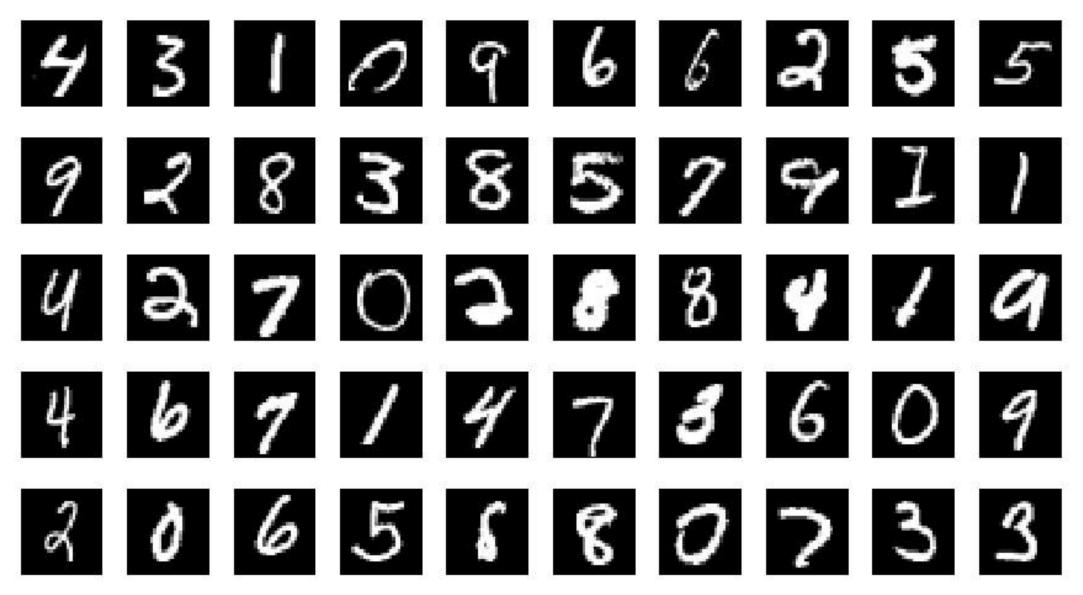
- # clusters must be specified
- (Hyper-)spherical, similar-sized clusters
- Sensitive to outliers in data
- Sensitive to initialization of centroids







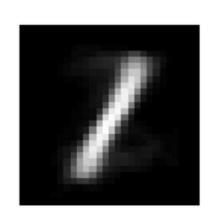
Handwritten digit clustering



MNIST dataset: http://yann.lecun.com/exdb/mnist/

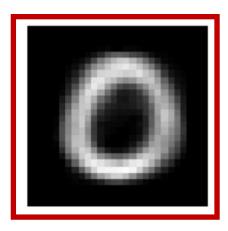
Handwritten digits: cluster centroids

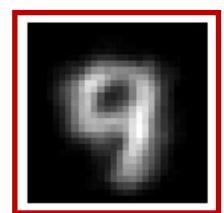
Apply K-means to find K=10 clusters:

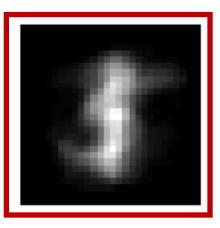


Cluster centroids





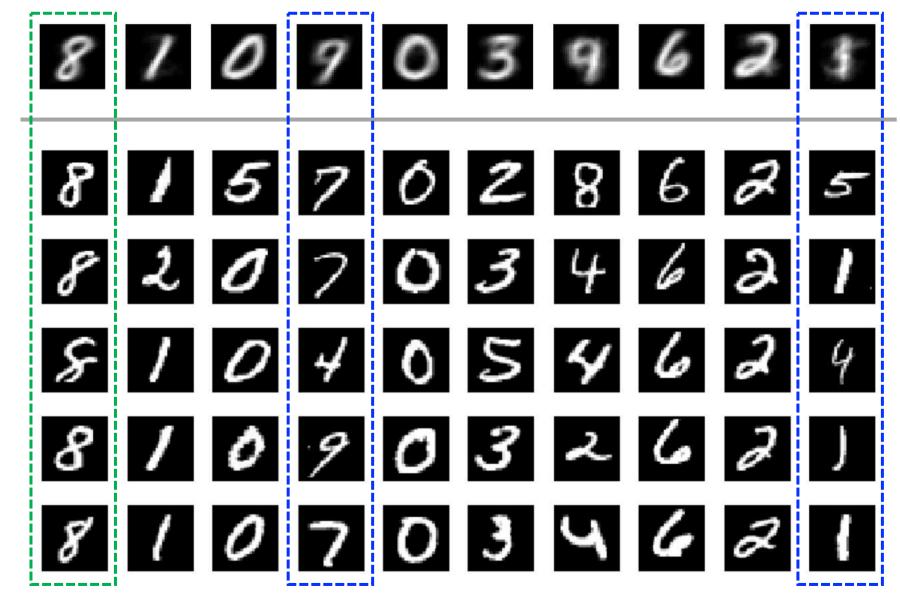




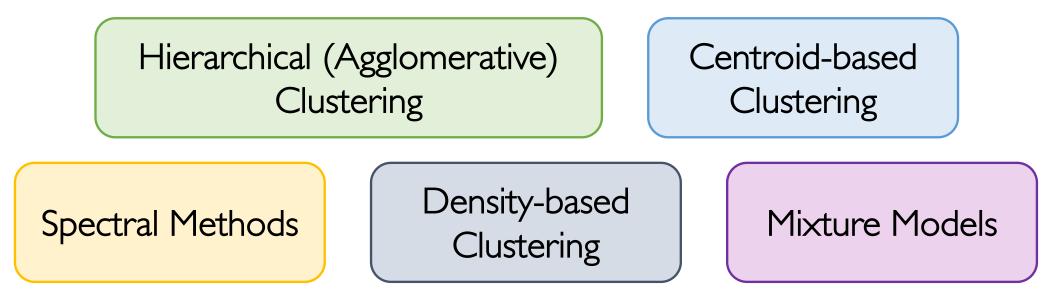
Handwritten digits: visualizing clusters

Cluster centroid:

Sample of digits assigned to cluster:



Types of clustering algorithms



Spectral Methods

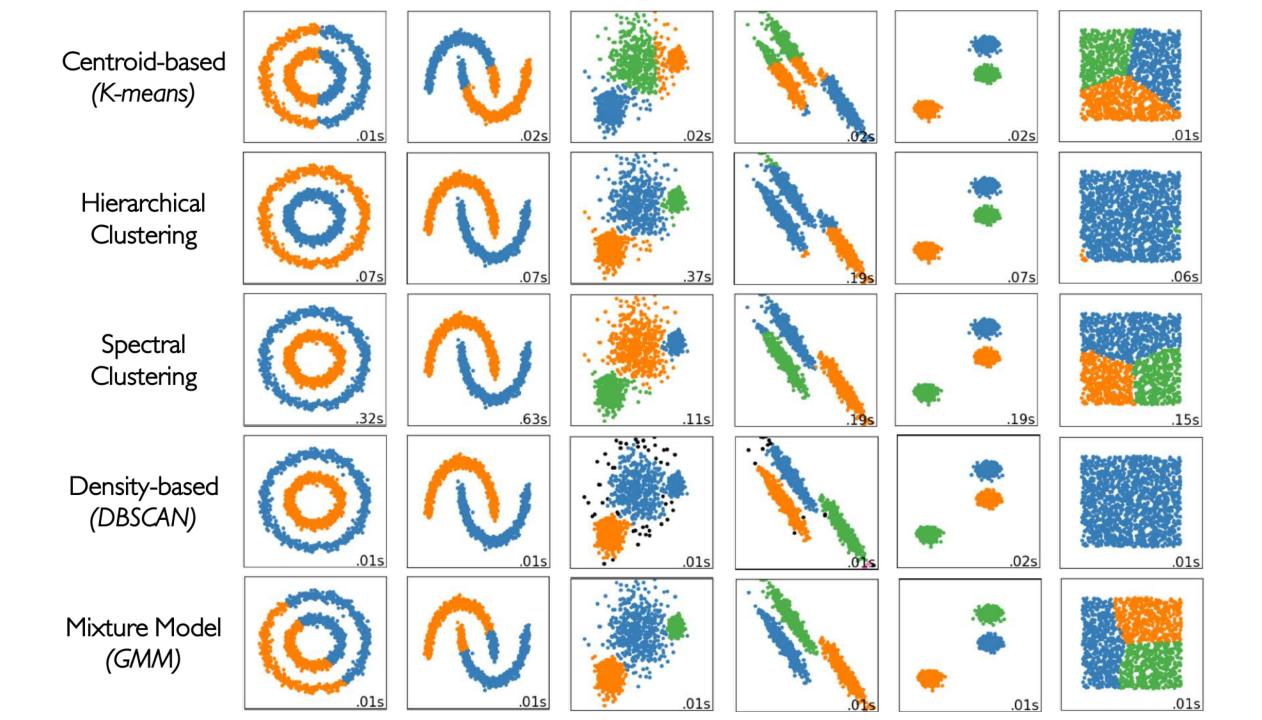
Encodes local neighborhoods in similarity graphs – clustering using graph cuts

Density-based Clustering

Identify high-density regions in feature space separated by low-density regions

Mixture Models

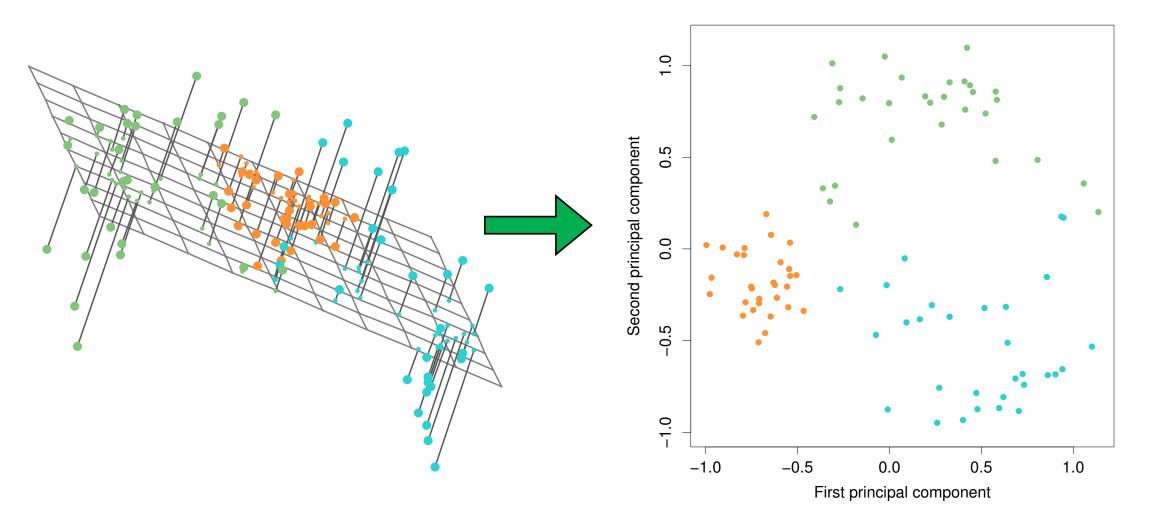
Each cluster represented by parametric distribution – probabilistic (soft) clusters



Dimensionality Reduction / Feature Learning Linear Methods

Dimensionality Reduction

Goal: Find a linear transformation to lower-dimensional feature space that preserves the key characteristics of the original (high-dimensional) data.



Projections

PULITZER PRIZE WINNER 20th-anniversary Edition : With a new preface by the author GÖDEL, ESCHER, BACH: an Eternal Golden Braid A metaphorical fugue on minds and machines in the spirit of Lewis Carroll
DOUGLAS R. HOFSTADTER

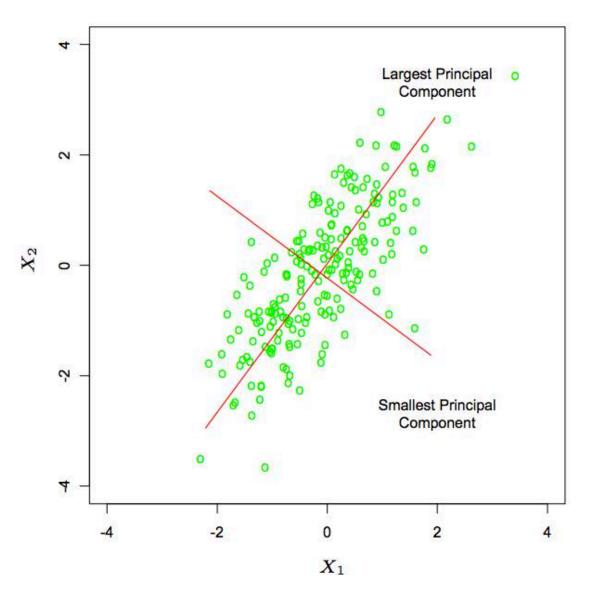
PCA: Maximal Variance Projection

What is principal component analysis?

Projection to lower dimensional feature space that captures the most variance in the data (orthogonal directions).

Principal components are linear combinations of original features.

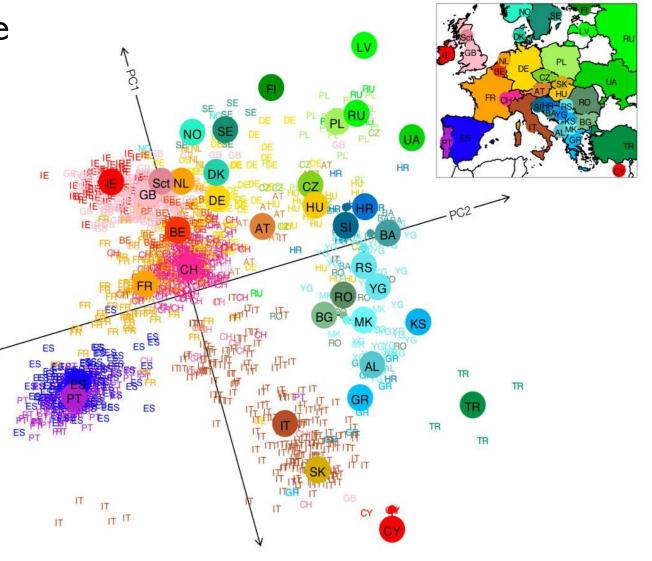
Principal components are eigenvectors of covariance matrix.



Example: PCA for high-dimensional data

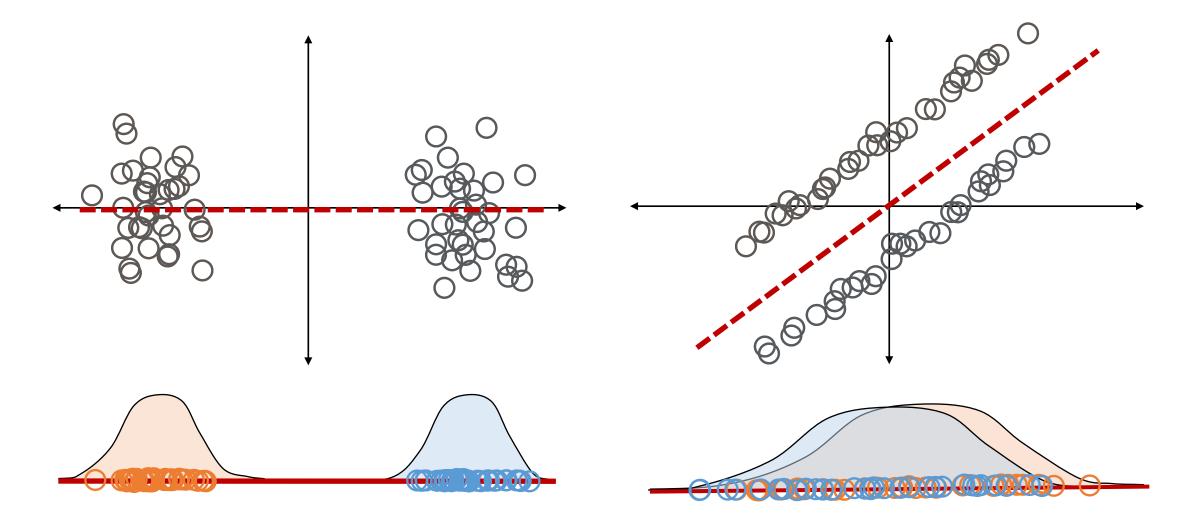
500,000 DNA sites in human genome projected to 2 dimensions with PCA

Principal components correspond to geography \rightarrow ancestry



Novembre et al. (2008), Nature

PCA does not always give the "best" projection.

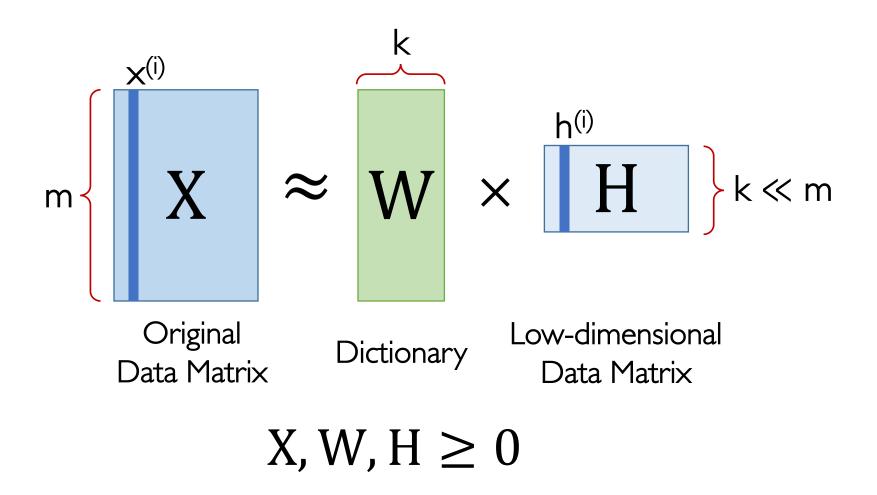


First PC finds clusters

First PC misses clusters

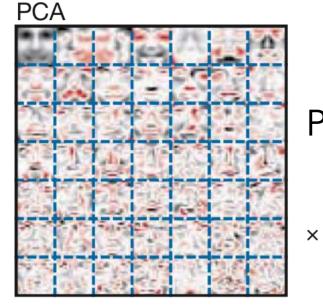
Non-negative Matrix Factorization (NMF)

Data approximated by positive linear combination of k vectors containing only non-negative values \rightarrow k-dimensional representation

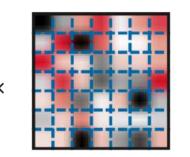


Non-negative constraint \rightarrow sparsity, interpretability

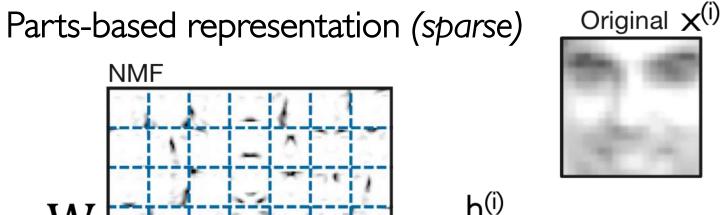
NMF



=



W



h⁽ⁱ⁾

X

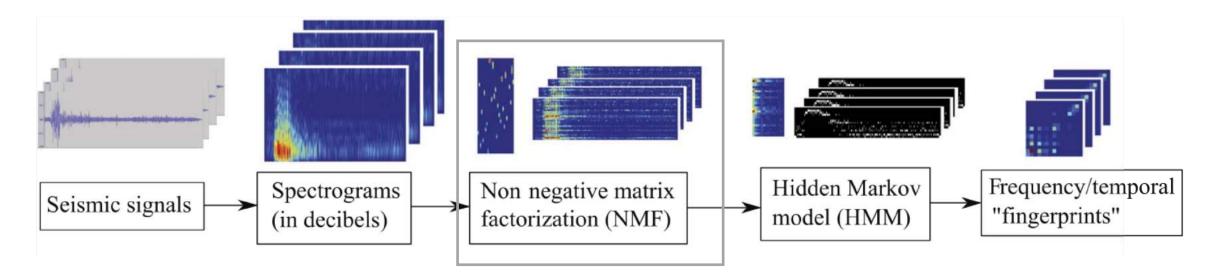
Each face approximated as sum of facial elements

Lee & Seung (1999), Nature

Geoscience Example I:

NMF and K-means to characterize seismic source properties

Holtzman et al. (2018)

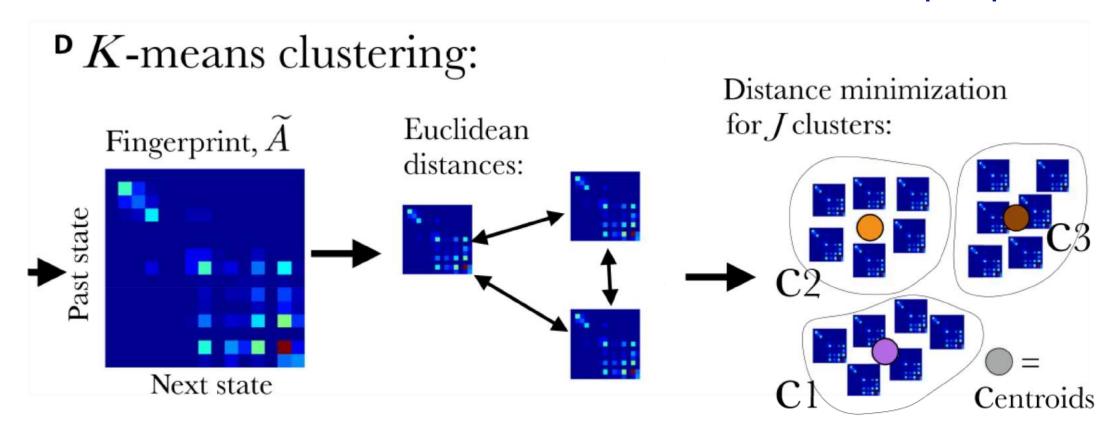


Learn feature representation with NMF and Hidden Markov Model
 Cluster 46,000 earthquakes in Geysers geothermal field

Geoscience Example I:

Holtzman et al. (2018)

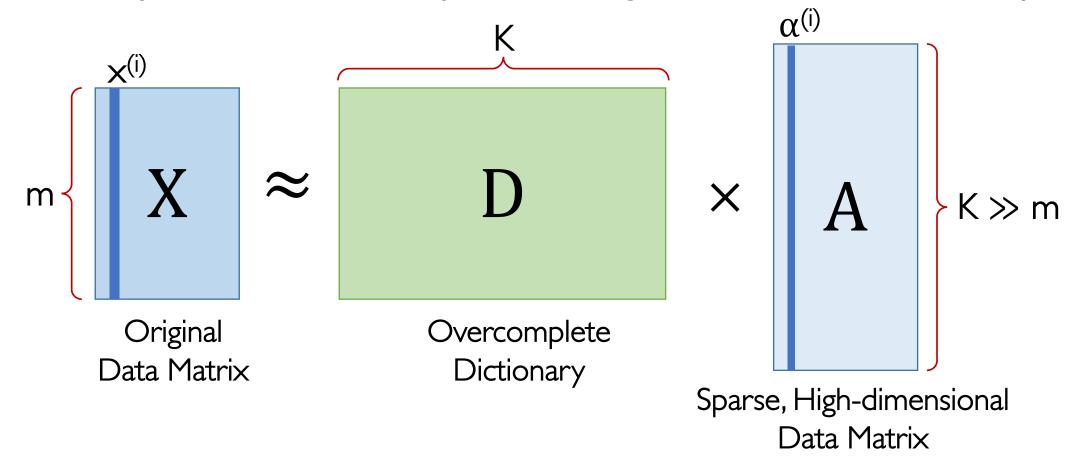
NMF and K-means to characterize seismic source properties



Learn feature representation with NMF and Hidden Markov Model
 Cluster 46,000 earthquakes in Geysers geothermal field

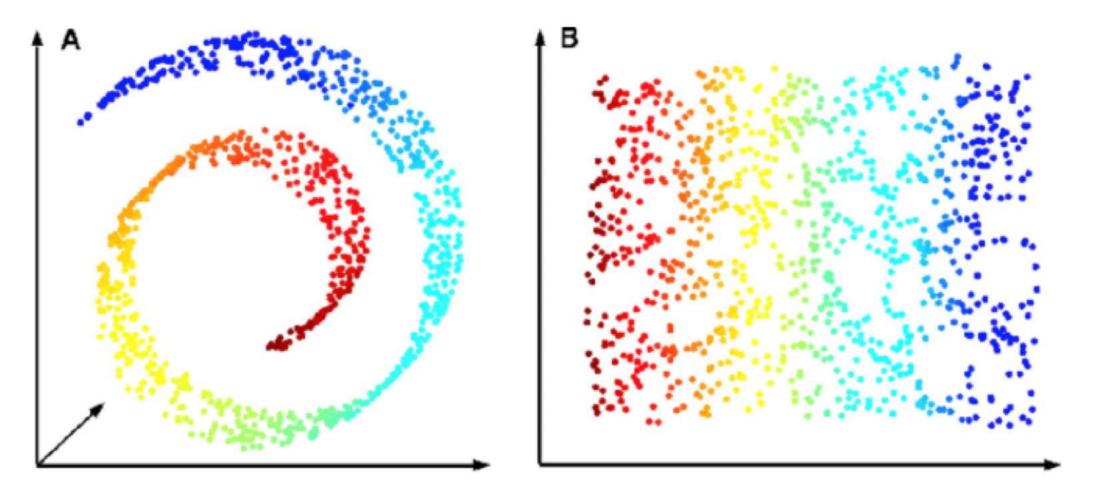
Dictionary Learning & Sparse Coding

- Method for feature learning / representation learning learns a sparse representation of the data
- Overcomplete basis \rightarrow data sparse in a higher dimensional feature space



Dimensionality Reduction & Manifold Learning Non-linear Methods

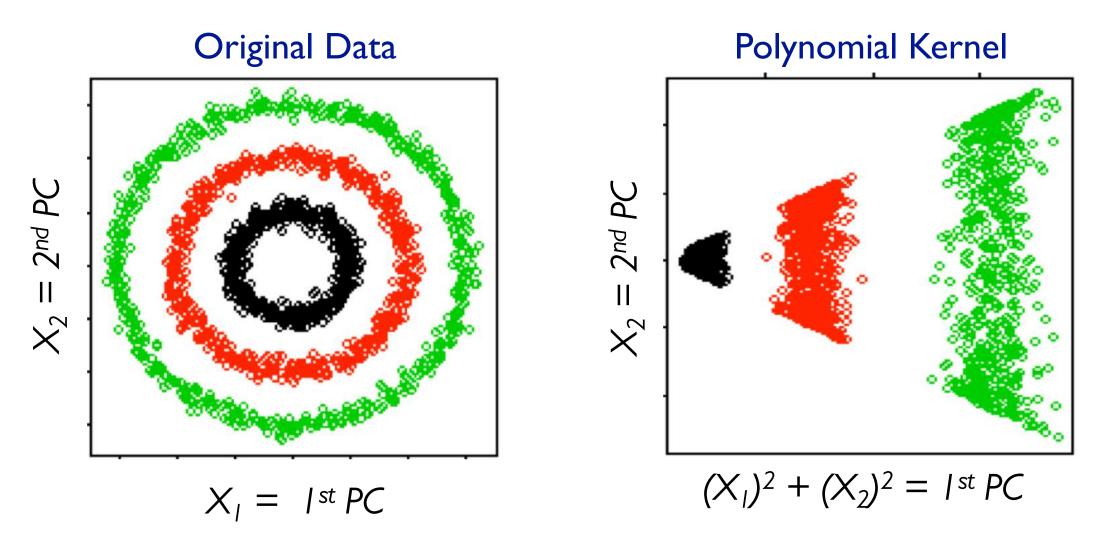
Assumption: data live on a non-linear, low-dimensional manifold.



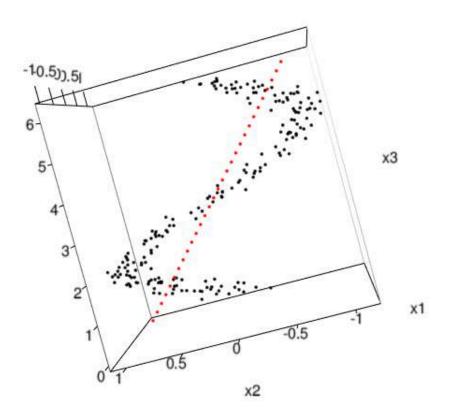
Dimensionality reduction by (linear) projection onto a 2D plane will not preserve structure (color progression).

Kernel PCA

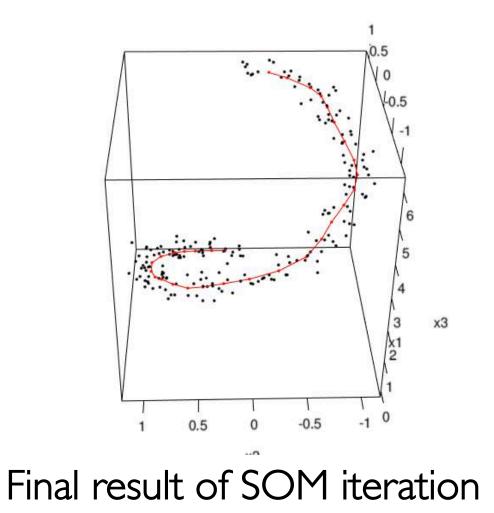
Applies PCA to (implicit) higher-dimensional representation of data.



Self Organizing Maps (SOM)



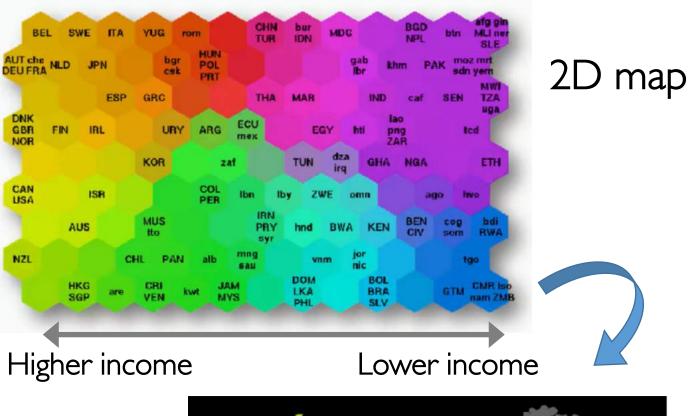
Prototypes initialized along Ist principal component axis

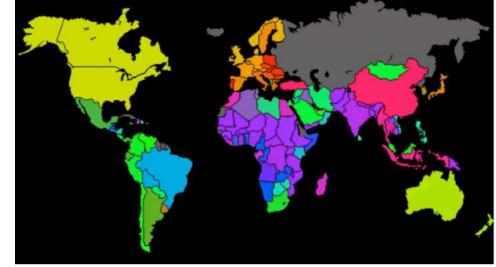


4	A	8	C	D	E
1	Country	Country C	Health Ex	Education E	Inflation
2	Aruba	ABW	9,418971	5.92467022	-2.13637
3	Afghanist	AFG	4.371774		-8.28308
4	Angola	AGO	5.791339		13.73145
5	Albania	ALB	6.75969		2.280502
6	Andorra	AND	4.57058	3.1638701	
7	Arab Wor	ARB	4.049924		3.524814
8	United Ar	ARE	7.634758		
9	Argentine	ARG	4.545323	4.88997984	6.282774
10	Armenia	ARM		3.84079003	3.405767
11	American	ASM	4.862062		
12	Antigua a	ATG	9.046056	2.55447006	-0.55016
13	Australia	AUS	11.19444	5.09262991	1.820112
14	Austria	AUT	5.85024	5.7674098	0.506313
15	Azerbalja	AZE	6.964187	3.22430992	1,401056
16	Burundi	801	10.39434	6.3197999	10.98147
17	Belgium	BEL	4.46431	6.41535997	-0.05315
18	Benin	BEN	7.405431	4.22204018	2.15683

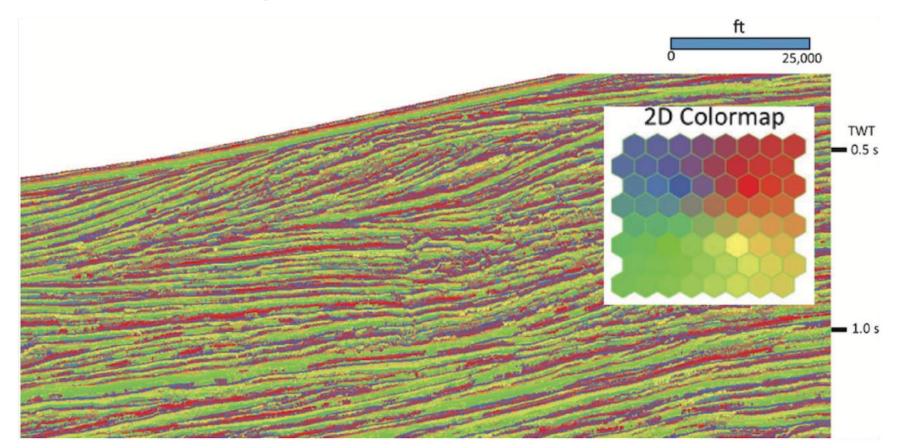
39 features (development indicators)

Self Organizing Map in higher dimensions





Geoscience Example 2: PCA & SOM for interpretation of seismic reflection data

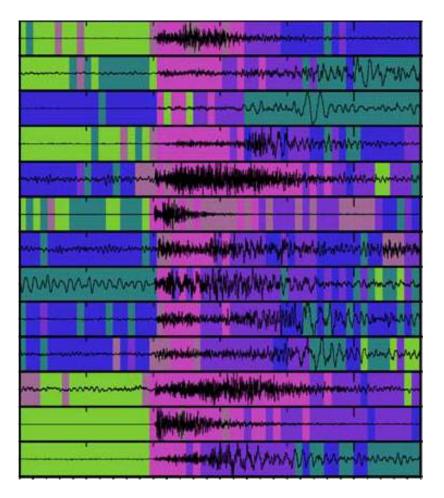


PCA used to select subset of seismic attributes
 SOM (64 prototypes in 8x8 grid) identifies geologic features

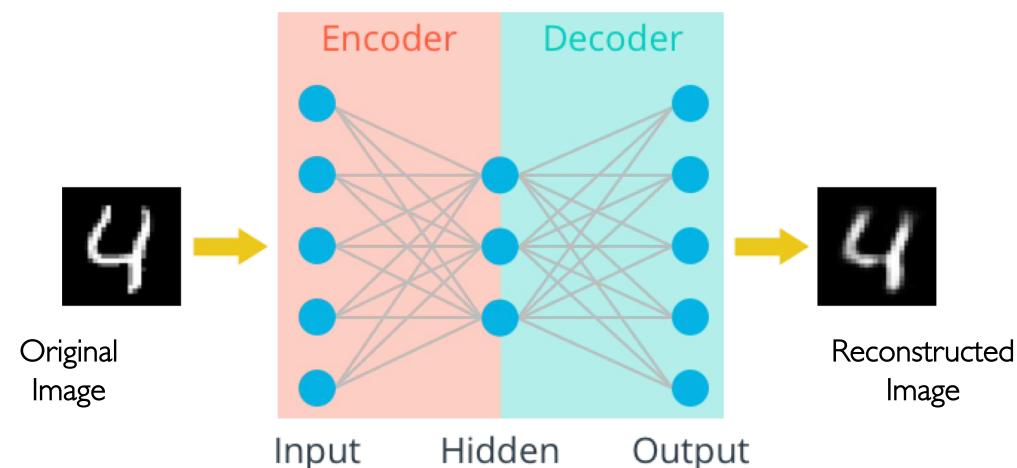
Geoscience Example 3: SOM clustering to visualize and discriminate wave phases

SOM + Hierarchical clustering

	and the fill of the pilling and demonstration
	- marine marine and a second and a second
	man manine man man man
	man man and will more man
monorm	manumanter
anal Markan and and	
	man and the man and the second second

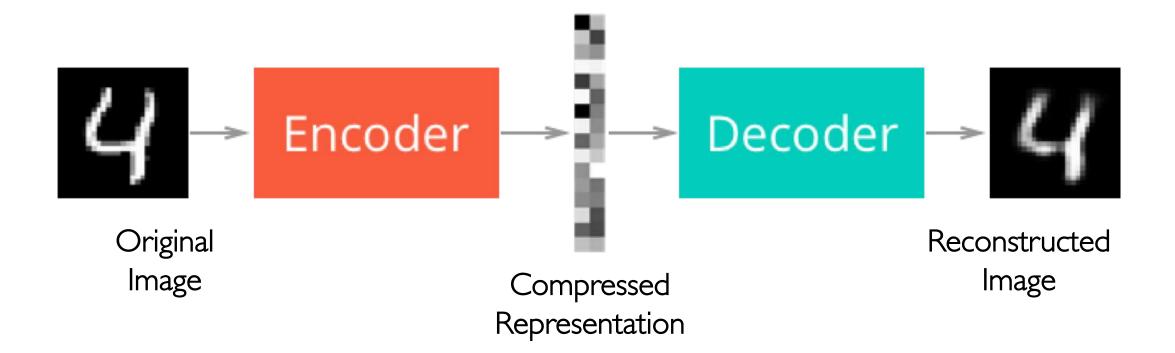


Neural Network: Autoencoder



Autoencoder learns an approximate identity operator, composed of an encoder (reduces dimensionality) and a decoder

Neural Network: Autoencoder

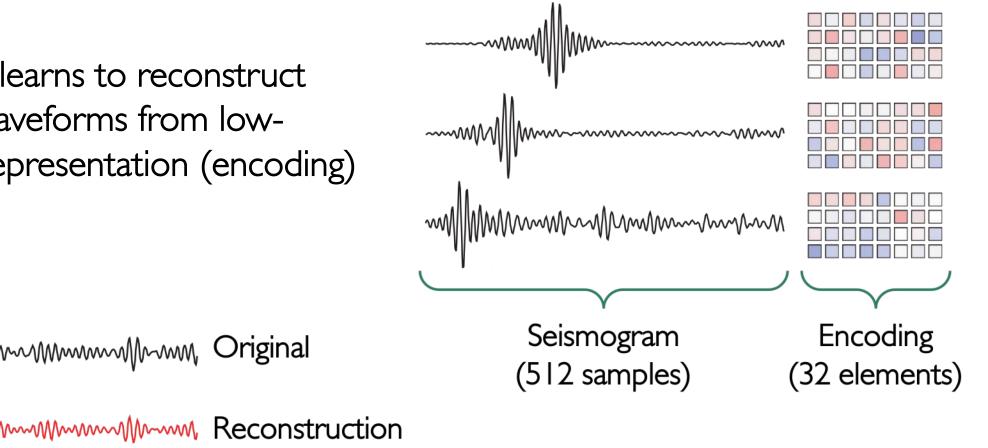


Autoencoder learns an approximate identity operator, composed of an encoder (reduces dimensionality) and a decoder

Geoscience Example 4: Autoencoder for waveform data

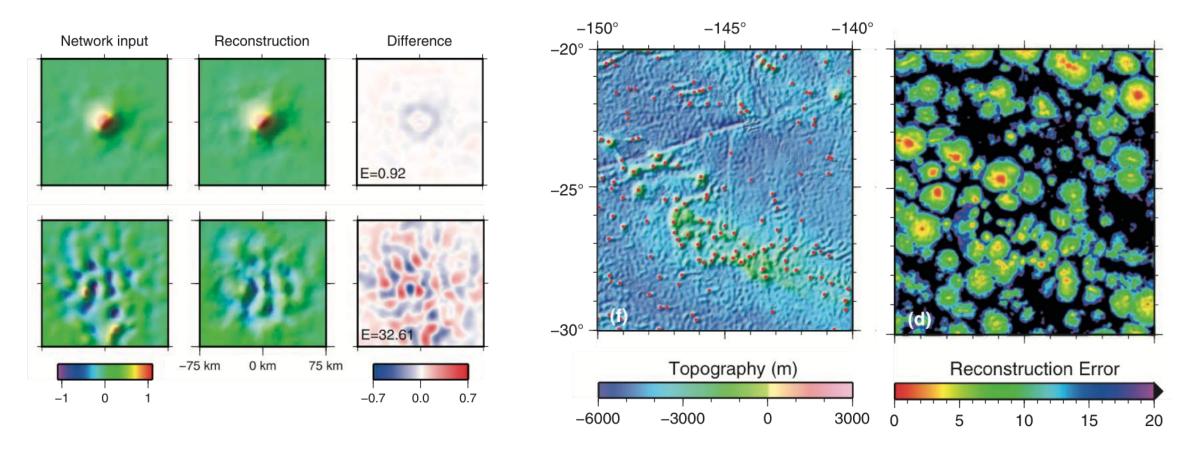
Autoencoder learns to reconstruct earthquake waveforms from lowdimensional representation (encoding)

----- Original

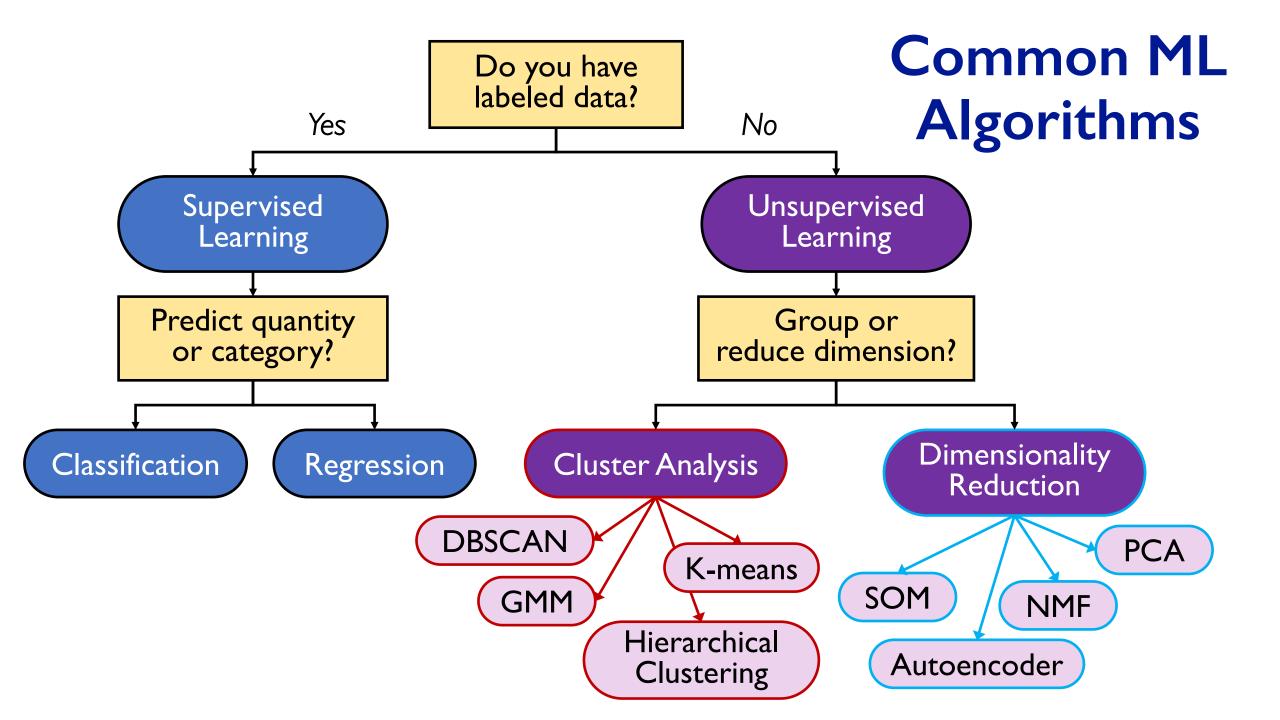


Valentine & Trampert (2012)

Geoscience Example 5: Autoencoder for finding seamounts in bathymetric data



Autoencoder learns features to reconstruct seamount bathymetry
 Seamount discovery → reconstruction quality as classification metric



Questions?

karianne_bergen@fas.harvard.edu