## Nucleon form factors from PACS10 configuration

Takeshi Yamazaki



University of Tsukuba

Center for Computational Sciences

PACS Collaboration: E. Shintani, N. Tsukamoto,

Y. Aoki, K.-I. Ishikawa, Y. Kuramashi, S. Sasaki

Refs. PRD98:7:074510(2018), PRD99:1:014510(2019)

Lattice QCD workshop @ La Posada de Santa Fe, August 26-30, 2019

## Outline

## • Introduction

- Proton size puzzle
- Lattice QCD status
- Calculation method
- Simulation parameters
- Results
  - Axialvector, Tensor, and Scalar couplings
  - Electric and magnetic form factors
  - Axialvector form factor
  - Induced pseudoscalar form factor
- Summary

### Proton size puzzle

$${}^{\mathcal{P}}$$
roton charge radius :  $G_E(q^2) = 1 - rac{q^2}{6} \langle r^2 
angle_E + \mathcal{O}(q^4)$ 



Slide from S. Sasaki in QCDdownunder2017

 $\langle r^2 \rangle_E$  differs in  $\mu$ -proton and *e*-proton experiments.



#### Proton size puzzle: recent status

Discrepancies in *e*-proton recent *e*-proton agree with  $\mu$ -proton  $\Rightarrow$  More complicated situation

Several experiments proposed to resolve this puzzle e.g. ULQ<sup>2</sup> Collaboration (Tohoku Univ., Japan) Lattice QCD can calculate  $\langle r_E^2 \rangle$  from the first principle.

#### Status of Lattice QCD at ${\sim}2017$

Isovector charge radius



Our goal of nucleon form factor calculation

#### Status of Lattice QCD at ${\sim}2017$

Isovector charge radius



Our goal of nucleon form factor calculation near  $m_{\pi}^{\text{phys}} = 0.135 \text{ GeV}$ 

#### Status of Lattice QCD at ${\sim}2017$

Isovector charge radius



Our goal of nucleon form factor calculation near  $m_{\pi}^{\text{phys}} = 0.135 \text{ GeV} \rightarrow \text{reduce error} \leq 1\%$  at  $m_{\pi}^{\text{phys}} \langle r_E^2 \rangle$ : judge two experiments  $g_A$ : calculation with 3-pt; cf) 2-pt calculation [CalLat, Nature:558:91(2018)]

#### Calculation method



Figure [ETM, arXiv:1812.10311]

Nucleon 3-point function

$$C_{j\mu}^{3}(t,q) = \langle 0|N(\vec{0},t_{s})j_{\mu}(\vec{q},t)\overline{N}(-\vec{q},t_{0})|0\rangle \xrightarrow{t-t_{0}\gg1} \langle N|j_{\mu}|N\rangle$$

$$j_{\mu} = \begin{cases} j_{\mu}^{\mathsf{EM}} & ; \ G_{E}(q^{2}), G_{M}(q^{2}) \\ A_{\mu} & ; \ g_{A}, F_{A}(q^{2}), F_{P}(q^{2}) \\ T_{\mu\nu} & ; \ g_{T} \\ S & ; \ g_{S} \end{cases}$$

- isovector form factors  $(m_u = m_d)$  w/o disconnected diagrams
- large  $t_{sep} = t_s t_0$  or investigation of  $t_{sep}$  dependence tune smearing parameters for early plateau using wider smearing than other groups

## Simulation parameters

 $N_f = 2 + 1$  Iwasaki gauge + stout smeared Wilson clover quarks  $\beta = 1.82$  corresponding to  $a^{-1} = 2.3$  GeV  $L^{3}T$  $96^{4}$  $128^{4}$ La[fm]8.1 10.8 $m_{\pi}[MeV]$ 135 146 Exp Smear Exp Gauss 15 10 12 14 16 13 16 tsep 12800 2560 5120 6400 10240 2560 8960 Nmeas

Preliminary result

#### 96<sup>4</sup> lattice [PRD98:7:074510(2018)]

generated by K computer (HPCI Strategic Program Field 5) [PoS(LATTICE2015):075(2016)]

128<sup>4</sup> lattice (PACS10 configuration) [PRD99:1:014510(2019)] parameters of configuration [PRD99:1:014504(2019)]

PACS10 configuration: La > 10 fm at  $m_{\pi}^{phys}$  $L^{3}T = 128^{4}, 160^{4}, 256^{4}$  at a = 0.08, 0.06, 0.04 fm, respectively remove main systematic uncertainties in lattice QCD calculation

## Simulation parameters

 $N_f = 2 + 1$  Iwasaki gauge + stout smeared Wilson clover quarks  $\beta = 1.82$  corresponding to  $a^{-1} = 2.3$  GeV  $L^3T$ 96<sup>4</sup>  $128^{4}$ La[fm]8.1 10.8  $m_{\pi}$ [MeV] 146 135 Smear Exp Exp Gauss 15 10 12 14 16 13 16  $t_{sep}$ Nmeas 12800 2560 6400 10240 5120 2560 8960

Preliminary result

96<sup>4</sup> lattice [PRD98:7:074510(2018)] represented by PACS'18 Exponential smearing: parameters tuned for smear-local 2pt.

128<sup>4</sup> lattice (PACS10 configuration) [PRD99:1:014510(2019)] Cost reduction comparing 96<sup>4</sup> calculation

Exponential smearing: parameters tuned for 3pt. ( $\sim \times 2$ ) all-mode-averaging method ( $\sim \times 3$ ) [Blum *et al.*, PRD88:094503(2013);…] deflated low mode ( $\sim \times 10$ ) [Lüscher, JHEP0707:81(2007)]

Gaussian smearing (preliminary)  $\omega = 8, N = 110 \text{ w/ APE step}$ 

# Results

#### Axialvector coupling [PACS, PRD99:1:014510(2019)]



 $Z_A C_A^3(t,0)/C_N(t_s)$ ,  $C_N(t)$ : 2-pt function,  $Z_A$  calculated in SF scheme

averaging data in shaded region

Small  $t_{sep}$  and t dependence

Consistent with experimental value

Central value: Exp source averaging  $t_{sep}/a = 12, 14, 16$ 

#### Axialvector coupling [PACS, PRD99:1:014510(2019)]





averaging data in shaded region

Small  $t_{sep}$  and t dependence

Consistent with experimental value

Central value: Exp source averaging  $t_{sep}/a = 12, 14, 16$ 

#### Bare Tensor and Scalar couplings



averaging data in shaded region

- $g_T$  : Little t dependence seen
- $g_S$  : Large error at large  $t_{\rm Sep}$

 $Z_T^{\overline{\text{MS}}}(2\text{GeV})$  and  $Z_S^{\overline{\text{MS}}}(2\text{GeV})$  calculated by N. Tsukamoto

RI/SMOM scheme in  $\mu = 1-5$  [GeV]  $\rightarrow$  convert to  $\overline{\text{MS}}$  scheme at 2 GeV



 $\mu$  dependence is seen.

- lattice artifact at large  $\mu$
- non-perturbative effect at small  $\mu$

Remove  $\mu$  dependence by fit with  $c_0 + c_1 \mu^2 + c_2 \mu^4 + c_{-1} / \mu^2$ 

$$Z_T^{\overline{MS}}(2\text{GeV})$$
 and  $Z_S^{\overline{MS}}(2\text{GeV})$  calculated by N. Tsukamoto

RI/SMOM scheme in  $\mu = 1-5$  [GeV]  $\rightarrow$  convert to  $\overline{\text{MS}}$  scheme at 2 GeV



Remove  $\mu$  dependence by fit with  $c_0 + c_1 \mu^2 + c_2 \mu^4 + c_{-1}/\mu^2$ Preliminary results

$$Z_T^{\overline{\text{MS}}}(2\text{GeV}) = 1.030(5)_{\text{stat}}(X)_{\text{sys}}$$
$$Z_S^{\overline{\text{MS}}}(2\text{GeV}) = 0.933(7)_{\text{stat}}(Y)_{\text{sys}}$$

 $g_T^{\overline{\rm MS}}({\rm 2GeV})$  and  $g_S^{\overline{\rm MS}}({\rm 2GeV})$  calculated by N. Tsukamoto



 $g_T$ :  $t_{sep}$  dependence seen;  $t_{sep}/a \gtrsim 12$  is safe from excited state  $g_S$ : small  $t_{sep}$  dependence; large statistical error

Consistent with PACS'18 [PRD98:7:074510(2018)] Consistent with FLAG19 average in  $g_T$  and  $g_S$ 

## $t_{\sf Sep}$ dependence of $G^v_M(q^2)$ [pacs, prd99:1:014510(2019)]

Exponential source,  $Z_V$  calculated in SF scheme Ratio of 3-pt to 2-pt functions



averaging data in shaded region

Small  $t_{sep}$  and t dependence in all  $q^2$ Central value: averaging  $t_{sep}/a = 12, 14, 16$ 

### Isovector EM form factors [PACS, PRD99:1:014510(2019)]



Small  $t_{sep}$  dependence

Consistent with PACS'18 [PRD98:7:074510(2018)] with much smaller error

### Isovector EM form factors [PACS, PRD99:1:014510(2019)]



#### Small $t_{sep}$ dependence

Consistent with PACS'18 [PRD98:7:074510(2018)] with much smaller error

Discrepancy in  $G_E$  with Gauss source

 $\rightarrow$  under investigation, will not discuss  $G_E$  in the following

### Isovector EM form factors [PACS, PRD99:1:014510(2019)]



Small  $t_{sep}$  dependence

Consistent with PACS'18 [PRD98:7:074510(2018)] with much smaller error  $G_M^v(q^2)$  agrees with experimental curve.

Dipole form fit works. dipole form:  $G_M^v(q^2) = \frac{G_M^v(0)}{(1 + \langle r_M^2 \rangle_v q^2 / [12G_M^v(0)])^2}$ 

# Comparison of $\langle r_M^2 angle_v$ and $\mu_v$ [pacs, prd99:1:014510(2019)]



statistical and systematic errors (fit form and  $t_{sep}$  dependences) added in quadrature

Much smaller error than PACS'18

Consistent with experiment and recent lattice results

## Axialvector form factor $F_A(q^2)$ [pacs, prd99:1:014510(2019)]



small  $t_{sep}$  dependence; Consistent with Gauss source Consistent with PACS'18 with much smaller error  $g_A$  and  $\sqrt{\langle r_A^2 \rangle}$  agree with experiment

## Induced pseudoscalar form factor $F_P(q^2)$ [PACS, PRD99:1:014510(2019)]



significantly smaller than experiments and PPD Pion pole dominance (PPD):  $2M_NF_P(q^2) = \frac{4M_N^2F_A(q^2)}{m_\pi^2 + q^2}$ 

## Induced pseudoscalar form factor $F_P(q^2)$ [PACS, PRD99:1:014510(2019)]



clear  $t_{sep}$  dependence  $\rightarrow$  large excited state contribution

#### Several discussions of excited state contribution

quark mass shift in Axial Ward-Takahashi identity

[Sasaki and TY, PRD78:014510(2008); PACS, PRD98:7:074510(2018)]  $\pi N$  scattering contribution in HBChPT [Bär, PRD99:5:054506(2018)] projection using  $\langle N|A_i|N\rangle$  and  $\langle N|A_4|N\rangle$  [Bali *et al.*, PLB789:666(2019)] multi-exponential fits of 3-pt function [PNDME, Lattice2019]

$$R_{A_{i}} = \frac{C_{A_{i}}(t,q)}{e^{-M_{N}(t-t_{\text{src}})}e^{-E_{N}(t_{\text{sink}}-t)}} \propto F_{A}(q^{2})\delta_{i3} - \frac{q_{i}q_{3}}{E_{N}+M_{N}}F_{P}(q^{2})$$
$$C_{A_{\mu}}(t,q) = \operatorname{Tr}\left[\mathcal{P}_{53}\langle 0|N(t_{\text{sink}},0)A_{\mu}(t,q)\overline{N}(t_{\text{src}},-q)|0\rangle\right], \ \mathcal{P}_{53} = \frac{1+\gamma_{4}}{2}\gamma_{5}\gamma_{3}$$



Significant excited state contamination is observed only in  $F_P(q^2)$ .

$$R_{A_{i}} = \frac{C_{A_{i}}(t,q)}{e^{-M_{N}(t-t_{\text{src}})}e^{-E_{N}(t_{\text{sink}}-t)}} \propto F_{A}(q^{2})\delta_{i3} - \frac{q_{i}q_{3}}{E_{N}+M_{N}}F_{P}(q^{2})$$
$$C_{A_{\mu}}(t,q) = \operatorname{Tr}\left[\mathcal{P}_{53}\langle 0|N(t_{\text{sink}},0)A_{\mu}(t,q)\overline{N}(t_{\text{src}},-q)|0\rangle\right], \ \mathcal{P}_{53} = \frac{1+\gamma_{4}}{2}\gamma_{5}\gamma_{3}$$

$$R_{A_{3}}^{0} \propto F_{A}(q^{2}) \qquad (q_{3} = 0)$$

$$R_{A_{3}}^{NZ} \propto F_{A}(q^{2}) - \frac{q_{3}^{2}}{E_{N} + M_{N}} F_{P}(q^{2}) \quad (q_{3} \neq 0)$$

$$R_{A_{j}} \propto -\frac{q_{3}q_{j}}{E_{N} + M_{N}} F_{P}(q^{2}) \qquad (q_{3}, q_{j} \neq 0, j = 1, 2)$$

Determination of  $F_A(q^2)$  and  $F_P(q^2)$ 

| $(\vec{q}L/2\pi)^2$ | $ec{q}L/2\pi$ example | $F_A(q^2)$                 | $F_P(q^2)$                               |
|---------------------|-----------------------|----------------------------|------------------------------------------|
| 1                   | (1,0,0)               | $R^{0}_{A_{3}}$            | $R_{A_3}^{NZ}$ , $R_{A_3}^0$             |
| 2                   | (1,1,0)               | $R^{0}_{A_{3}}$            | $R_{A_i}$                                |
| 3                   | (1, 1, 1)             | $R_{A_3}^{NZ}$ , $R_{A_j}$ | $R_{A_i}$                                |
| 4                   | (2,0,0)               | $R^{0}_{A_{3}}$            | $R_{A_{3}}^{\dot{NZ}}$ , $R_{A_{3}}^{0}$ |



not significant contamination significant contamination Excited state contamination proportional to  $q_3$ Contamination canceled in proper combination of  $R_{A_3}^{NZ}$  and  $R_{A_j}$ 

Expected properties of excited state contamination Excited state contamination proportional to  $q_3$ Contamination canceled in proper combination of  $R_{A_3}^{NZ}$  and  $R_{A_i}$ 

Same properties are predicted in HBChPT. LO HBChPT [Bär, PRD99:5:054506(2018)] Leading  $\pi N$  contribution proportional to  $q_3$ Cancellation of leading  $\pi N$  contributions can be shown using PPD assumption Pion pole dominance (PPD):  $F_P(q^2) = \frac{2M_N F_A(q^2)}{m_s^2 + q^2}$ 

Expected properties useful to develop new analysis method Similar cancellation may happen in  $A_4$  and  $A_i$  matrix elements.

## Summary

Nucleon form factors by PACS Collaboration large volume  $> (8 \text{ fm})^3$  (near) at physical pion mass  $96^4$  [PRD98:7:074510(2018)] and PACS10 [PRD99:1:014510(2019)] configurations

Isovector couplings and form factors

- $g_A$  agrees with experiment, and  $g_T,g_S$  agree with FLAG19 average
- $-G_M(q^2), F_A(q^2)$  agree well with experiment
- $-F_P(q^2)$  has large  $t_{sep}$  dependence (new analysis method necessary)

### Future works

- investigate discrepancy in  $G_E(q^2)$
- continuum extrapolation
   PACS10 configuration 160<sup>4</sup> and 256<sup>4</sup>
- disconnected diagram calculation

# Back up

#### Isovector form factors

• Vector and induced tensor form factors

(elastic proton-electron scattering)

$$\langle N, p | V_{\mu}(q) | N, p' \rangle = \overline{u}_{N}(p) \left( F_{1}(q^{2})\gamma_{\mu} + i\sigma_{\mu\nu}q_{\nu}\frac{F_{2}(q^{2})}{2M_{N}} \right) u_{N}(p')$$

$$F_{1}(q^{2}), F_{2}(q^{2}) \rightarrow \quad G_{E}(q^{2}) = F_{1}(q^{2}) - \frac{q^{2}}{4M_{N}}F_{2}(q^{2})$$

$$G_{M}(q^{2}) = F_{1}(q^{2}) + F_{2}(q^{2})$$

Axialvector and induced pseudoscalar form factors
 (β decay; muon capture on proton; neutrino-nucleon scattering; pion electropro-

duction)

$$\langle N, p | A_{\mu}(q) | N, p' \rangle = \overline{u}_{N}(p) \left( F_{A}(q^{2}) i \gamma_{5} \gamma_{\mu} + i \gamma_{5} q_{\mu} F_{P}(q^{2}) \right) u_{N}(p')$$

- Pseudoscalar form factor  $\langle N, p | P(q) | N, p' \rangle = \overline{u}_N(p) \left( G_P(q^2) \gamma_5 \right) u_N(p')$
- Axial Ward-Takahashi identity  $2M_N F_A(q^2) q^2 F_P(q^2) = 2m_q G_P(q^2)$

## Effective mass on 128<sup>4</sup> lattice



Gauss source preliminary

Exponential and Gauss sources : plateau starts in  $t \sim 10$ 

Exponential : easy to tune parameter

error of 3pt at the same  $t_{sep}$ : exponential > Gauss

 $\rightarrow$  error of 2pt : Exp-Exp > Gauss-Gauss, e.g., t = 16