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Max Hansen & SRS:   

“Relativistic, model-independent, three-particle quantization condition,” 

 arXiv:1408.5933 (PRD) [HS14] 

“Expressing the 3-particle finite-volume spectrum in terms of the 3-to-3 scattering amplitude,”  

arXiv:1504.04028 (PRD) [HS15] 

“Perturbative results for 2- & 3-particle threshold energies in finite volume,” 

 arXiv:1509.07929 (PRD) [HSPT15] 

“Threshold expansion of the 3-particle quantization condition,”  

arXiv:1602.00324 (PRD) [HSTH15] 

“Applying the relativistic quantization condition to a 3-particle bound state in a periodic box,” 

arXiv: 1609.04317 (PRD) [HSBS16] 

“Lattice QCD and three-particle decays of Resonances,” 

arXiv: 1901.00483 (to appear in Ann. Rev. Nucl. Part. Science) [HSREV19]
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Raúl Briceño, Max Hansen & SRS:  

“Relating the finite-volume spectrum and the 2-and-3-particle 
S-matrix for relativistic systems of identical scalar particles,” 

 arXiv:1701.07465 (PRD) [BHS17] 

“Numerical study of the relativistic three-body quantization 
condition in the isotropic approximation,” 

arXiv:1803.04169 (PRD) [BHS18] 

“Three-particle systems with resonant sub-processes in a finite 
volume,” arXiv:1810.01429 (PRD 19) [BHS19] 

  

Tyler Blanton, Fernando Romero-López & SRS:  

“Implementing the three-particle quantization condition 
including higher partial waves,” arXiv:1901.07095 (JHEP) 

[BRS19] 

“I=3 three-pion scattering amplitude from lattice QCD,” 
in progress

SRS 
“Testing the threshold expansion for three-particle energies at fourth order in φ4 theory,” 

arXiv:1707.04279 (PRD) [SPT17]
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Raúl Briceño, Max Hansen, SRS & Adam Szczepaniak:  

“Unitarity of the infinite-volume three-particle scattering 
amplitude arising from a finite-volume formalism,” 

 arXiv:1905.11188 (PRD to appear) 
  

Andrew Jackura, S. Dawid, C. Fernández-Ramírez, V. Mathieu, 
M. Mikhasenko, A. Pilloni, SRS & A. Szczepaniak: 

 

“On the Equivalence of Three-Particle Scattering Formalisms,’’ 
arXiv:1905.12007 (PRD)

Tyler Blanton, Raúl Briceño, Max Hansen, Fernando Romero-López, SRS:  

“Numerical exploration of three relativistic particles in a finite volume 
including two-particle resonances and bound states”, arXiv:1908.02411 

(JHEP to appear)
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Alternate 3-particle approaches
★NREFT approach 

• H.-W. Hammer, J.-Y. Pang & A. Rusetsky, 1706.07700, JHEP & 1707.02176 , JHEP [Formalism & examples]

• M. Döring et al., 1802.03362 , PRD [Numerical implementation]

• J.-Y. Pang et al., 1902.01111 , PRD [large volume expansion for excited levels]

★ Finite-volume unitarity (FVU) approach 

• M. Mai & M. Döring, 1709.08222 , EPJA  [formalism]

• M. Mai et al., 1706.06118, EPJA [unitary parametrization of M3 used in FVU approach]

• M. Mai & M. Döring, 1807.04746 , PRL [3 pion spectrum at finite-volume from FVU]

★HALQCD approach [Sinya Aoki’s talk?] 

• T. Doi et al. (HALQCD collab.), 1106.2276, Prog.Theor.Phys. [3 nucleon potentials in NR regime]

http://arxiv.org/abs/arXiv:1706.07700
http://arxiv.org/abs/arXiv:1707.02176
http://arxiv.org/abs/arXiv:1802.03362
http://arxiv.org/abs/arXiv:1902.01111
http://arxiv.org/abs/arXiv:1709.08222
http://arxiv.org/abs/arXiv:1706.06118
http://arxiv.org/abs/arXiv:1807.04746
http://arxiv.org/abs/arXiv:1106.2276
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Motivations for 
studying three (or more) 

particles using LQCD

�7



/66S. Sharpe, ``Implementing the three-particle quantization condition,” Santa Fe workshop “Lattice QCD”, 8/29/2019

Studying resonances

�8



/66S. Sharpe, ``Implementing the three-particle quantization condition,” Santa Fe workshop “Lattice QCD”, 8/29/2019

Studying resonances

�8

• Most resonances have 3 (or more) particle decay channels

•                                                       (no subchannel resonances)                                                       

•   

•  Roper:                               (branching ratio 25-50%)

•  

•                                      (studied by HALQCD)  

ω(782, IGJPC = 0−1−−) → 3π

a2(1320, IGJPC = 1−2++) → ρπ → 3π

N(1440) → Δπ → Nππ

X(3872) → J/Ψππ

Zc(3900) → πJ/ψ, ππηc, D̄D*
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• N.B. If a resonance has both 2- and 3-particle strong 
decays, then 2-particle methods fail—channels cannot 
be separated as they can in experiment
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Weak decays

• Calculating weak decay amplitudes/form factors 
involving 3 particles, e.g. K→πππ
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Weak decays

• Calculating weak decay amplitudes/form factors 
involving 3 particles, e.g. K→πππ
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• N.B. Can study weak K→2π decays independently of 
K→3π, since strong interactions do not mix these final 
states (in isospin-symmetric limit)
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EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

CERN-EP-2019-042
LHCb-PAPER-2019-006

March 21, 2019

Observation of CP violation in
charm decays

LHCb collaboration†

Abstract

A search for charge-parity (CP ) violation in D0
! K�K+ and D0

! ⇡�⇡+ de-
cays is reported, using pp collision data corresponding to an integrated luminosity
of 6 fb�1 collected at a center-of-mass energy of 13TeV with the LHCb detec-
tor. The flavor of the charm meson is inferred from the charge of the pion in
D⇤(2010)+! D0⇡+ decays or from the charge of the muon in B! D0µ�⌫̄µX decays.
The di↵erence between the CP asymmetries in D0

! K�K+ and D0
! ⇡�⇡+ decays

is measured to be �ACP = [�18.2± 3.2 (stat.)± 0.9 (syst.)]⇥ 10�4 for ⇡-tagged
and �ACP = [�9± 8 (stat.)± 5 (syst.)]⇥ 10�4 for µ-tagged D0 mesons. Combining
these with previous LHCb results leads to

�ACP = (�15.4± 2.9)⇥ 10�4,

where the uncertainty includes both statistical and systematic contributions. The
measured value di↵ers from zero by more than five standard deviations. This is the
first observation of CP violation in the decay of charm hadrons.

Submitted to Phys. Rev. Lett.

c� 2019 CERN for the benefit of the LHCb collaboration. CC-BY-4.0 licence.

†Authors are listed at the end of this paper.
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A more distant motivation
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• Calculating CP-violation in D→ππ, KK̅ in the Standard Model

• Finite-volume state is a mix of 2π, KK̅, ηη, 4π, 6π, …

• Need 4 (or more) particles in the box!

weak strong

D 2π 4π
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3-body interactions

�12

• Determining NN & NNN interactions

• Input for effective field theory treatments of larger nuclei & nuclear matter

• NNN interaction important for determining properties of neutron stars

• Similarly, πππ, πKK̅, … interactions needed for study 
of pion/kaon condensation
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LQCD spectrum already includes 3+ particle states
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Two- and three-pion finite-volume spectra at maximal isospin from lattice QCD

Ben Hörz∗

Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Andrew Hanlon†

Helmholtz-Institut Mainz, Johannes Gutenberg-Universität, 55099 Mainz, Germany
(Dated: May 13, 2019)

We present the three-pion spectrum with maximum isospin in a finite volume determined from
lattice QCD, including, for the first time, excited states across various irreducible representations at
zero and nonzero total momentum, in addition to the ground states in these channels. The required
correlation functions, from which the spectrum is extracted, are computed using a newly imple-
mented algorithm which reduces the number of operations, and hence speeds up the computation
by more than an order of magnitude. The results for the I = 3 three-pion and the I = 2 two-pion
spectrum are publicly available, including all correlations, and can be used to test the available
three-particle finite-volume approaches to extracting three-pion interactions.

INTRODUCTION

Lattice QCD calculations of scattering amplitudes
have matured significantly over the last decade owing to
marked increases in available computational capacity and
improved algorithms. A widely used approach for con-
straining scattering observables from simulations relies
on precise measurements of the interacting energy levels
of QCD in a finite volume, which encode hadron interac-
tions via the shifts from their noninteracting values [1–5]
(see [6] for a survey of extensions of the formalism and
numerical results).
So far, practical calculations in lattice QCD have been

mostly confined to the two-hadron sector. Though a
large abundance of lattice data is currently available for
meson-meson scattering (e.g. ππ scattering in all three
isospin channels [7–24], see also [25, 26] for results using
a potential-based approach), these calculations are for-
mally restricted to energies below thresholds involving
three or more hadrons due to the use of a formalism for
relating finite-volume spectra to scattering amplitudes
that is limited to two-hadron scattering. This limita-
tion has precluded a proper lattice QCD study of sys-
tems involving three or more stable hadrons at light pion
masses, e.g. the Roper resonance which decays to both
two- and three-particle channels, the ω(782) decaying to
three pions, many of the X , Y and Z resonances, and
three-nucleon interactions relevant for nuclear physics.
However, significant progress has been made recently

in developing the necessary formalism to interpret the
three-particle finite-volume spectrum (for a review see
[27]), both by extending the two-particle derivation to
include three-hadron states [28–31], as well as through
alternative approaches [32–36][72]. Thus, although the
three-particle formalism is quite mature—including nu-
merical explorations of the corresponding quantization
conditions [36, 37][73]—data for three-particle finite-
volume QCD spectra is lacking since previous lattice
QCD calculations have been restricted to the extraction

of multi-meson ground states at rest [38–40].

We fill this gap by providing the two-pion and three-
pion spectra with maximum isospin in various irreducible
representations at zero and nonzero total momentum, in-
cluding not only the ground states but the excited states
in the elastic region as well, i.e. for center-of-mass ener-
gies Ecm/mπ below 4 and 5 for isospin I = 2 and I = 3
respectively. This data, which is made public, including
all correlations, will allow for an investigation of the var-
ious three-particle interaction parameters as well as the
effect of higher partial waves, for which the quantization
condition has been worked out recently [41].

A technical challenge concerns the growing number of
Wick contractions required to compute correlation func-
tions of suitable interpolating operators—from which the
spectrum is extracted—as the number of valence quark
fields increases. The continued need for improved algo-
rithms to perform these contractions was pointed out re-
cently [42] and indeed was a limiting factor in a recent
study of meson-baryon scattering in the ∆ channel [43].
While Refs. [44–49] investigated efficient contraction al-
gorithms at the quark level, we employ the stochastic
variant [50] of distillation [51] to treat quark propagation.
In this framework, it is useful to view the correlation
function construction in terms of contractions of tensors
associated with the involved hadrons. Then, to reduce
the operation count required to evaluate all contractions,
we use a method which is well-known in quantum chem-
istry [52–54] and has attracted renewed interest recently
in the context of tensor networks [55]. The proposed opti-
mization achieves an operation-count reduction by more
than an order of magnitude, and its implementation is
made publicly available.

This letter is organized as follows: We first describe
the interpolating operators employed in this work and
the method used to speed up the construction of their
correlation functions. This is followed by a presentation
of the analysis and results.
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FIG. 2: I = 2 two-pion spectrum in various irreps Λ(d2)
with total momentum P = 2π

L
d. Open symbols denote the

measured interacting energies which are shifted from their
noninteracting values shown as dashed lines.

5a, t∗ = 10a), corresponding to roughly 0.32 fm and
0.64 fm in physical units [61], in order to extract not only
the ground state but also excited states in most irreps.
Results from different (t0, t∗) are indistinguishable, pre-
sumably due to the weak interaction in I = 2 and I = 3
pion scattering which results in little mixing of our inter-
polating operators, in which each hadron has been pro-
jected to definite momentum and is hence expected to
overlap predominantly with a single state.
For two-pion states the difference ∆E between inter-

acting and noninteracting energies is determined from
single-exponential fits at sufficiently large time separa-
tions to the ratios

Ri(t) =
Ĉii(t)

Cπp1
(t)Cπp2

(t)
large t
−−−−→ Ae−∆Eit (8)

of diagonal elements of the ‘optimized’ correlation ma-
trix Ĉ (i.e. the matrix formed from rotations by the
eigenvectors of the generalized eigenvalue problem) and
two single-pion correlation functions, and similarly for
the three-pion states [38]. Absolute energies are recon-
structed from those energy differences using the single-
pion dispersion relation.
Two-pion and three-pion spectra: The two- and three-

pion spectra with maximum isospin are extracted across a
number of irreps with zero and nonzero total momentum.
The attainable precision is generally at the few-permille
level for the energies measured in units of the single-
pion mass amπ = 0.06504(33). Figures 2 and 3 show
the extracted two- and three-pion spectra together with
the noninteracting energies, displaying significant energy
shifts in all considered three-pion irreps. In particular,
interacting energy levels from different irreps that con-
tain some degeneracy of the noninteracting spectra (e.g.
A−

1u and E−
u at zero total momentum) differ substantially,

which may suggest sensitivity to different combinations
of low-energy scattering parameters.
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FIG. 3: Same as Fig. 2 but for the I = 3 three-pion spectrum.

Only a dedicated investigation of those spectra in the
framework of one of the available three-particle finite-
volume formalisms can disentangle the effects of two-
particle scattering from genuine three-particle scattering
effects, which necessitates further work along the lines of
[35, 41] to apply to the energies in all irreps presented
here. In order to facilitate further investigation along
these lines, the two-pion and three-pion spectra presented
here are made publicly available, including all correla-
tions. The values and covariance matrix of all extracted
energies, as well as the single-pion mass, are given in
Table VII, and the original bootstrap samples from this
analysis are available as ancillary files with the arXiv
submission.
The two- and three-pion excited state spectrum was

previously predicted in [36], with input from the ground
state energies at rest determined in a lattice calculation
[38, 39]. However, comparison with our results is difficult
due to their use of a much smaller volume making their
results subject to more significant finite-volume effects,
especially at pion masses near mπ ≈ 200MeV where the
exponential volume effects may become non-negligible.

CONCLUSIONS AND OUTLOOK

We have presented the I = 3 three-pion spectrum in fi-
nite volume from lattice QCD in which, for the first time,
the excited states in various irreps at zero and nonzero
total momentum, in addition to the ground states, have
been extracted. These spectra need to be interpreted in
the framework of one of the available three-particle finite-
volume formalisms in order to extract infinite-volume in-
formation on three-pion interactions. In order to facil-
itate those investigations, which will require generaliza-
tions of the formulae currently available in the literature,
all spectra are made public, including their correlations.
We also described a method, applied for the first

time in lattice QCD, to reduce the computational re-

[arXiv:1905.04277]
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Two- and three-pion finite-volume spectra at maximal isospin from lattice QCD

Ben Hörz∗

Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Andrew Hanlon†

Helmholtz-Institut Mainz, Johannes Gutenberg-Universität, 55099 Mainz, Germany
(Dated: May 13, 2019)

We present the three-pion spectrum with maximum isospin in a finite volume determined from
lattice QCD, including, for the first time, excited states across various irreducible representations at
zero and nonzero total momentum, in addition to the ground states in these channels. The required
correlation functions, from which the spectrum is extracted, are computed using a newly imple-
mented algorithm which reduces the number of operations, and hence speeds up the computation
by more than an order of magnitude. The results for the I = 3 three-pion and the I = 2 two-pion
spectrum are publicly available, including all correlations, and can be used to test the available
three-particle finite-volume approaches to extracting three-pion interactions.

INTRODUCTION

Lattice QCD calculations of scattering amplitudes
have matured significantly over the last decade owing to
marked increases in available computational capacity and
improved algorithms. A widely used approach for con-
straining scattering observables from simulations relies
on precise measurements of the interacting energy levels
of QCD in a finite volume, which encode hadron interac-
tions via the shifts from their noninteracting values [1–5]
(see [6] for a survey of extensions of the formalism and
numerical results).
So far, practical calculations in lattice QCD have been

mostly confined to the two-hadron sector. Though a
large abundance of lattice data is currently available for
meson-meson scattering (e.g. ππ scattering in all three
isospin channels [7–24], see also [25, 26] for results using
a potential-based approach), these calculations are for-
mally restricted to energies below thresholds involving
three or more hadrons due to the use of a formalism for
relating finite-volume spectra to scattering amplitudes
that is limited to two-hadron scattering. This limita-
tion has precluded a proper lattice QCD study of sys-
tems involving three or more stable hadrons at light pion
masses, e.g. the Roper resonance which decays to both
two- and three-particle channels, the ω(782) decaying to
three pions, many of the X , Y and Z resonances, and
three-nucleon interactions relevant for nuclear physics.
However, significant progress has been made recently

in developing the necessary formalism to interpret the
three-particle finite-volume spectrum (for a review see
[27]), both by extending the two-particle derivation to
include three-hadron states [28–31], as well as through
alternative approaches [32–36][72]. Thus, although the
three-particle formalism is quite mature—including nu-
merical explorations of the corresponding quantization
conditions [36, 37][73]—data for three-particle finite-
volume QCD spectra is lacking since previous lattice
QCD calculations have been restricted to the extraction

of multi-meson ground states at rest [38–40].

We fill this gap by providing the two-pion and three-
pion spectra with maximum isospin in various irreducible
representations at zero and nonzero total momentum, in-
cluding not only the ground states but the excited states
in the elastic region as well, i.e. for center-of-mass ener-
gies Ecm/mπ below 4 and 5 for isospin I = 2 and I = 3
respectively. This data, which is made public, including
all correlations, will allow for an investigation of the var-
ious three-particle interaction parameters as well as the
effect of higher partial waves, for which the quantization
condition has been worked out recently [41].

A technical challenge concerns the growing number of
Wick contractions required to compute correlation func-
tions of suitable interpolating operators—from which the
spectrum is extracted—as the number of valence quark
fields increases. The continued need for improved algo-
rithms to perform these contractions was pointed out re-
cently [42] and indeed was a limiting factor in a recent
study of meson-baryon scattering in the ∆ channel [43].
While Refs. [44–49] investigated efficient contraction al-
gorithms at the quark level, we employ the stochastic
variant [50] of distillation [51] to treat quark propagation.
In this framework, it is useful to view the correlation
function construction in terms of contractions of tensors
associated with the involved hadrons. Then, to reduce
the operation count required to evaluate all contractions,
we use a method which is well-known in quantum chem-
istry [52–54] and has attracted renewed interest recently
in the context of tensor networks [55]. The proposed opti-
mization achieves an operation-count reduction by more
than an order of magnitude, and its implementation is
made publicly available.

This letter is organized as follows: We first describe
the interpolating operators employed in this work and
the method used to speed up the construction of their
correlation functions. This is followed by a presentation
of the analysis and results.
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FIG. 2: I = 2 two-pion spectrum in various irreps Λ(d2)
with total momentum P = 2π

L
d. Open symbols denote the

measured interacting energies which are shifted from their
noninteracting values shown as dashed lines.

5a, t∗ = 10a), corresponding to roughly 0.32 fm and
0.64 fm in physical units [61], in order to extract not only
the ground state but also excited states in most irreps.
Results from different (t0, t∗) are indistinguishable, pre-
sumably due to the weak interaction in I = 2 and I = 3
pion scattering which results in little mixing of our inter-
polating operators, in which each hadron has been pro-
jected to definite momentum and is hence expected to
overlap predominantly with a single state.
For two-pion states the difference ∆E between inter-

acting and noninteracting energies is determined from
single-exponential fits at sufficiently large time separa-
tions to the ratios

Ri(t) =
Ĉii(t)

Cπp1
(t)Cπp2

(t)
large t
−−−−→ Ae−∆Eit (8)

of diagonal elements of the ‘optimized’ correlation ma-
trix Ĉ (i.e. the matrix formed from rotations by the
eigenvectors of the generalized eigenvalue problem) and
two single-pion correlation functions, and similarly for
the three-pion states [38]. Absolute energies are recon-
structed from those energy differences using the single-
pion dispersion relation.
Two-pion and three-pion spectra: The two- and three-

pion spectra with maximum isospin are extracted across a
number of irreps with zero and nonzero total momentum.
The attainable precision is generally at the few-permille
level for the energies measured in units of the single-
pion mass amπ = 0.06504(33). Figures 2 and 3 show
the extracted two- and three-pion spectra together with
the noninteracting energies, displaying significant energy
shifts in all considered three-pion irreps. In particular,
interacting energy levels from different irreps that con-
tain some degeneracy of the noninteracting spectra (e.g.
A−

1u and E−
u at zero total momentum) differ substantially,

which may suggest sensitivity to different combinations
of low-energy scattering parameters.
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FIG. 3: Same as Fig. 2 but for the I = 3 three-pion spectrum.

Only a dedicated investigation of those spectra in the
framework of one of the available three-particle finite-
volume formalisms can disentangle the effects of two-
particle scattering from genuine three-particle scattering
effects, which necessitates further work along the lines of
[35, 41] to apply to the energies in all irreps presented
here. In order to facilitate further investigation along
these lines, the two-pion and three-pion spectra presented
here are made publicly available, including all correla-
tions. The values and covariance matrix of all extracted
energies, as well as the single-pion mass, are given in
Table VII, and the original bootstrap samples from this
analysis are available as ancillary files with the arXiv
submission.
The two- and three-pion excited state spectrum was

previously predicted in [36], with input from the ground
state energies at rest determined in a lattice calculation
[38, 39]. However, comparison with our results is difficult
due to their use of a much smaller volume making their
results subject to more significant finite-volume effects,
especially at pion masses near mπ ≈ 200MeV where the
exponential volume effects may become non-negligible.

CONCLUSIONS AND OUTLOOK

We have presented the I = 3 three-pion spectrum in fi-
nite volume from lattice QCD in which, for the first time,
the excited states in various irreps at zero and nonzero
total momentum, in addition to the ground states, have
been extracted. These spectra need to be interpreted in
the framework of one of the available three-particle finite-
volume formalisms in order to extract infinite-volume in-
formation on three-pion interactions. In order to facil-
itate those investigations, which will require generaliza-
tions of the formulae currently available in the literature,
all spectra are made public, including their correlations.
We also described a method, applied for the first

time in lattice QCD, to reduce the computational re-

[arXiv:1905.04277]

Will analyze in 5-slide talk
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• Lattice QCD can calculate energy levels of multiparticle 
systems in a box

• How are these related to infinite-volume scattering 
amplitudes (which determine resonance properties)?
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• Lattice QCD can calculate energy levels of multiparticle 
systems in a box

• How are these related to infinite-volume scattering 
amplitudes (which determine resonance properties)?

�15

iMn!m

Discrete energy 
spectrum

Scattering 
amplitudes

E0(L)

E1(L)

E2(L)

The fundamental issue

?

N.B.This is a finite volume

QFT problem (can ignore

lattice spacing)
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Foundational results

L

• If L > 2R, spectrum related to 
2→2 scattering amplitude up to 
corrections ~e−MπL  (arising from 
tail of interaction) [Lüscher, 86,91]

~R (interaction range)
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Foundational results

L

We ignore such exponentially-suppressed 
corrections throughout: 

If Mπ L=4 / 5 / 6, exp(-Mπ L)~2 / 0.7 / 0.2%

• If L > 2R, spectrum related to 
2→2 scattering amplitude up to 
corrections ~e−MπL  (arising from 
tail of interaction) [Lüscher, 86,91]

~R (interaction range)
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Foundational results

L

• If L > 2R, spectrum related to 
2→2 scattering amplitude up to 
corrections ~e−MπL  (arising from 
tail of interaction) [Lüscher, 86,91]

~R (interaction range)

• Spectrum is related to 2→2, 2→3 
& 3→3 scattering amplitudes up 
to corrections ~e−MπL            

[Polejaeva & Rusetsky,12]
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• Two particles (say pions) in cubic box of size L with PBC and total momentum P

• Below inelastic threshold (4 pions if have Z2 symmetry), the finite-volume 
spectrum E1, E2, ... is given by solutions to a equation in partial-wave (l,m) space 
(up to exponentially suppressed corrections)

[Lüscher 86 & 91; Rummukainen & Gottlieb 85; Kim, Sachrajda & SRS 05; …]

Single-channel 2-particle quantization condition

det [FPV(E, ⃗P , L)−1 + 𝒦2(E*)] = 0
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• Two particles (say pions) in cubic box of size L with PBC and total momentum P

• Below inelastic threshold (4 pions if have Z2 symmetry), the finite-volume 
spectrum E1, E2, ... is given by solutions to a equation in partial-wave (l,m) space 
(up to exponentially suppressed corrections)

• K2~tan δ/q  is the K-matrix, which is diagonal in l,m 

• FPV is a known kinematical “zeta-function” depending on the box parameters; 
it is off-diagonal in l,m, since the box violates rotation symmetry

• Beware when reading the literature, as each collaboration uses different 
notation for what I call F: sometimes B (box function), sometimes M

[Lüscher 86 & 91; Rummukainen & Gottlieb 85; Kim, Sachrajda & SRS 05; …]

Single-channel 2-particle quantization condition

det [FPV(E, ⃗P , L)−1 + 𝒦2(E*)] = 0
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Single-channel 2-particle quantization condition

• Infinite-dimensional determinant must be truncated to be practical; 
truncate by assuming that K2 vanishes above lmax 

• If lmax=0, obtain one-to-one relation between energy levels and K2

det [FPV(E, ⃗P , L)−1 + 𝒦2(E*)] = 0

𝒦(ℓ=0)
2 (E*n ) = −

1

FPV;00;00(En, ⃗P , L)

“measured” 

energy-level
CM energy 

E⇤
n =

q
E2

n � ~P 2
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ρ resonance from LQCD
• Most results to date assume lmax=1 and work with unphysical quark masses

�19
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FIG. 13 Left: Elastic I = 1 ⇡⇡ scattering phase-shifts in P -wave determined from finite-volume spectra computed in a single
323 volume with m⇡ ⇠ 236 MeV. Right: Resonance pole position for a wide range of amplitude parameterizations constrained
to describe the finite-volume spectra. Energies expressed in units of the temporal lattice spacing, 1/at ⇠ 6.0 GeV. Figures
adapted from those in (Wilson et al., 2015a).
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FIG. 14 Elastic I = 1 ⇡⇡ scattering phase-shifts in P -wave
determined from finite-volume spectra computed the same
m⇡ ⇠ 236 MeV configurations as used in the calculation
presented in Figure 13, but using a di↵erent correlator con-
struction technique, operator basis and variational analysis
method. Color coding as in Figure 13. Figure adapted from
one appearing in (Bulava et al., 2016).

confirmed that such a pole is present and determined its
position with some precision (see (Pelaez, 2016) for a re-
view of the situation).

Very recently we have seen the first serious lattice QCD
determination of elastic ⇡⇡ scattering in the isospin=0
S-wave (Briceno et al., 2017a). Lattice QCD calculation
of this channel had long been considered extremely chal-
lenging owing to the need to compute diagrams in which
all the quarks and antiquarks annihilate, leading to some-
thing which is completely disconnected. By computing a
large number of propagation objects in the distillation

framework (Peardon et al., 2009), the Hadron Spectrum

Collaboration were able to compute the required corre-
lation functions and obtain finite-volume spectra at two
pion masses, m⇡ ⇠ 236, 391 MeV. The lattices are the
same ones used in the ⇢ extractions described above, with
three volumes at the heavier mass and a single larger vol-
ume at the lighter mass.

Figure 15 shows the elastic scattering phase-shift de-
termined from spectra on these lattices for the two pion
masses, and a clear change is observed between the
two. At the heavier quark mass, the behavior is that
of a bound-state lying just below threshold, while at the
lighter mass we observe something much closer to the ex-
perimental situation, with a slow increase in phase-shift
over the elastic region.

At the heavier quark mass, all analytic parameteri-
zations of the scattering amplitude capable of describ-
ing the finite-volume spectra feature a pole located
on the real energy axis, on the physical sheet, at
E? = 758(4) MeV, which is interpreted as a bound-state
� (lying below the ⇡⇡ threshold at 2 m⇡ = 782 MeV).
At the lighter quark mass, the situation is somewhat
less clear — many di↵erent parameterizations are ca-
pable of describing the spectra, and while they do fea-
ture a pole far into the complex plane on the unphysical
sheet, the position of that pole is not precisely deter-
mined, with considerable scatter observed as the ampli-
tude parameterization is varied. This observation is not
unique to the finite-volume situation — the same scat-
ter in pole position is observed when a variety of ampli-
tudes forms are constrained using only the experimental
elastic phase-shift data. It is only when amplitude forms
which build in the required constraints of analyticity and
crossing-symmetry are utilized that the pole position can
be pinned down with precision (Pelaez, 2016).

[Wilson, Briceño, Dudek, Edwards & Thomas, 1507.02599]

mπ ≈ 236 MeV
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Generalizations
• Multiple two-particle channels [Hu, Feng & Liu, hep-lat/0504019; Lage, Meissner & 

Rusetsky, 0905.0069; Hansen & SS, 1204.0826; Briceño & Davoudi, 1204.1110]

• e.g.

�20

det (
Fππ

PV(E, ⃗P , L)−1 0

0 FKK̄
PV (E, ⃗P , L)−1) + (𝒦ππ

2 (E*) 𝒦πK
2 (E*)

𝒦πK
2 (E*) 𝒦KK

2 (E*)) = 0

JPC = 0++ ππ + KK̄ (+ηη)
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Generalizations
• Multiple two-particle channels [Hu, Feng & Liu, hep-lat/0504019; Lage, Meissner & 

Rusetsky, 0905.0069; Hansen & SS, 1204.0826; Briceño & Davoudi, 1204.1110]

• e.g.

�20

det (
Fππ

PV(E, ⃗P , L)−1 0

0 FKK̄
PV (E, ⃗P , L)−1) + (𝒦ππ

2 (E*) 𝒦πK
2 (E*)

𝒦πK
2 (E*) 𝒦KK

2 (E*)) = 0

JPC = 0++ ππ + KK̄ (+ηη)

• Even if truncate to lmax=0, there is no longer a one-to-one relation between 
energy levels and K-matrix elements

• Must parametrize the (enlarged) K matrix in some way and fit parameters to 
multiple spectral levels

• Using these parametrizations can study pole structure of scattering amplitude

• Approach is very similar to that used analyzing scattering data



/66S. Sharpe, ``Implementing the three-particle quantization condition,” Santa Fe workshop “Lattice QCD”, 8/29/2019

Generalizations

�21

h⇡⇡, out|H|Ki ⌘from

h⇡⇡, out|Jµ|0i ⌘ [Meyer, 2011]

[Lellouch & Lüscher]

from

h⇡⇡, out|Jµ|⇡i ⌘from

ℋW

[Agadjanov et al., 2014; Briceño, Hansen & Walker-Loud, 2015; Briceño & Hansen, 2016]

 [Briceño, Hansen, 2015; 
Baroni, Briceño, Hansen & 

Ortega-Gama, 2018; talk by 
Alessandro Baroni]

⟨ππ, out |𝒥μ |ππ, in⟩ =from
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3-particle quantization 
condition (QC3)

�22
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E0(L)

E1(L)

E2(L)

E* < 3m

QC2 M2→2

E0(L)

E1(L)

E2(L)

3m < E* < 4m

QC3 M2→3

& M3→2

& M3→3

No Z2 symmetry
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E0(L)

E1(L)

E2(L)

E* < 3m

QC2 M2→2

E0(L)

E1(L)

E2(L)

3m < E* < 4m

QC3 M2→3

& M3→2

& M3→3

No Z2 symmetry

Part of single spectrum!
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E0(L)

E1(L)

E2(L)

E* < 4m

QC2 M2

E0(L)

E1(L)

E2(L)

E* < 5m

QC3 M3

Z2 symmetry

Different spectra
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E0(L)

E1(L)

E2(L)

E* < 4m

QC2 M2

E0(L)

E1(L)

E2(L)

E* < 5m

QC3 M3

Z2 symmetry

Mostly consider

this caseDifferent spectra
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Two-step method

�25�25

Quantization conditions

2 & 3 particle
spectrum from LQCD

Integral equations in
infinite volume

Intermediate, unphysical 
scattering quantity

det [F−1
2 + 𝒦2]

det [F−1
3 + 𝒦df,3]

Scattering amplitudes
ℳ22 , ℳ23 , ℳ32 , ℳ23

L

L

L

= 0

= 0
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Two-step method

�25�25

Quantization conditions

2 & 3 particle
spectrum from LQCD

Integral equations in
infinite volume

Intermediate, unphysical 
scattering quantity

det [F−1
2 + 𝒦2]

det [F−1
3 + 𝒦df,3]

Scattering amplitudes
ℳ22 , ℳ23 , ℳ32 , ℳ23

L

L

L

= 0

= 0

Need for two steps

common to all approaches

(though intermediate

quantities differ)
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QC2               ⟶              QC3
det [FPV(E, ⃗P , L)−1 + 𝒦2(E*)] = 0

[HS14]

det [F3(E, ⃗P , L)−1 + 𝒦df,3(E*)] = 0

• Total momentum (E, P)

• Matrix indices are l, m 

• FPV is a finite-volume geometric function

• K2 is a physical infinite-volume amplitude, 
which is real and has no threshold cusps

• K2 is algebraically related to M2

• Total momentum (E, P)

• Matrix indices are k, l, m 

• F3 depends on geometric functions (FPV and 
G) and also on K2

• F3 is known if first solve QC2 

• Kdf,3 is an infinite-volume 3-particle 
amplitude, which is real and has no 
threshold cusps

• It is cutoff dependent and thus unphysical

• It is related to M3 via integral equations 
[HS15]

1
ℳ(ℓ)

2
≡

1
𝒦(ℓ)

2
− iρ
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QC2               ⟶              QC3
det [FPV(E, ⃗P , L)−1 + 𝒦2(E*)] = 0

[HS14]

det [F3(E, ⃗P , L)−1 + 𝒦df,3(E*)] = 0

• Total momentum (E, P)

• Matrix indices are l, m 

• FPV is a finite-volume geometric function

• K2 is a physical infinite-volume amplitude, 
which is real and has no threshold cusps

• K2 is algebraically related to M2

• Total momentum (E, P)

• Matrix indices are k, l, m 

• F3 depends on geometric functions (FPV and 
G) and also on K2

• F3 is known if first solve QC2 

• Kdf,3 is an infinite-volume 3-particle 
amplitude, which is real and has no 
threshold cusps

• It is cutoff dependent and thus unphysical

• It is related to M3 via integral equations 
[HS15]

1
ℳ(ℓ)

2
≡

1
𝒦(ℓ)

2
− iρ
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Matrix indices

�27

• All quantities are infinite-dimensional matrices with indices describing 3 on-shell particles

â⇤ �! `,m
(E � !k, ~P � ~k)

(!k,~k)
BOOST

Describes three on-shell particles with total energy-momentum (E, P)

[finite volume “spectator” momentum: k=2πn/L] x [2-particle CM angular momentum: l,m]

• For large spectator-momentum k, the other two particles are below threshold; 
must include such configurations, by analytic continuation, up to a cut-off at k~m 
[Polejaeva & Rusetsky, `12]
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F3 collects 2-particle interactions

�28

F3 =
1

2ωL3 [ F
3

− F
1

𝒦−1
2 + F + G

F]
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F3 collects 2-particle interactions

�28

F3 =
1

2ωL3 [ F
3

− F
1

𝒦−1
2 + F + G

F]
p

k

�
k k



/66S. Sharpe, ``Implementing the three-particle quantization condition,” Santa Fe workshop “Lattice QCD”, 8/29/2019

F3 collects 2-particle interactions

�28

F3 =
1

2ωL3 [ F
3

− F
1

𝒦−1
2 + F + G

F]

• F & G are known geometrical functions, 
containing cutoff function H

Gpℓ′�m′�;kℓm = ( k*
q*p )

ℓ′ �
4πYℓ′ �m′�( ̂k*)H( ⃗p )H( ⃗k )Y*ℓm( ̂p*)

(P − k − p)2 − m2 ( p*
q*k )

ℓ
1

2ωkL3 Relativistic form 
introduced in [BHS17]

Fpℓ′�m′�;kℓm = δpk H( ⃗k ) FPV,ℓ′�m′�;ℓm(E − ωk, ⃗P − ⃗k , L)

�(E − ωk, ⃗P − ⃗k ) →

p
k

�
k k
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Divergence-free K matrix

�29

det [F3(E, ⃗P , L)−1 + 𝒦df,3(E*)] = 0
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Divergence-free K matrix

�29

det [F3(E, ⃗P , L)−1 + 𝒦df,3(E*)] = 0

iM3!3 ⌘ fully connected correlator with  
six external legs amputated and projected on shell

Three-to-three amplitude has kinematic singularities

[Artwork from Hansen, HMI lectures]

Certain external momenta 
 put this on-shell!

= + · · ·

• To have a nonsingular (divergence-free) quantity, need to subtract pole & higher order 
singularities, leading to Mdf,3, which is finite but cutoff dependent

• Replace iε with PV prescription obtain K matrix, Kdf,3, that is real, has no unitary cusps, and 
is like a quasilocal interaction; it is also cutoff dependent 

• Kdf,3 has the same symmetries as M3: relativistic invariance, particle interchange, T-reversal
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Status of relativistic approach

�30�30

det [F−1
3 + 𝒦df,3]

• Original work applied to scalars with G-parity & no subchannel 
resonances or dimers [Hansen & SRS, arXiv:1408.5933 & 1504.04248]

E0(L)

E1(L)

E2(L)

Kdf,3 M3

= 0
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Status of relativistic approach

�30�30

det [F−1
3 + 𝒦df,3]

• Original work applied to scalars with G-parity & no subchannel 
resonances or dimers [Hansen & SRS, arXiv:1408.5933 & 1504.04248]

E0(L)

E1(L)

E2(L)

Kdf,3 M3

= 0

UPDATE: subchannel resonances and dimers are 
allowed by using a modified PV pole-prescription 

[BBHRS19]
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Status of relativistic approach

�31�31

• Second major step: removing G-parity constraint, allowing 2↔3 
processes [Briceño, Hansen & SRS, arXiv:1701.07465]

det (F2 0
0 F3)

−1

+ (
𝒦22 𝒦23

𝒦32 𝒦df,33) = 0

F2 appears
in 2-particle
quantization
condition

E0(L)

E1(L)

E2(L)
M22 M23

M32 M33

Kdf,e2e2

Kdf,3e2

Kdf,e23

Kdf,33
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• Final major step: allowing subchannel resonance (i.e. pole in K2) 
[Briceño, Hansen & SRS, arXiv:1810.01429]

det (F2̃2̃ F2̃3
F32̃ F33)

−1

+ (
𝒦df,2̃2̃ 𝒦df,2̃3

𝒦df,32̃ 𝒦df,33) = 0

resonance + 
particle channel 
(not physical, but 
forced on us by 

derivation)

Determined by K2 & 
Lüscher finite-volume 

zeta functions 

E0(L)

E1(L)

E2(L)
Kdf,e2e2

Kdf,3e2

Kdf,e23

Kdf,33

M3

Status of relativistic approach

No unphysical 
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• Final major step: allowing subchannel resonance (i.e. pole in K2) 
[Briceño, Hansen & SRS, arXiv:1810.01429]

det (F2̃2̃ F2̃3
F32̃ F33)

−1

+ (
𝒦df,2̃2̃ 𝒦df,2̃3

𝒦df,32̃ 𝒦df,33) = 0

resonance + 
particle channel 
(not physical, but 
forced on us by 

derivation)

Determined by K2 & 
Lüscher finite-volume 

zeta functions 

E0(L)

E1(L)

E2(L)
Kdf,e2e2

Kdf,3e2

Kdf,e23

Kdf,33

M3

Status of relativistic approach

No unphysical 
channel in final 

scattering amplitude 

UPDATE: this elaboration is avoidable
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Implementation of QC3

�33
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Status

�34�34

• Formalism of [HS14, HS15] (Z2 symmetry) has been implemented numerically in 
three approximations: 

1. Isotropic, s-wave low-energy approximation, with no dimers [BHS18]

2. Including d waves in K2 and Kdf,3, with no dimers [BRS19]

3. Both 1 & 2 with dimers and two-particle resonances (using modified PV 
prescription) [BBHRS19]
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Status

�34�34

• Formalism of [HS14, HS15] (Z2 symmetry) has been implemented numerically in 
three approximations: 

1. Isotropic, s-wave low-energy approximation, with no dimers [BHS18]

2. Including d waves in K2 and Kdf,3, with no dimers [BRS19]

3. Both 1 & 2 with dimers and two-particle resonances (using modified PV 
prescription) [BBHRS19]

• NREFT & FVU formalisms [HPR17, MD17] (Z2 symmetry, s-wave only) have been 
implemented numerically [Pang et al., 18, MD18]

• Corresponds to first approximation above

• Ease of implementation comparable in the three approaches
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Truncation 

�35�35

• To use quantization condition, one must truncate matrix space, as for the two-
particle case

• Spectator-momentum space is truncated by cut-off function H(k)

• Need to truncate sums over l,m in K2 & Kdf,3

det [F−1
3 + 𝒦df,3] = 0

[finite volume “spectator” momentum: k=2πn/L] x [2-particle CM angular momentum: l,m]

matrices with indices:
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Truncating sum over l 

�36�36

• In 2-particle case, we know that s-wave scattering dominates at low energies; can 
then systematically add in higher waves (suppressed by q2l)

• Implement using the effective-range expansion (ERE) for partial waves of K2

1
𝒦(0)

2
=

1
16πE2 [−

1
a0

+ r0
q2

2
+ P0r3

0q4 + …],

1
𝒦(2)

2
= −

1
16πE2

1
q4

1
a5

2
+ …

s wave:

q is momentum
in CM frame

E2 = s
CM energy of 
two particles

d wave:
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Truncating sum over l 

�37�37

• Implement the same approach for Kdf,3, making use of the facts that it is 
relativistically invariant and completely symmetric under initial- & final-state 
permutations, and T invariant, and expanding about threshold [BHS18, BRS19]

𝒦df,3

p1

p2

p3

p′�1

p′�2

p′�3

2.2 Invariants for three-particle scattering

To extend the analysis to the three-particle amplitude Kdf,3, we begin by listing the gener-
alized Mandelstam variables,

s ⌘ E2 , sij ⌘ (pi + pj)
2 = sji, s0ij ⌘ (p0i + p0j)

2 = s0ji , tij ⌘ (pi � p0j)
2 , (2.8)

where pi (p0i), i = 1� 3, are the incoming (outgoing) momenta. As in the two-particle case,
it is convenient to use dimensionless quantities that vanish at threshold,

� ⌘
s � 9m2

9m2
, �i ⌘

sjk � 4m2

9m2
, �0

i ⌘
s0jk � 4m2

9m2
, etij ⌘

tij
9m2

, (2.9)

where in the definitions of �i and �0
i, (i, j, k) form a cylic permutation of (1, 2, 3). These

sixteen quantities are constrained by the following eight independent relations,

3X

i=1

�i =
3X

i=1

�0
i = � (2.10)

3X

j=1

etij = �i � �,
3X

j=1

etji = �0
i � �. [i = 1, 2, 3] . (2.11)

Thus only eight are independent: the overall CM energy (parametrized here by �) and
seven “angular” degrees of freedom.6 This counting is as expected: six on-shell momenta
with total incoming and outgoing 4-momentum fixed have 3 · 6 � 4 · 2 = 10 degrees of
freedom, which is reduced to 7 by overall rotation invariance.

For physical scattering, it is straightforward to show that �i, �0
i, �etij are all non-

negative, and the constraint equations then lead to the inequality

0  �i, �
0
i, �etij  � . (2.12)

Thus all the variables {�, �i, �0
i,etij} can be treated as being of the same order in an

expansion about threshold.

2.3 Expanding Kdf,3 about threshold

By construction, Kdf,3 is a smooth function for some region around threshold.7 Thus it
can be expanded in a Taylor series in the variables {�, �i, �0

i,etij}, which are all treated as
being of O(�). Since Kdf,3 is real, the coefficients in this expansion must also be real. The
expansion must also respect the symmetries of Kdf,3, which is invariant under [5]:8

• Interchange of any two incoming particles: pi $ pj ) �i $ �j and etik $ etjk
6
We call these variables angular since they span a compact space.

7
More precisely, what is shown in Ref. [1] is that Kdf,3 has no kinematic singularities at threshold, a

result that is checked by the explicit perturbative calculations of Refs. [21, 22]. There can be dynamical

singularities due to a three-particle resonance, but, generically, this will lie away from threshold.
8
The first two symmetries hold because we are considering identical bosons. They would not hold in the

more general case of nonidentical particles, allowing additional terms to be present in Kdf,3.

– 7 –

2.2 Invariants for three-particle scattering

To extend the analysis to the three-particle amplitude Kdf,3, we begin by listing the gener-
alized Mandelstam variables,

s ⌘ E2 , sij ⌘ (pi + pj)
2 = sji, s0ij ⌘ (p0i + p0j)

2 = s0ji , tij ⌘ (pi � p0j)
2 , (2.8)

where pi (p0i), i = 1� 3, are the incoming (outgoing) momenta. As in the two-particle case,
it is convenient to use dimensionless quantities that vanish at threshold,

� ⌘
s � 9m2

9m2
, �i ⌘

sjk � 4m2

9m2
, �0

i ⌘
s0jk � 4m2

9m2
, etij ⌘

tij
9m2

, (2.9)

where in the definitions of �i and �0
i, (i, j, k) form a cylic permutation of (1, 2, 3). These

sixteen quantities are constrained by the following eight independent relations,

3X

i=1

�i =
3X

i=1

�0
i = � (2.10)

3X

j=1

etij = �i � �,
3X

j=1

etji = �0
i � �. [i = 1, 2, 3] . (2.11)

Thus only eight are independent: the overall CM energy (parametrized here by �) and
seven “angular” degrees of freedom.6 This counting is as expected: six on-shell momenta
with total incoming and outgoing 4-momentum fixed have 3 · 6 � 4 · 2 = 10 degrees of
freedom, which is reduced to 7 by overall rotation invariance.

For physical scattering, it is straightforward to show that �i, �0
i, �etij are all non-

negative, and the constraint equations then lead to the inequality

0  �i, �
0
i, �etij  � . (2.12)

Thus all the variables {�, �i, �0
i,etij} can be treated as being of the same order in an

expansion about threshold.

2.3 Expanding Kdf,3 about threshold

By construction, Kdf,3 is a smooth function for some region around threshold.7 Thus it
can be expanded in a Taylor series in the variables {�, �i, �0

i,etij}, which are all treated as
being of O(�). Since Kdf,3 is real, the coefficients in this expansion must also be real. The
expansion must also respect the symmetries of Kdf,3, which is invariant under [5]:8

• Interchange of any two incoming particles: pi $ pj ) �i $ �j and etik $ etjk
6
We call these variables angular since they span a compact space.

7
More precisely, what is shown in Ref. [1] is that Kdf,3 has no kinematic singularities at threshold, a

result that is checked by the explicit perturbative calculations of Refs. [21, 22]. There can be dynamical

singularities due to a three-particle resonance, but, generically, this will lie away from threshold.
8
The first two symmetries hold because we are considering identical bosons. They would not hold in the

more general case of nonidentical particles, allowing additional terms to be present in Kdf,3.

– 7 –

2.2 Invariants for three-particle scattering

To extend the analysis to the three-particle amplitude Kdf,3, we begin by listing the gener-
alized Mandelstam variables,

s ⌘ E2 , sij ⌘ (pi + pj)
2 = sji, s0ij ⌘ (p0i + p0j)

2 = s0ji , tij ⌘ (pi � p0j)
2 , (2.8)

where pi (p0i), i = 1� 3, are the incoming (outgoing) momenta. As in the two-particle case,
it is convenient to use dimensionless quantities that vanish at threshold,

� ⌘
s � 9m2

9m2
, �i ⌘

sjk � 4m2

9m2
, �0

i ⌘
s0jk � 4m2

9m2
, etij ⌘

tij
9m2

, (2.9)

where in the definitions of �i and �0
i, (i, j, k) form a cylic permutation of (1, 2, 3). These

sixteen quantities are constrained by the following eight independent relations,

3X

i=1

�i =
3X

i=1

�0
i = � (2.10)

3X

j=1

etij = �i � �,
3X

j=1

etji = �0
i � �. [i = 1, 2, 3] . (2.11)

Thus only eight are independent: the overall CM energy (parametrized here by �) and
seven “angular” degrees of freedom.6 This counting is as expected: six on-shell momenta
with total incoming and outgoing 4-momentum fixed have 3 · 6 � 4 · 2 = 10 degrees of
freedom, which is reduced to 7 by overall rotation invariance.

For physical scattering, it is straightforward to show that �i, �0
i, �etij are all non-

negative, and the constraint equations then lead to the inequality

0  �i, �
0
i, �etij  � . (2.12)

Thus all the variables {�, �i, �0
i,etij} can be treated as being of the same order in an

expansion about threshold.

2.3 Expanding Kdf,3 about threshold

By construction, Kdf,3 is a smooth function for some region around threshold.7 Thus it
can be expanded in a Taylor series in the variables {�, �i, �0

i,etij}, which are all treated as
being of O(�). Since Kdf,3 is real, the coefficients in this expansion must also be real. The
expansion must also respect the symmetries of Kdf,3, which is invariant under [5]:8

• Interchange of any two incoming particles: pi $ pj ) �i $ �j and etik $ etjk
6
We call these variables angular since they span a compact space.

7
More precisely, what is shown in Ref. [1] is that Kdf,3 has no kinematic singularities at threshold, a

result that is checked by the explicit perturbative calculations of Refs. [21, 22]. There can be dynamical

singularities due to a three-particle resonance, but, generically, this will lie away from threshold.
8
The first two symmetries hold because we are considering identical bosons. They would not hold in the

more general case of nonidentical particles, allowing additional terms to be present in Kdf,3.

– 7 –

2.2 Invariants for three-particle scattering

To extend the analysis to the three-particle amplitude Kdf,3, we begin by listing the gener-
alized Mandelstam variables,

s ⌘ E2 , sij ⌘ (pi + pj)
2 = sji, s0ij ⌘ (p0i + p0j)

2 = s0ji , tij ⌘ (pi � p0j)
2 , (2.8)

where pi (p0i), i = 1� 3, are the incoming (outgoing) momenta. As in the two-particle case,
it is convenient to use dimensionless quantities that vanish at threshold,

� ⌘
s � 9m2

9m2
, �i ⌘

sjk � 4m2

9m2
, �0

i ⌘
s0jk � 4m2

9m2
, etij ⌘

tij
9m2

, (2.9)

where in the definitions of �i and �0
i, (i, j, k) form a cylic permutation of (1, 2, 3). These

sixteen quantities are constrained by the following eight independent relations,

3X

i=1

�i =
3X

i=1

�0
i = � (2.10)

3X

j=1

etij = �i � �,
3X

j=1

etji = �0
i � �. [i = 1, 2, 3] . (2.11)

Thus only eight are independent: the overall CM energy (parametrized here by �) and
seven “angular” degrees of freedom.6 This counting is as expected: six on-shell momenta
with total incoming and outgoing 4-momentum fixed have 3 · 6 � 4 · 2 = 10 degrees of
freedom, which is reduced to 7 by overall rotation invariance.

For physical scattering, it is straightforward to show that �i, �0
i, �etij are all non-

negative, and the constraint equations then lead to the inequality

0  �i, �
0
i, �etij  � . (2.12)

Thus all the variables {�, �i, �0
i,etij} can be treated as being of the same order in an

expansion about threshold.

2.3 Expanding Kdf,3 about threshold

By construction, Kdf,3 is a smooth function for some region around threshold.7 Thus it
can be expanded in a Taylor series in the variables {�, �i, �0

i,etij}, which are all treated as
being of O(�). Since Kdf,3 is real, the coefficients in this expansion must also be real. The
expansion must also respect the symmetries of Kdf,3, which is invariant under [5]:8

• Interchange of any two incoming particles: pi $ pj ) �i $ �j and etik $ etjk
6
We call these variables angular since they span a compact space.

7
More precisely, what is shown in Ref. [1] is that Kdf,3 has no kinematic singularities at threshold, a

result that is checked by the explicit perturbative calculations of Refs. [21, 22]. There can be dynamical

singularities due to a three-particle resonance, but, generically, this will lie away from threshold.
8
The first two symmetries hold because we are considering identical bosons. They would not hold in the

more general case of nonidentical particles, allowing additional terms to be present in Kdf,3.

– 7 –

2.2 Invariants for three-particle scattering

To extend the analysis to the three-particle amplitude Kdf,3, we begin by listing the gener-
alized Mandelstam variables,

s ⌘ E2 , sij ⌘ (pi + pj)
2 = sji, s0ij ⌘ (p0i + p0j)

2 = s0ji , tij ⌘ (pi � p0j)
2 , (2.8)

where pi (p0i), i = 1� 3, are the incoming (outgoing) momenta. As in the two-particle case,
it is convenient to use dimensionless quantities that vanish at threshold,

� ⌘
s � 9m2

9m2
, �i ⌘

sjk � 4m2

9m2
, �0

i ⌘
s0jk � 4m2

9m2
, etij ⌘

tij
9m2

, (2.9)

where in the definitions of �i and �0
i, (i, j, k) form a cylic permutation of (1, 2, 3). These

sixteen quantities are constrained by the following eight independent relations,

3X

i=1

�i =
3X

i=1

�0
i = � (2.10)

3X

j=1

etij = �i � �,
3X

j=1

etji = �0
i � �. [i = 1, 2, 3] . (2.11)

Thus only eight are independent: the overall CM energy (parametrized here by �) and
seven “angular” degrees of freedom.6 This counting is as expected: six on-shell momenta
with total incoming and outgoing 4-momentum fixed have 3 · 6 � 4 · 2 = 10 degrees of
freedom, which is reduced to 7 by overall rotation invariance.

For physical scattering, it is straightforward to show that �i, �0
i, �etij are all non-

negative, and the constraint equations then lead to the inequality

0  �i, �
0
i, �etij  � . (2.12)

Thus all the variables {�, �i, �0
i,etij} can be treated as being of the same order in an

expansion about threshold.

2.3 Expanding Kdf,3 about threshold

By construction, Kdf,3 is a smooth function for some region around threshold.7 Thus it
can be expanded in a Taylor series in the variables {�, �i, �0

i,etij}, which are all treated as
being of O(�). Since Kdf,3 is real, the coefficients in this expansion must also be real. The
expansion must also respect the symmetries of Kdf,3, which is invariant under [5]:8

• Interchange of any two incoming particles: pi $ pj ) �i $ �j and etik $ etjk
6
We call these variables angular since they span a compact space.

7
More precisely, what is shown in Ref. [1] is that Kdf,3 has no kinematic singularities at threshold, a

result that is checked by the explicit perturbative calculations of Refs. [21, 22]. There can be dynamical

singularities due to a three-particle resonance, but, generically, this will lie away from threshold.
8
The first two symmetries hold because we are considering identical bosons. They would not hold in the

more general case of nonidentical particles, allowing additional terms to be present in Kdf,3.

– 7 –

2.2 Invariants for three-particle scattering

To extend the analysis to the three-particle amplitude Kdf,3, we begin by listing the gener-
alized Mandelstam variables,

s ⌘ E2 , sij ⌘ (pi + pj)
2 = sji, s0ij ⌘ (p0i + p0j)

2 = s0ji , tij ⌘ (pi � p0j)
2 , (2.8)

where pi (p0i), i = 1� 3, are the incoming (outgoing) momenta. As in the two-particle case,
it is convenient to use dimensionless quantities that vanish at threshold,

� ⌘
s � 9m2

9m2
, �i ⌘

sjk � 4m2

9m2
, �0

i ⌘
s0jk � 4m2

9m2
, etij ⌘

tij
9m2

, (2.9)

where in the definitions of �i and �0
i, (i, j, k) form a cylic permutation of (1, 2, 3). These

sixteen quantities are constrained by the following eight independent relations,

3X

i=1

�i =
3X

i=1

�0
i = � (2.10)

3X

j=1

etij = �i � �,
3X

j=1

etji = �0
i � �. [i = 1, 2, 3] . (2.11)

Thus only eight are independent: the overall CM energy (parametrized here by �) and
seven “angular” degrees of freedom.6 This counting is as expected: six on-shell momenta
with total incoming and outgoing 4-momentum fixed have 3 · 6 � 4 · 2 = 10 degrees of
freedom, which is reduced to 7 by overall rotation invariance.

For physical scattering, it is straightforward to show that �i, �0
i, �etij are all non-

negative, and the constraint equations then lead to the inequality

0  �i, �
0
i, �etij  � . (2.12)

Thus all the variables {�, �i, �0
i,etij} can be treated as being of the same order in an

expansion about threshold.

2.3 Expanding Kdf,3 about threshold

By construction, Kdf,3 is a smooth function for some region around threshold.7 Thus it
can be expanded in a Taylor series in the variables {�, �i, �0

i,etij}, which are all treated as
being of O(�). Since Kdf,3 is real, the coefficients in this expansion must also be real. The
expansion must also respect the symmetries of Kdf,3, which is invariant under [5]:8

• Interchange of any two incoming particles: pi $ pj ) �i $ �j and etik $ etjk
6
We call these variables angular since they span a compact space.

7
More precisely, what is shown in Ref. [1] is that Kdf,3 has no kinematic singularities at threshold, a

result that is checked by the explicit perturbative calculations of Refs. [21, 22]. There can be dynamical

singularities due to a three-particle resonance, but, generically, this will lie away from threshold.
8
The first two symmetries hold because we are considering identical bosons. They would not hold in the

more general case of nonidentical particles, allowing additional terms to be present in Kdf,3.

– 7 –

2.2 Invariants for three-particle scattering

To extend the analysis to the three-particle amplitude Kdf,3, we begin by listing the gener-
alized Mandelstam variables,

s ⌘ E2 , sij ⌘ (pi + pj)
2 = sji, s0ij ⌘ (p0i + p0j)

2 = s0ji , tij ⌘ (pi � p0j)
2 , (2.8)

where pi (p0i), i = 1� 3, are the incoming (outgoing) momenta. As in the two-particle case,
it is convenient to use dimensionless quantities that vanish at threshold,

� ⌘
s � 9m2

9m2
, �i ⌘

sjk � 4m2

9m2
, �0

i ⌘
s0jk � 4m2

9m2
, etij ⌘

tij
9m2

, (2.9)

where in the definitions of �i and �0
i, (i, j, k) form a cylic permutation of (1, 2, 3). These

sixteen quantities are constrained by the following eight independent relations,

3X

i=1

�i =
3X

i=1

�0
i = � (2.10)

3X

j=1

etij = �i � �,
3X

j=1

etji = �0
i � �. [i = 1, 2, 3] . (2.11)

Thus only eight are independent: the overall CM energy (parametrized here by �) and
seven “angular” degrees of freedom.6 This counting is as expected: six on-shell momenta
with total incoming and outgoing 4-momentum fixed have 3 · 6 � 4 · 2 = 10 degrees of
freedom, which is reduced to 7 by overall rotation invariance.

For physical scattering, it is straightforward to show that �i, �0
i, �etij are all non-

negative, and the constraint equations then lead to the inequality

0  �i, �
0
i, �etij  � . (2.12)

Thus all the variables {�, �i, �0
i,etij} can be treated as being of the same order in an

expansion about threshold.

2.3 Expanding Kdf,3 about threshold

By construction, Kdf,3 is a smooth function for some region around threshold.7 Thus it
can be expanded in a Taylor series in the variables {�, �i, �0

i,etij}, which are all treated as
being of O(�). Since Kdf,3 is real, the coefficients in this expansion must also be real. The
expansion must also respect the symmetries of Kdf,3, which is invariant under [5]:8

• Interchange of any two incoming particles: pi $ pj ) �i $ �j and etik $ etjk
6
We call these variables angular since they span a compact space.

7
More precisely, what is shown in Ref. [1] is that Kdf,3 has no kinematic singularities at threshold, a

result that is checked by the explicit perturbative calculations of Refs. [21, 22]. There can be dynamical

singularities due to a three-particle resonance, but, generically, this will lie away from threshold.
8
The first two symmetries hold because we are considering identical bosons. They would not hold in the

more general case of nonidentical particles, allowing additional terms to be present in Kdf,3.

– 7 –

=15
building blocks
(but only 8 are
independent) 

3
+
3
+
9

Expand in
these

dimensionless
quantities



S. Sharpe, ``Implementing the three-particle quantization condition,” Santa Fe workshop “Lattice QCD”, 8/29/2019 /66

Truncating sum over l 

�38�38

• Interchange of any two outgoing particles: p0i $ p0j ) �0
i $ �0

j and etki $ etkj

• Time reversal: pi $ p0i (8i) ) �i $ �0
i and etij $ etji (8ij)

It is then a tedious but straightforward exercise to write down the allowed terms at each
order in �, and simplify them using the constraints (2.10)–(2.11). Through quadratic order
we find

m2
Kdf,3 = K

iso + K
(2,A)
df,3 �(2)

A + K
(2,B)
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Summary of approximations
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Numerical 
implementation:  

isotropic approximation

�40

[BHS18]
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Overview

�41�41

det [F−1
3 + 𝒦df,3]

E0(L)

E1(L)

E2(L)

Kdf,3 M3

= 0

DREAM: LQCD determine predict

Integral equations
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Overview

�41�41

det [F−1
3 + 𝒦df,3]

E0(L)

E1(L)

E2(L)

Kdf,3 M3

= 0

DREAM: LQCD determine predict

Integral equations

E0(L)

E1(L)

E2(L)

Kdf,3 M3

REALITY: fit parametrize predictTODAY: predict
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Implementing the isotropic QC3

�42�42

• Two parameters:  

• Consider only rest frame, P=0

• Consider solutions only in the A1+ irrep (only irrep sensitive to )

a = a0 & 𝒦iso
df,3

𝒦iso
df,3



S. Sharpe, ``Implementing the three-particle quantization condition,” Santa Fe workshop “Lattice QCD”, 8/29/2019 /66

Solutions with Kdf,3=0

�43�43

iM2

iM2

iM2

iM2

iM2
+ + · · ·iM3 = S

 �

• Useful benchmark: deviations measure impact of 3-particle interaction

• Caveat: scheme-dependent since Kdf,3 depends on cut-off function H

• Qualitative meaning of this limit for M3:
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Solutions with Kdf,3=0

�44�44

4 5 6 7 8
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3.0

3.5
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4.5

5.0

E
n
(L

)/
m

a = �1/2

4 5 6 7 8

mL

3.0

3.5

4.0

4.5

5.0

E
n
(L

)/
m

a = �1/2

(2,2,0)

(2,1,1)

These two states are 
degenerate in the NR theory

• Noninteracting three-particle states for P=0

Typical lattice box sizes
in LQCD
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Solutions with Kdf,3=0

�45�45

4 5 6 7 8
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E
n
(L

)/
m

a = �1/2

• Weakly attractive two-particle interaction

1/L expansion

m

[Beane, Detmold, Savage;
Tan; Hansen & SRS]

2-particle interaction enters at 1/L3, 
3-particle interaction (and 

relativistic effects) enter at 1/L6
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Solutions with Kdf,3=0

�46�46
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a = �1/2

• Strongly attractive two-particle interaction
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E
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)/
m

a = �10m

Threshold expansion not useful since need |a/L| << 1
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Impact of Kdf,3 

�47�47
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K
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FIG. 4. Finite-volume energy levels for ma = �10 and various negative values of m
2
K

iso

df,3. The left plot shows results from

two nonzero values of K
iso

df,3, as well reproducing the K
iso

df,3 = 0 results, and the noninteracting levels, from Fig. 2. Note that

the extent to which K
iso

df,3 shifts the energy depends significantly on the level being considered. The right panel magnifies the

region shown by the dashed rectangle in the left panel, displaying results for the lowest energy state from a larger number of

nonzero values of K
iso

df,3.

interactions, and thus push the levels up. We illustrate this in Fig. 4 for the case of a = �10 shown previously for
K

iso

df,3 = 0 in Fig. 2. The levels increase monotonically as K
iso

df,3 becomes more negative. Large magnitudes of K
iso

df,3 are

required to see a noticeable shift because, as we discuss in more detail below, for small values of K
iso

df,3 and a, the e↵ect

of the three-body contact interaction on the energy is suppressed by 1/L6. In this regard, we stress that such large
values of |K

iso

df,3| are not unphysical. Indeed, as can be seen from Eq. (26), the three-particle scattering amplitude is

finite in the |K
iso

df,3| ! 1 limit. This is analogous to the two particle sector where K2 ! 1 corresponds to the unitary
limit, M2 = i16⇡E⇤

2
/q⇤

2
.

One noticeable feature of Fig. 4 is the appearance of a “bump” in the curves around L = 5.5. If K
iso

df,3 is made even
more negative the spectral lines double back, which is an unphysical result. We discuss this issue further in Sec. V.
What we want to stress here is that, for most values of K

iso

df,3, a and L, the quantization condition in the isotropic
approximation gives reasonable results, with energy levels that are sensitive to the three-particle interaction.

A more striking example of this sensitivity is shown in Fig. 5, where we use the freedom to allow K
iso

df,3 to depend
on energy to model a three-particle resonance. The ansatz we use is

K
iso

df,3(E) = �
c ⇥ 103

E2 � M2

R

, (34)

with a “resonance mass” of MR = 3.5. This form is inspired by the standard Breit-Wigner parametrization of the
two-particle K matrix, although further investigation is needed to understand if this gives a physical description of
three-particle resonances. At the very least, however, it gives a unitary description of three-to-three scattering that, as
c ! 0, smoothly deforms to a decoupled system of a stable state with mass MR together with three-particle scattering
states. For nonzero values of c the two sectors couple and the avoided-level crossings characteristic of a resonance are
observed, with the gap increasing with c.

For a physical system described by this ansatz, fitting lattice-determined finite-volume levels would give constraints
on c, MR and the scattering length a. Consideration of how this ansatz for K

iso

df,3 converts to M3, and whether this
gives a useful three-particle resonance description, is a topic for future study.

C. Volume-dependence of the energy of a bound state

In this section we provide a quantitative test of our numerical results by studying the volume dependence of the
energy of a bound state EB(L) in the unitary regime, |a| � 1. This can be compared with the analytic result of

ma = −10 (strongly attractive interaction)



S. Sharpe, ``Implementing the three-particle quantization condition,” Santa Fe workshop “Lattice QCD”, 8/29/2019 /66

Impact of Kdf,3 

�47�47

11

4.0 4.5 5.0
mL

2.50

2.55

2.60

2.65

2.70

2.75

2.80

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
mL

2.5

3.0

3.5

4.0

4.5

5.0

E
n
(L

)/
m

10.0
9.0
8.0
7.0

6.0
5.0
4.0
3.0
2.0
1.0

0.0
1.0
13.0

�10�4m2
K

iso

df,3 = �10�4m2
K

iso

df,3 =

FIG. 4. Finite-volume energy levels for ma = �10 and various negative values of m
2
K

iso

df,3. The left plot shows results from

two nonzero values of K
iso

df,3, as well reproducing the K
iso

df,3 = 0 results, and the noninteracting levels, from Fig. 2. Note that

the extent to which K
iso

df,3 shifts the energy depends significantly on the level being considered. The right panel magnifies the

region shown by the dashed rectangle in the left panel, displaying results for the lowest energy state from a larger number of

nonzero values of K
iso

df,3.

interactions, and thus push the levels up. We illustrate this in Fig. 4 for the case of a = �10 shown previously for
K

iso

df,3 = 0 in Fig. 2. The levels increase monotonically as K
iso

df,3 becomes more negative. Large magnitudes of K
iso

df,3 are

required to see a noticeable shift because, as we discuss in more detail below, for small values of K
iso

df,3 and a, the e↵ect

of the three-body contact interaction on the energy is suppressed by 1/L6. In this regard, we stress that such large
values of |K

iso

df,3| are not unphysical. Indeed, as can be seen from Eq. (26), the three-particle scattering amplitude is

finite in the |K
iso

df,3| ! 1 limit. This is analogous to the two particle sector where K2 ! 1 corresponds to the unitary
limit, M2 = i16⇡E⇤

2
/q⇤

2
.

One noticeable feature of Fig. 4 is the appearance of a “bump” in the curves around L = 5.5. If K
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df,3 is made even
more negative the spectral lines double back, which is an unphysical result. We discuss this issue further in Sec. V.
What we want to stress here is that, for most values of K

iso

df,3, a and L, the quantization condition in the isotropic
approximation gives reasonable results, with energy levels that are sensitive to the three-particle interaction.

A more striking example of this sensitivity is shown in Fig. 5, where we use the freedom to allow K
iso

df,3 to depend
on energy to model a three-particle resonance. The ansatz we use is

K
iso

df,3(E) = �
c ⇥ 103

E2 � M2

R

, (34)

with a “resonance mass” of MR = 3.5. This form is inspired by the standard Breit-Wigner parametrization of the
two-particle K matrix, although further investigation is needed to understand if this gives a physical description of
three-particle resonances. At the very least, however, it gives a unitary description of three-to-three scattering that, as
c ! 0, smoothly deforms to a decoupled system of a stable state with mass MR together with three-particle scattering
states. For nonzero values of c the two sectors couple and the avoided-level crossings characteristic of a resonance are
observed, with the gap increasing with c.

For a physical system described by this ansatz, fitting lattice-determined finite-volume levels would give constraints
on c, MR and the scattering length a. Consideration of how this ansatz for K

iso

df,3 converts to M3, and whether this
gives a useful three-particle resonance description, is a topic for future study.

C. Volume-dependence of the energy of a bound state

In this section we provide a quantitative test of our numerical results by studying the volume dependence of the
energy of a bound state EB(L) in the unitary regime, |a| � 1. This can be compared with the analytic result of

ma = −10 (strongly attractive interaction)

Local 3-particle interaction has significant effect 
on energies, especially in region of simulations 

(mL<5), and thus can be determined



S. Sharpe, ``Implementing the three-particle quantization condition,” Santa Fe workshop “Lattice QCD”, 8/29/2019 /66

Volume-dependence of unitary trimer

�48�48

13
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E
B
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EB(1)

EB(L) from q.c.

EB(L) from q.c.
EB(1)

ENR(L)

ENR(L)ENR(L)

FIG. 6. Finite-volume energy dependence for the bound state that arises for m
2
K

iso

df,3 = 2500 and ma = �10
4
. In all three

figures the solutions to the quantization condition are marked in orange, as points in (a) and (b) and as the curved solid line

in (c). The curving (turquoise) line in panel (a) is a fit of Eq. (35) (neglecting the higher-order corrections) to the data in

this panel. The same fit line is shown in panel (b) for lower values of mL, along with a horizontal, solid (red) line showing

the infinite-volume energy of the bound state EB(1). The horizontal dashed (black) line shows the threshold energy E = 3m.

Panel (c) displays EB(L) for smaller mL, along with the same two horizontal lines as in (b) and the asymptotic prediction.

scattering states. Extrapolating the results for K
iso

df,3 to subthreshold energies, one can use the quantization condition
to predict the volume dependence of the bound state. We see from Fig. 6(c) that, in the regime of mL accessible
to simulations, the finite-volume energy shifts are large, and the asymptotic formula does not hold. Thus the full
quantization condition is needed to remove the finite-volume shift and determine the infinite-volume binding energy.
We also stress that, in this regime, the bound-state energy is pushed so far below threshold that relativistic momenta
are sampled. Thus a relativistic formalism is required to reliably describe even the near threshold state.

D. Volume-dependence of the threshold-state energy

In this section we investigate in detail the energy of the threshold state. We have already shown examples of this
energy for various values of a in Fig. 3, and our aim here is to provide a detailed comparison with the predicted
large-volume behavior. The analytic prediction is

E(L) � 3 =
c3

L3
+

c4

L4
+

c5

L5
+

c̃6

L6
�

M3,thr

48L6
+ O

✓
1

L7

◆
, (36)

Need quantization condition to determine 
finite-volume effects for realistic values of mL

Prediction of asymptotic 
volume-dependence from 

NRQM 
[Meißner, Rîos, Rusetsky]

(unitary regime, with no dimer)am = − 104 & m2𝒦iso
df,3 = 2500

NR trimer:
E=2.98858

determined from fit
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Trimer “wavefunction”

�49�49

• Solve integral equations numerically to determine Mdf,3 from Kdf,3

• Determine wavefunction from residue at bound-state pole

• Compare to analytic prediction from NRQM in unitary limit [HSBS16]

19

event. As k increases the scattered pair lies increasingly far below threshold. For a bound state, L(k) is related to
the Bethe-Salpeter amplitude, as discussed in the following subsection.

0.0 0.2 0.4 0.6 0.8 1.0 1.2

k/m

�1

0

1

2

L
(k

)

ma = 0.5
ma = 1.0

ma = �1.0
ma = �2.0

FIG. 13. L(k) versus k/m for choices of ma shown in the legend. Results using either choice of finite-volume quantity,

Eq. (A14) or (A15), and using any choice of mL � 50, lie on a common curve. Here we show the results using Eq. (A15) and

mL = 70. Note that, if a = 0, L(k) = 1/3 independent of k. For su�ciently large k, L(k) = 1/3 for all a, since the cuto↵

functions vanish and remove the correction term.

The results for F1
3

and L(k) can be combined to determine results for Mdf,3, using Eq. (45). We choose not to quote
results here since the symmetrization that is needed is complicated, and the results produced are not transparent.
We will, however, quote the corresponding results below when working at threshold.

B. Determining the wavefunction of the bound state

A specific application of the subthreshold relation between K
iso

df,3 and Mdf,3 is provided by the bound state studied

in Sec. III C. For the fixed values of K
iso

df,3 = 2500 and a = �104, one can calculate F1
3

and identify the infinite-volume
bound state pole in Mdf,3, as described in the previous subsection. Since this is equivalent to solving the quantization
condition K

iso

df,3 = �1/F iso

3
for asymptotically large volumes, one finds the same result for the infinite-volume bound-

state energy as from the fit in Sec. III C, namely EB = 2.98858 (corresponding to  = 0.106844).
The residues of the pole in Mdf,3 contain information about the Bethe-Salpeter amplitudes of the bound state.

Specifically, as discussed in Ref. [29], the unsymmetrized version of Mdf,3 takes the following factorized form near the
bound state

M
(u,u)

df,3 (k, p) ⇠ �
�(u)(k)�(u)(p)⇤

E2 � E2

B

. (46)

This assumes that pairwise scattering occurs only in the s-wave, as is the case in the isotropic approximation. The
quantity �(u)(k) is related to the Bethe-Salpeter amplitude by amputating and going on shell, as explained in detail
in Appendix B of Ref. [29]. We call �(u)(k) the residue function. Combining this expression with Eq. (45) we find
that �(u)(k) is proportional to L(k),

|�(u)(k)|2 = lim
E!EB

(E2

B � E2)
L(k)2

1/Kiso

df,3(E) + F1
3

(E)
. (47)

In our approach both F1
3

(E) and L(k) are determined by taking infinite-volume limits of appropriate finite-volume
quantities. For the purposes of extracting |�(u)(k)|2 it turns out to be convenient to define a finite-volume version as

|�(u)(k)|2(L) = lim
E!EB(L)

(E2

B(L) � E2)
LL(E, k, L)2

1/Kiso

df,3(E) + F iso

3
(E, L)

, (48)
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where LL(E, k, L) is defined as the argument of the limit in Eq. (A15). Using this quantity, the infinite-volume limit,

|�(u)(k)|2 = lim
L!1

|�(u)(k)|2(L) , (49)

is approached more rapidly. Figure 14 shows numerical results for |�(u)(k)|2(L), calculated by setting E = EB(L)+�E
(with �E = �0.001) and using mL = 60, 65, 70. The results fall on a common curve giving confidence that we have
reached the infinite-volume limit.

In Ref. [29] we showed that, in NRQM in the unitary limit, the residue function is given by23.

|�(u)(k)NR|
2 = |c||A|

2
256⇡5/2

31/4

m22

k2(2 + 3k2/4)

sin2

⇣
s0 sinh�1

p
3k

2

⌘

sinh2 ⇡s0
2

, (50)

with s0 = 1.00624 and |c| = 96.351, and |A| the quantity entering into Eq. (35). This prediction is also plotted
in Fig. 14, and is in excellent agreement with our numerical results. We stress that this curve is a parameter-free
prediction and not a fit. However, we do expect there to be relativistic corrections to the relationship between �(u)(k)
and �(u)(k)NR. These should vary in magnitude between of O(2/m2) = O(1%) at k = 0 to of O(k/m) = O(1) for
k ⇡ m. These expectations are consistent with the small di↵erences we find.

0.0 0.2 0.4 0.6 0.8 1.0
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10�5
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10�1

101

|�
(u

) (
k
)|

2
⇥

10
�

6 mL = 65
mL = 60

mL = 70

FIG. 14. Momentum dependence of the magnitude squared of the bound-state residue function. The points are predictions

following from Eqs. (48) and (49), as described in the text. Di↵erent values of L lead to consistent results, indicating that

we have reached the infinite-volume limit. The curve shows the prediction of Eq. (50), with the value |A|
2
= 0.948 found in

Sec. III C.

What do learn from this agreement? The derivation of Eq. (50) in Ref. [29] does not use the quantization condition
in any way. Instead, it relies only on the definition of the relativistic scattering amplitude and the standard NRQM
determination of the bound-state wave function. Thus the agreement is not a consistency check, but rather shows
that the relation (45) reproduces the physics leading to the Efimov bound-state solution of the NRQM problem. This
is also true for the predicted volume dependence of the bound-state energy, discussed in Sec. III C, but here the test
is even more stringent because we are predicting a function and not just a number.

Finally, we note that the curves in Fig. 13 are proportional to the residue functions for bound states that are not in
the unitary regime. This is because, for all values of a < 1, one can tune K
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df,3 to give a bound state at E = 2.99, and

then use Eq. (47). Since the k dependence comes only from L(k), it follows that |�(u)(k)| / |L(k)|. We observe that,
away from the unitary regime, the dependence on k varies substantially with a. It would be interesting to compare
these results to predictions from NRQM.
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where LL(E, k, L) is defined as the argument of the limit in Eq. (A15). Using this quantity, the infinite-volume limit,

|�(u)(k)|2 = lim
L!1

|�(u)(k)|2(L) , (49)

is approached more rapidly. Figure 14 shows numerical results for |�(u)(k)|2(L), calculated by setting E = EB(L)+�E
(with �E = �0.001) and using mL = 60, 65, 70. The results fall on a common curve giving confidence that we have
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In Ref. [29] we showed that, in NRQM in the unitary limit, the residue function is given by23.

|�(u)(k)NR|
2 = |c||A|

2
256⇡5/2

31/4

m22

k2(2 + 3k2/4)

sin2

⇣
s0 sinh�1

p
3k

2

⌘

sinh2 ⇡s0
2

, (50)

with s0 = 1.00624 and |c| = 96.351, and |A| the quantity entering into Eq. (35). This prediction is also plotted
in Fig. 14, and is in excellent agreement with our numerical results. We stress that this curve is a parameter-free
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What do learn from this agreement? The derivation of Eq. (50) in Ref. [29] does not use the quantization condition
in any way. Instead, it relies only on the definition of the relativistic scattering amplitude and the standard NRQM
determination of the bound-state wave function. Thus the agreement is not a consistency check, but rather shows
that the relation (45) reproduces the physics leading to the Efimov bound-state solution of the NRQM problem. This
is also true for the predicted volume dependence of the bound-state energy, discussed in Sec. III C, but here the test
is even more stringent because we are predicting a function and not just a number.

Finally, we note that the curves in Fig. 13 are proportional to the residue functions for bound states that are not in
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then use Eq. (47). Since the k dependence comes only from L(k), it follows that |�(u)(k)| / |L(k)|. We observe that,
away from the unitary regime, the dependence on k varies substantially with a. It would be interesting to compare
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What do learn from this agreement? The derivation of Eq. (50) in Ref. [29] does not use the quantization condition
in any way. Instead, it relies only on the definition of the relativistic scattering amplitude and the standard NRQM
determination of the bound-state wave function. Thus the agreement is not a consistency check, but rather shows
that the relation (45) reproduces the physics leading to the Efimov bound-state solution of the NRQM problem. This
is also true for the predicted volume dependence of the bound-state energy, discussed in Sec. III C, but here the test
is even more stringent because we are predicting a function and not just a number.

Finally, we note that the curves in Fig. 13 are proportional to the residue functions for bound states that are not in
the unitary regime. This is because, for all values of a < 1, one can tune K
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then use Eq. (47). Since the k dependence comes only from L(k), it follows that |�(u)(k)| / |L(k)|. We observe that,
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these results to predictions from NRQM.
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k ⇡ m. These expectations are consistent with the small di↵erences we find.

0.0 0.2 0.4 0.6 0.8 1.0

k/m

10�5

10�3

10�1

101

|�
(u

) (
k
)|

2
⇥

10
�

6 mL = 65
mL = 60

mL = 70

FIG. 14. Momentum dependence of the magnitude squared of the bound-state residue function. The points are predictions

following from Eqs. (48) and (49), as described in the text. Di↵erent values of L lead to consistent results, indicating that

we have reached the infinite-volume limit. The curve shows the prediction of Eq. (50), with the value |A|
2
= 0.948 found in

Sec. III C.

What do learn from this agreement? The derivation of Eq. (50) in Ref. [29] does not use the quantization condition
in any way. Instead, it relies only on the definition of the relativistic scattering amplitude and the standard NRQM
determination of the bound-state wave function. Thus the agreement is not a consistency check, but rather shows
that the relation (45) reproduces the physics leading to the Efimov bound-state solution of the NRQM problem. This
is also true for the predicted volume dependence of the bound-state energy, discussed in Sec. III C, but here the test
is even more stringent because we are predicting a function and not just a number.

Finally, we note that the curves in Fig. 13 are proportional to the residue functions for bound states that are not in
the unitary regime. This is because, for all values of a < 1, one can tune K
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then use Eq. (47). Since the k dependence comes only from L(k), it follows that |�(u)(k)| / |L(k)|. We observe that,
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including higher partial 

waves
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[BRS19]
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d-wave approximation: lmax =2

• Parameters:   a0, r0, P0, a2, 𝒦iso
df,3, 𝒦iso,1

df,3 , 𝒦iso,2
df,3 , 𝒦2,A

df,3, & 𝒦2,B
df,3

• Interchange of any two outgoing particles: p0i $ p0j ) �0
i $ �0

j and etki $ etkj

• Time reversal: pi $ p0i (8i) ) �i $ �0
i and etij $ etji (8ij)

It is then a tedious but straightforward exercise to write down the allowed terms at each
order in �, and simplify them using the constraints (2.10)–(2.11). Through quadratic order
we find

m2
Kdf,3 = K

iso + K
(2,A)
df,3 �(2)

A + K
(2,B)
df,3 �(2)

B + O(�3) , (2.13)

K
iso = K

iso
df,3 + K

iso,1
df,3 � + K

iso,2
df,3 �2 (2.14)

�(2)
A =

3X

i=1

(�2
i + �0 2

i ) � �2, (2.15)

�(2)
B =

3X

i,j=1

et 2
ij � �2 , (2.16)

where K
iso
df,3, K

iso,1
df,3 , K

iso,2
df,3 , K

(2,A)
df,3 and K

(2,B)
df,3 are real, dimensionless constants. We thus see

that there is a single term both at leading (zeroth) order and at first order, while there
are three independent terms at quadratic order. The particular linear combinations of the
quadratic terms that appear in Eqs. (2.15) and (2.16) (and in particular the subtraction of
�2 in �(2)

A and �(2)
B ) are chosen based on our numerical experiments described below in

order to ensure that their contributions to the finite-volume spectrum are distinct.

As noted in Ref. [13], the leading order contribution to Kdf,3 in Eq. (2.13) is independent
of momenta pi and p0j . This shows that the isotropic approximation to Kdf,3, defined as
independence of the seven angular variables, arises naturally in the same way as the s-wave
approximation to K2. What we add here is the result that Kdf,3 remains isotropic at O(�),
having only an overall linear dependence on s. Furthermore, at quadratic order, we find
only two terms that depend on angular variables (�(2)

A and �(2)
B ), compared to the seven

angular variables that are needed to fully characterize three-particle scattering. Thus, if
it is a good approximation to truncate the threshold expansion at O(�2), the number of
parameters needed to describe Kdf,3 is smaller than one might naively have expected.

For most of our numerical investigations, we have restricted ourselves to quadratic
order in the expansion of Kdf,3. It is interesting, however, to push the classification to
higher order for at least three reasons. First, in order to know how rapidly the number of
parameters grows; second, to see which dimer partial waves enter; and, third, to investigate
the issue of solutions to the quantization condition with energies given by those of three
noninteracting particles (see Sec. 4.4.3). Thus we have classified all terms of cubic order.
We find eight independent terms: three that are just � times each of the terms of quadratic
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1
16πE2 [ 1
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+ r0

q2

2
+ P0r3

0q4],
1

𝒦(2)
2

=
1

16πE2

1
q4

1
a5

2

• QC3 now involves the determinant of a (finite) matrix

• Consider only P=0

• Project onto irreps, determine vanishing of eigenvalues of 1/F3 + Kdf,3

det [F−1
3 + 𝒦df,3]= 0



S. Sharpe, ``Implementing the three-particle quantization condition,” Santa Fe workshop “Lattice QCD”, 8/29/2019 /66

4 5 6 7 8

mL

3.0

3.5

4.0

4.5

5.0

E
n
(L

)/
m

a = �1/2

Impact of strong d-wave attraction

�53�53

What happens to
these levels as

a2 is turned on?

Results from isotropic approximation with 𝒦df,3 = 0
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Impact of strong d-wave attraction

�54�54
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Impact of strong d-wave attraction
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Impact of quadratic terms in Kdf,3

�55�55

Energies of 3π+ states need to be determined very accurately to be sensitive 
to Kdf,3(2,B), but this is achievable in ongoing simulations
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Numerical 
implementation:  

isotropic approximation 
including dimers

�56

[BBHRS19]
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Isotropic approximation: v2

�57�57

• Same set-up as in [BHS18], except that by modifying the PV pole prescription, 
the formalism works for am > 1 

• Allows us to study cases where, in infinite-volume, there is a two-particle 
bound state (“dimer’’), which can have relativistic binding energy

EB/m = 2 1 − 1/(am)2 am=2 3
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Isotropic approximation: v2

�57�57

• Same set-up as in [BHS18], except that by modifying the PV pole prescription, 
the formalism works for am > 1 

• Allows us to study cases where, in infinite-volume, there is a two-particle 
bound state (“dimer’’), which can have relativistic binding energy

EB/m = 2 1 − 1/(am)2 am=2 3

• Interesting case:  choose parameters so that there is both a dimer and a trimer

• This is the analog (without spin) of studying the n+n+p system in which there 
are neutron + deuteron and tritium states

• Finite-volume states will have components of all three types



S. Sharpe, ``Implementing the three-particle quantization condition,” Santa Fe workshop “Lattice QCD”, 8/29/2019 /66�58�58

Isotropic approximation: am=2, Kdf,3=0
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Isotropic approximation: am=2, Kdf,3=0
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Isotropic approximation: am=2, Kdf,3=0
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Qualitatively similar to results from NREFT [Döring et al., 18]
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trimer!

Dominantly
2+1 states

Isotropic approximation: am=2, Kdf,3=0
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Isotropic approximation: a=2, Kdf,3=0

�60�60

2+1 EFT: solve QC2 for nondegenerate particles
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Isotropic approximation: a=2, Kdf,3=0
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Isotropic approximation: a=2, Kdf,3=0
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Isotropic approximation: a=2, Kdf,3=0
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2+1 EFT: solve QC2 for nondegenerate particles
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Quantization 

condition is useful as 

tool for studying 

infinite-volume!
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Dimer properties vs a0

�61�61
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Dimer properties vs a0
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Phillips curve in toy N+D / Tritium system

�62�62

Choose parameters so that mdimer : m = MD : M and vary 𝒦df,3
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Phillips curve in toy N+D / Tritium system

�62�62

Choose parameters so that mdimer : m = MD : M and vary 𝒦df,3
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doublet scattering
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Conclusions & Outlook

�64



/66S. Sharpe, ``Implementing the three-particle quantization condition,” Santa Fe workshop “Lattice QCD”, 8/29/2019

Status

�65

• Simplest case is ready to use!

• Identical spinless particles with a Z2 symmetry: applies to 3π+

• LQCD results for 3π+ from [Hanlen & Hörz, 19]

• Applied to results from φ4 theory [Romero-López et al., 18]

• Reasonable understanding of relationship between approaches [BHREV19]

• Unitarity of parametrization of M3 has been demonstrated [BHSS19], and 
equivalence to B-matrix parametrization shown [Jackura et al, 19]

• BHS parametrizations may be useful to analyze scattering data
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To-do list for QC3

�66

• Generalize formalism to broaden applications (“straightforward”)

• Degenerate particles with isospin, for, e.g., ω→3π in isosymmetric QCD

• Nondegenerate particles with spin for, e.g., N(1440)

• Determination of Lellouch-Lüscher factors to allow application to K→3π etc

• Understand appearance of unphysical solutions (wrong residue) for some values of 
parameters—observed in [BHS18; BRS19]

• May be due to truncation, or due to exponentially suppressed effects, or both

• Can investigate the latter by varying the cutoff function [BBHRS, in progress]

• Develop physics-based parametrizations of Kdf,3 to describe resonances

• Use relation of Kdf,3 to alternative K matrices derived in [Jackura, SS, et al., 19]? 

• Need to learn how to relate Kdf,3 to M3 above threshold

• Move on to QC4 !?
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Thank you! 
Questions?
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