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Forms of machine learning

Artificial intelligence (1950s--?)
Artificial neurons, McCullouch 
& Pitts (1943)
Turing test (1950)

Deep Blue chess (1996)

Chinook checkers (champion in 1994)
(solved in 2007)

AlphaGo (2016)

Data mining (1990s?)

Machine learning
Statistical/computational 
learning theory

Google web search (1998)

Netflix Prize (2006)
10% improvement 2009

Theorems from statistics 
and functional analysis 

Confidence intervals, hypothesis 
testing, probabilistic models…

“Algorithms that find structure 
in big datasets, using empirical 
models and regularizations.” (?)Breiman, Leo. Statistical Modeling: The Two Cultures (with comments and a 

rejoinder by the author). Statist. Sci. 16 (2001), no. 3, 199--231. doi:10.1214/
ss/1009213726. http://projecteuclid.org/euclid.ss/1009213726.

Traditional Stats.

“AI winter” … AI spring?

http://projecteuclid.org/euclid.ss/1009213726


Image labeling

Figure 4: (Left) Eight ILSVRC-2010 test images and the five labels considered most probable by our model.
The correct label is written under each image, and the probability assigned to the correct label is also shown
with a red bar (if it happens to be in the top 5). (Right) Five ILSVRC-2010 test images in the first column. The
remaining columns show the six training images that produce feature vectors in the last hidden layer with the
smallest Euclidean distance from the feature vector for the test image.

In the left panel of Figure 4 we qualitatively assess what the network has learned by computing its
top-5 predictions on eight test images. Notice that even off-center objects, such as the mite in the
top-left, can be recognized by the net. Most of the top-5 labels appear reasonable. For example,
only other types of cat are considered plausible labels for the leopard. In some cases (grille, cherry)
there is genuine ambiguity about the intended focus of the photograph.

Another way to probe the network’s visual knowledge is to consider the feature activations induced
by an image at the last, 4096-dimensional hidden layer. If two images produce feature activation
vectors with a small Euclidean separation, we can say that the higher levels of the neural network
consider them to be similar. Figure 4 shows five images from the test set and the six images from
the training set that are most similar to each of them according to this measure. Notice that at the
pixel level, the retrieved training images are generally not close in L2 to the query images in the first
column. For example, the retrieved dogs and elephants appear in a variety of poses. We present the
results for many more test images in the supplementary material.

Computing similarity by using Euclidean distance between two 4096-dimensional, real-valued vec-
tors is inefficient, but it could be made efficient by training an auto-encoder to compress these vectors
to short binary codes. This should produce a much better image retrieval method than applying auto-
encoders to the raw pixels [14], which does not make use of image labels and hence has a tendency
to retrieve images with similar patterns of edges, whether or not they are semantically similar.

7 Discussion

Our results show that a large, deep convolutional neural network is capable of achieving record-
breaking results on a highly challenging dataset using purely supervised learning. It is notable
that our network’s performance degrades if a single convolutional layer is removed. For example,
removing any of the middle layers results in a loss of about 2% for the top-1 performance of the
network. So the depth really is important for achieving our results.

To simplify our experiments, we did not use any unsupervised pre-training even though we expect
that it will help, especially if we obtain enough computational power to significantly increase the
size of the network without obtaining a corresponding increase in the amount of labeled data. Thus
far, our results have improved as we have made our network larger and trained it longer but we still
have many orders of magnitude to go in order to match the infero-temporal pathway of the human
visual system. Ultimately we would like to use very large and deep convolutional nets on video
sequences where the temporal structure provides very helpful information that is missing or far less
obvious in static images.
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Transfer learning

Gatys, Leon A., Alexander S. Ecker, and Matthias 
Bethge. "A neural algorithm of artistic style." 
arXiv preprint arXiv:1508.06576 (2015). 



A. Graves. Generating sequences with recurrent neural networks. 
CoRR, abs/1308.0850, 2013.

Handwriting synthesis
Human 
input

Generated 
output

Training samples New styles



Silver, David, et al. "Mastering the game of Go with deep neural networks and tree search." Nature 529.7587 (2016): 484-489. 

Trained using a large database of professional games
Subsequent learning through self-play.

Professional level 
Go play

AlphaZero, 2017



Learning to play video games

Google’s DeepMind AI beats 49 Atari games, exceeds human 
performance

Training technique: Positive reinforcement learning
Mnih et al, “Human-level control through deep reinforcement learning”, Nature 518 529--533 (2015)



ML for physics, interesting ideas

Chemo-informatics
Links between chemical 
structures and activity, 
molecular finger-printing

Materials informatics
Design of new functional 
materials
Lookman et al, “A perspective on Materials 
Informatics: State-of-the-art and Challenges” (2016)

Coarse grained molecular dynamics
MD / DEM potentials

Geophysics

Microstructure / phase field modeling

Statistical physics

Effective models for fluids

Earthquake early warning
Seismic inversion
Flow in fractured media
…



Types of Machine Learning

• Unsupervised Learning: Learn structure of unlabeled 
data. 

• Supervised Learning: Learn the map between inputs and 
outputs. 

• Reinforcement Learning: Learn to perform tasks using a 
reward scheme. 

...



Unsupervised learning

Clustering

EMk-means

...

Manifold 
learning

Anomaly 
detection

...

LTSA MDS



60,000 handwritten digits (MNIST data) Labels
0 
1 
2 
3 
4 
5 
6 
7 
8 
9

Supervised learning

y = f(x)xD = {(x1,y1), (x2,y2), ...}
Labeled dataset Goal: Learn map



Puzzle -- no free lunch



Step by step: Linear regression
Source:

yi = 4 + 0.6xi + ϵi

Noise term:
ϵi ∼ 𝒩(μ = 0,σ = 1)

Goal: Build model
̂y(x) = ???
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Step by step: Linear regression
Step 1: Split data (80/20)

Step 2: Define model

ℒ = ∑
i

(yi − ̂yi)2

and cost function to optimize

̂y(x) = ̂β0 + ̂β1x

Step 3: Optimize on training data

Step 4: Measure performance on test data R2
test = 0.84R2

train = 0.66

̂β = (XT X)−1XTy

R2 = 1 −
∑i (yi − ̂yi)

∑i (yi − ȳi)
= { 1 if perfect

0 if unpredictive
Performance 
metric



Linear regression, take 2
Source:

yi = 1 + sin(xi + 1) + ϵi /2
Noise term:

ϵi ∼ 𝒩(μ = 0,σ = 1)
Goal:

̂y(x) = ???
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Linear regression, take 2

Step 1: Split data (80/20)

Step 2: Define feature space

fi = xi ∈ {1,x, x2, …, xN},

for linear model

̂y(x) =
N

∑
i=0

βi fi(x),

and sum-of-squares cost function ℒ = ∑
i

(yi − ̂yi)2

Source:
yi = 1 + sin(xi + 1) + ϵi /2

Noise term:
ϵi ∼ 𝒩(μ = 0,σ = 1)

Goal:
̂y(x) = ???



Linear regression, take 2

Step 1: Split data (80/20)

Step 2: Define model

̂y(x) =
N

∑
i=0

βi fi(x)

fi = xi

Step 3: Optimize on 
training data

̂β = (XT X)−1XTy
Xij = fj(xi)

… how to evaluate various cutoff N?



Linear regression, take 2

Step 1: Split data (80/20)

Step 2: Define model

Step 3: Optimize on 
training data

Step 4: Measure R2 scores 
on validation data

Train Valid.

0.27 -0.07
0.73 0.59
0.79 0.71
0.83 0.42

N
5

10
20
40



Linear regression, take 2

Step 1: Split data (80/20)

Step 2: Define model

Step 3: Optimize on 
training data

Step 4: Select polynomial 
order N with validation data

Training

Final scores

Validation Actual error

0.79 0.71 ???R2



A recap

OverfittingUnderfitting
Model capacity

y

x  (features)

Proper regularization of model is 
context dependent

https://shapeofdata.wordpress.com/2013/03/26/general-regression-and-over-fitting/

https://shapeofdata.wordpress.com/2013/03/26/general-regression-and-over-fitting/


• Step 1: Randomly split data in Training and Testing sets 
• Step 2: Optimize model from training data 
• Step 3: Estimate generalization error on testing data

“Model 
Capacity”

f(x) f(x)

OverfittingOptimal 
fitting

http://www.deeplearningbook.org 2016



• Selected before training 

• Often control model capacity (e.g. 
forcing smoothness) 

• For example: order of polynomial 
fitting

Model 
Parameters

Training
Data

Training

Hyperparameter

Testing 
Data

Hyperparameters



Data split into Training, 
Validation, and Testing sets. 
Validation data is insulated 
from training. Testing data is 
insulated from entire training 
process.

Testing 
Data

Model Training

Hyper-
parameters

Validation 
Data

Model Validation

Proper model selection loop

Training 
Data

Model 
Parameters



Some interesting ML algorithms

Non-parametric kernel methods

• k-Nearest neighbors  
• Support vector machines 
• Gaussian process regression

Random forest

Neural networks

• Collection of decision trees 

• Deep convolutional nets 
• … Next talk



Kernel methods
Define kernel K(x1,x2) to measure similarity between x1 and x2.

k-NN algorithm: 
Majority vote of k-
nearest neighbors.

k=3, y=red

k=5, y=blue

Effectively interpolates 
nearby data. 
Model grows automatically 
with new data.

Other methods: Support Vector Machines, 
Kernel Ridge Regression, …



Linear (ridge) regression ̂β = (XXT + λ)−1Xy

= XT(XT X + λ)−1y

Points 

Features 
f(xi) = [ f1(xi)…fN(xi)]
f(xj) = [ f1(xj)…fN(xj)]

xi, xj

Similarities (XT X)i,j = fi ⋅ fj

(XT X)ij = K(xi, xj)

Kernel trick: bypass 
features to directly define

Arbitrary kernel K 
completely defines 
model

̂y(x) = ∑
i

αiK(xi, x)



Linear regression, take 3
(Gaussian process version)

Step 1: Split data (80/20)

Step 3: Optimize on 
training data. 
GP automatically handles 
hyperparameters c1, c2, c3 !

Step 2: Define kernel
K(x1, x2) = c1e−c2|x1−x2|

2
+ c3δi,j

Step 4: Evaluate 
performance on testing data.

Training Actual error

0.75 0.71R2



Linear regression, take 3
By the way, this is super easy in scikit-learn:



Where can’t we use ML?

https://www.quantamagazine.org/how-artificial-intelligence-is-changing-science-20190311/



https://www.scientificamerican.com/article/can-artificial-intelligence-predict-earthquakes/ 

https://www.technologyreview.com/s/603785/machine-learning-algorithm-predicts-laboratory-earthquakes/ 

http://cacm.acm.org/news/213876-can-artificial-intelligence-predict-earthquakes/fulltext 

http://www.msn.com/en-us/weather/topstories/could-artificial-intelligence-help-predict-earthquakes/ar-AAmZKLe 

Media buzz

Predicting Lab-quakes

Clau
dia H

. Bertrand R.-L. Nick L.

Geophys. Res. Lett. 44, 9276 (2017) [arXiv:1702.05774] 



• Central “loader” plate pushed down at 
constant velocity 

• Normal force applied on side plates 
• Glass beads (“gouge”) between plates

• Force (“shear stress”) on driving block

• Acoustic emission



Precursor activity

• Impulsive precursors follow 
Gutenberg–Richter (power law) 
decay 

• Rate of precursors grows 
exponentially before 
characteristic event (lab-quake)

fixed strain threshold of 2.7773-09. We find by visual inspec-
tion that all recorded events are captured, with the exception
of misidentification of multiple events as a single event. This
is rare, however. The shear microfailures termed microslips
are obtained from the shear stress signal by extracting events
that exceed a 0.002MPa threshold.

3. Observations

[8] In the following, we describe the observations associ-
ated with precursor phenomena observed in the shear stress
and in the acoustic emission. Figure 1b shows the shear stress
as a function of time delivered by the drive block, in the form
of a coefficient of friction μ (shear stress divided by the normal
stress μ ¼ τ

σ), for an experiment conducted at 5MPa normal
stress. The inset shows an expanded view of the frictional
behavior. In Figure 2a, the strain of each AE event is plotted
versus the time of its occurrence. The large amplitude AE
events (open circles in Figure 2a) are associated with the
stick-slip events in Figure 1b. The small amplitude AE events
(closed circles) are precursors to the stick-slip events. This is
made clear in the expanded view in Figure 2b, where the rela-
tion between acoustic emission and stick slip can be seen. The
small amplitude AE events (closed circles in Figure 2a) are on
average 2 orders of magnitude smaller in strain amplitude than
the AE events associated with stick-slip events (open circles in
Figure 2a). The small amplitude AE events occur before the
stick-slip event in a time domain in which small stick-slip
events (microslips) are seen (Figure 2b). Following each
stick-slip event, there is a quiescent period (no microslips
and no AE, see also Figure S1 of the supporting information).
[9] The probability distribution of all of the AE events, as a

function of event magnitude (as defined in the supporting
information), is shown in Figure 3 on a log-log scale. Such
a plot is the laboratory equivalent of a Gutenberg-Richter
(GR) plot [Gutenberg and Richter, 1954]. The AE events
associated with stick slips, the characteristic stick-slip
events, form the peak to the right and have mean magnitudes
of about "17.3. The cumulative probability of precursor AE
events is described approximately by Log10N= a" bM,
b ≈ 1.7. (For comparison, b for the global GR plot is 1.0).

The fact that the laboratory GR plot and the global GR plot
are within a factor of two provides reassurance that the labo-
ratory system captures some of the relevant physics of faults
within the earth. The relative ease of separating precursor AE
events from stick-slip AE events in this laboratory ex-
periment does not, however, carry over to the earth, where
characteristic stick-slip behavior is rare.
[10] The repeatability of the stick-slip events in the labora-

tory experiments allows us to regard the interval between
each such event as a realization of a basic mechanical evolu-
tion of the system. Thus, we construct the probability density
of precursor events as a function of time measured from the
moment of stick slip. We do this for the AE events in
Figure 4a and for the microslips in Figure 4b. In Figure 4,
at times far from the stick-slip event, we see a low, approxi-
mately uniform, background probability density for AE and
microslip events. As the stick slip is approached, the AE
and microslip probability density rises above the background
approximately exponentially. Immediately preceding the slip
there is a rapid acceleration of AE and microslips. The inset
of Figure 4b shows an overlay of the two probability density
functions (PDFs), normalized to their respective total
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Figure 3. Relative probability of acoustic emission occur-
rence versus magnitude (as defined in the supporting infor-
mation), plotted on a log-log scale. The emission from
characteristic events, the stick slips, are noted by the double
arrow. The slope of the precursor emission is denoted by
the thin, solid line.
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Figure 4. PDFs of the AE and microslip data. (a) Occurrence
versus time plot (log-log scale) of all precursor data in ex-
periment p2393 (excluding data from the initial shearing
rate of 10 μm /s). The plot is constructed by summing as a
function of time, the number of precursors preceding each
stick slip. All stick slips are then set to zero time, and all data
are plotted together. See supporting information for details.
The slope of the exponential increase in AE activity (linear
in log-log space) is noted. (b) Occurrence versus time plot
(log-log scale) for microslip shear failures. The slope of
the exponential increase in microslip activity (linear in
log-log space) is noted. The inset shows normed AE and
microslip shear failure data plotted together. The data are
renormalized by their total number for the inset.
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tion that all recorded events are captured, with the exception
of misidentification of multiple events as a single event. This
is rare, however. The shear microfailures termed microslips
are obtained from the shear stress signal by extracting events
that exceed a 0.002MPa threshold.
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Figure 4. PDFs of the AE and microslip data. (a) Occurrence
versus time plot (log-log scale) of all precursor data in ex-
periment p2393 (excluding data from the initial shearing
rate of 10 μm /s). The plot is constructed by summing as a
function of time, the number of precursors preceding each
stick slip. All stick slips are then set to zero time, and all data
are plotted together. See supporting information for details.
The slope of the exponential increase in AE activity (linear
in log-log space) is noted. (b) Occurrence versus time plot
(log-log scale) for microslip shear failures. The slope of
the exponential increase in microslip activity (linear in
log-log space) is noted. The inset shows normed AE and
microslip shear failure data plotted together. The data are
renormalized by their total number for the inset.
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Johnson, P. A., et al. "Acoustic emission and microslip 
precursors to stick-slip failure in sheared granular material." 
Geophysical Research Letters 40.21 (2013): 5627-5631.



Goal: Predict time until next failure (stress drop) 
from local window

M
L



Features
• “Now” prediction, window size ~1/10 cycle 
• Extract from acoustic emissions

• Centered moments: variance, skew, 
kurtosis… 

• Amplitude maximum, minimum, extreme 
quantiles 

• Counts over and under various thresholds 

• Time correlation measures — power 
spectrum, autocorrelation… 



Decision Trees
• Recursive splitting of training 

data 

• Splits maximize difference 
between the two branches of the 
training data 

• Leaves predict sample average of 
training data … …

Random forest
• Average over many decision trees

Eg. Survival odds 
of passengers of 

the Titanic 
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Physics of failure



ML, a bird’s eye view:
• Good data is crucial (even more important than algorithms). 

• Training is simply optimization of a cost function. 

• The essence of machine learning is empirical tuning of model 
complexity (hyperparameter selection) using validation data. 

• Keep test data separate from training/validation data! 

• scikit-learn.org is a great place to start. Gaussian Process  
and Random Forest methods are particularly easy. 

• Neural networks (next talk) are amazingly powerful with 
large datasets, but take a lot more fiddling.

http://scikit-learn.org

