The muon anomalous magnetic moment

Christoph Lehner
(UR & BNL)

August 27, 2019 – Santa Fe
The magnetic moment

- The magnetic moment $\vec{\mu}$ determines the shift of a particle’s energy in the presence of a magnetic field \vec{B}

$$V = -\vec{\mu} \cdot \vec{B}$$

- The intrinsic spin \vec{S} of a particle contributes

$$\vec{\mu} = g \left(\frac{e}{2m} \right) \vec{S}$$

with electric charge e, particle mass m, and Landé factor g.
Send silver atoms through non-uniform magnetic field, $\vec{F} = -\nabla V$

Atoms electrically neutral \Rightarrow spin effects can dominate

Silver has single 5s electron and fully filled shells below \Rightarrow observe μ of the electron

$\vec{B} \neq 0$: two distinct lines \Rightarrow quantized spin, distance of lines $\Rightarrow g_e$
The anomalous magnetic moment

- 1924: Stern and Gerlach measured $g_e = 2.0(2)$
- 1928: Dirac shows that relativistic quantum mechanics yields $g_e = 2$
- 1947 (Phys. Rev. 72 1256, November 3): Kusch & Foley (Columbia) measure $g_e = 2.00229(8)$ in the Zeeman spectrum of gallium
- 1947 (Phys. Rev. 73 416, December 30): Schwinger calculates lowest-order radiative photon correction within quantum field theory (QFT): $g_e = 2 + \alpha/\pi = 2.00232 \ldots$

Define anomalous magnetic moment $a_e = (g_e - 2)/2$ exhibiting effects of QFT
The anomalous magnetic moment

- In QFT, a can be expressed in terms of scattering of particle off a classical photon background.

For external photon index μ with momentum q the scattering amplitude can be generally written as

$$(-ie) \left[\gamma_{\mu} F_1(q^2) + \frac{i \sigma^{\mu\nu} q^\nu}{2m} F_2(q^2) \right]$$

with $F_2(0) = a$.

Early measurements of a_μ

- Study of μ decays under varying magnetic field by Garwin, Lederman and Weinrich 1957 (Nevis Cyclotron, Columbia)

 \[g_\mu = 2.0(2) \]

- Study of stopped muon precession by Garwin, Hutchinson, Penman, Shapiro 1960

 \[a_\mu = 0.00113 + 0.00016 - 0.00012 \]

- Crucial improvement (magic-momentum method) in CERN-3 experiment 1979

 \[a_\mu = 0.001165924(9) \]
Magic momentum method

- Send muon in storage ring with uniform magnetic field, observe decays as function of time
- Measure difference of cyclotron frequency ω_C and spin rotation frequency ω_S directly with

\[
\tilde{\omega}_a = \tilde{\omega}_S - \tilde{\omega}_C = -\frac{Qe}{m} \left[a_\mu \vec{B} - a_\mu \left(\frac{\gamma}{\gamma + 1} \right) (\vec{\beta} \cdot \vec{B})\vec{\beta} \right.
\]
\[
- \left. \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right]
\]

(Thomas 1927).
- Minimize uncertainty by tuning $\gamma^2 - 1 \approx 1/a_\mu$ or $p_\mu \approx 3.09$ GeV to suppress effect of electric field; treat $\vec{\beta} \cdot \vec{B}$ term as perturbation
- All experiments discussed in the following use this method
The BNL E821 experiment (2006)

FIG. 2: Distribution of electron counts versus time for the 3.6 billion muon decays in the R01 data-taking period. The data is wrapped around modulo 100 µs.

A representative electron decay time histogram is shown in Fig. 2.

To determine a_{μ}, we divide ω_a by $\tilde{\omega}_p$, where $\tilde{\omega}_p$ is the measure of the average magnetic field seen by the muons. The magnetic field, measured using NMR, is proportional to the free proton precession frequency, ω_p. The muon anomaly is given by:

$$a_{\mu} = \frac{\omega_a}{\omega_L - \omega_a} = \frac{\omega_a}{\tilde{\omega}_p} \frac{\omega_L}{\tilde{\omega}_p} - \frac{\omega_a}{\tilde{\omega}_p} = R \lambda - R,$$

(11)

where ω_L is the Larmor precession frequency of the muon. The ratio $R = \omega_a/\tilde{\omega}_p$ is measured in our experiment and the muon-to-proton magnetic moment ratio $\lambda = \omega_L/\omega_p = 3.18334539(10)$ (12) is determined from muonium hyperfine level structure measurements [12, 13].

The BNL experiment was commissioned in 1997 using the same pion injection technique employed by the CERN III experiment. Starting in 1998, muons were injected directly into the ring, resulting in many more stored muons with much less background. Data were

$E821_{\mu} = 0.00116592089(54)$ stat (33) sys

One of 24 detectors see an electron, giving the muon spin direction; g-2 is this angle, divided by the magnetic field the muon is traveling through in the ring.

After each circle, muon's spin axis changes by 12°, yet it keeps on traveling in the same direction.

After circling the ring many times, muons spontaneously decay to electron, (plus neutrinos,) in the direction of the muon spin.
The BNL E821 experiment (2006)

http://www.g-2.bnl.gov/physics/index.html

FIG. 2: Distribution of electron counts versus time for the 3.6 billion muon decays in the R01 µ− data-taking period. The data is wrapped around modulo 100 µs.

A representative electron decay time histogram is shown in Fig. 2.

To determine a_μ, we divide ω_a by $\tilde{\omega}_p$, where $\tilde{\omega}_p$ is the measure of the average magnetic field seen by the muons. The magnetic field, measured using NMR, is proportional to the free proton precession frequency, ω_p. The muon anomaly is given by:

$$a_\mu = \frac{\omega_a}{\tilde{\omega}_p} = \frac{\omega_a}{\omega_L} - \frac{\omega_a}{\tilde{\omega}_p} = R\lambda - R,$$

where ω_L is the Larmor precession frequency of the muon. The ratio $R = \omega_a / \tilde{\omega}_p$ is measured in our experiment and the muon-to-proton magnetic moment ratio $\lambda = \omega_L / \omega_p = 3.18334539(10)$ (12) is determined from muonium hyperfine level structure measurements [12, 13].

The BNL experiment was commissioned in 1997 using the same pion injection technique employed by the CERN III experiment. Starting in 1998, muons were injected directly into the ring, resulting in many more stored muons with much less background. Data were...
There is a tension of 3.7σ for the muon

$$a_\mu^{E821} - a_\mu^{SM} = 27.4 \left(2.7 \right) \left(2.6 \right) \left(0.1 \right) \left(6.3 \right) \times 10^{-10}$$

HVP HLbL other E821

Hadronic Vacuum Polarization (HVP)

Hadronic Light-by-Light (HLbL)
New experiment: Fermilab E989

\[a_{\mu}^{E821} - a_{\mu}^{SM} = 27.4 \left(\begin{array}{c} 2.7 \\ 2.6 \\ 0.1 \\ 6.3 \end{array} \right) \times 10^{-10} \]

\begin{align*}
\text{HVP} & \quad \text{HLbL} & \quad \text{other} & \quad \text{E821} \\
\delta a_{\mu}^{E989, \ 2019} & = 4.5 \times 10^{-10} , & \delta a_{\mu}^{E989, \ 2021} & = 1.6 \times 10^{-10} \\
\end{align*}

Need to improve uncertainties on HVP and HLbL contributions
Experiment
Statistics Run 1 in 2018 and Run 2 in 2019 (talk by N. Tran at FPCP 2019):

- Finished first physics run, Run 1, in July 2018
- Field uniformity 2x better than BNL
- 1.75×10^{10} positrons collected, ~2x BNL stats
- $1.4x$ BNL after data quality cut, $\delta \omega_a^{\text{stat}} \approx 350$ ppb
- Analysis in progress
- Half way through the Run 2
- Improvements: muon flux, kicker strength, overall stability, …
Run 1 fit (talk by N. Tran at FPCP 2019):

\[N(t) = N_0 e^{-t/\tau} \left[1 - A \cos (\omega_a t + \phi) \right] \]

Relative unblinding of 6 analyzing groups successful!
HVP contribution
Status of HVP determinations

ETMC 2013
HPQCD 2016
Mainz 2017
BMW 2017
RBC/UKQCD 2018
ETMC 2018
SK 2019
FNAL/HPQCD/MILC 2019
Mainz 2019
RBC/UKQCD 2018
HLMNT 2011
DHMZ 2012
DHMZ 2017
Jegerlehner 2017
KNT 2018
DHMZ 2019 (prelim)
No new physics

Lattice
Lattice + R-ratio
R-ratio

$a_\mu \times 10^{10}$

610 630 650 670 690 710 730 750
The HVP from dispersion relations

\[e^+ + e^- \rightarrow \text{hadrons}(\gamma) \]

\[J_\mu = V^l=1, I_3=0 + V^l=0, I_3=0 \]

\[\tau \rightarrow \nu \text{hadrons}(\gamma) \]

\[J_\mu = V^l=1, I_3=\pm1 - A^l=1, I_3=\pm1 \]

Knowledge of isospin-breaking corrections and separation of vector and axial-vector components needed to use \(\tau \) decay data.
Dispersive method - e^+e^- status

Recent results ($\times 10^{10}$) by Keshavarzi et al. 2018, Davier et al. 2017:

<table>
<thead>
<tr>
<th>Channel</th>
<th>This work (KNT18)</th>
<th>DHMZ17 [78]</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi^0\gamma$ (data + ChPT)</td>
<td>4.58 ± 0.10</td>
<td>4.29 ± 0.10</td>
<td>0.29</td>
</tr>
<tr>
<td>$\pi^+\pi^-$ (data + ChPT)</td>
<td>503.74 ± 1.96</td>
<td>507.14 ± 2.58</td>
<td>−3.40</td>
</tr>
<tr>
<td>$\pi^+\pi^-\pi^0$ (data + ChPT)</td>
<td>47.70 ± 0.89</td>
<td>46.20 ± 1.45</td>
<td>1.50</td>
</tr>
<tr>
<td>$\pi^+\pi^-\pi^+\pi^-$</td>
<td>13.99 ± 0.19</td>
<td>13.68 ± 0.31</td>
<td>0.31</td>
</tr>
</tbody>
</table>

...

Total | 693.3 ± 2.5 | 693.1 ± 3.4 | 0.2

Good agreement for total, individual channels disagree to some degree. Surprising since they use the same experimental input.
Dispersive method - e^+e^- status

Tension in 2π experimental input. BaBar and KLOE central values differ by $\delta a_\mu = 9.8(3.5) \times 10^{-10}$, compare to quoted total uncertainties of dispersive results of order $\delta a_\mu = 3 \times 10^{-10}$.

Conflicting input limits the precision and reliability of the dispersive results. First-principles calculation to remove dependence on conflicting input data desirable. (RBC/UKQCD 2018)

Looking for more data and insight: energy-scans update from CMD-3 in Novosibirsk and ISR updates from KLOE2, BaBar, Belle, BESIII and BelleII.
Combined Results Fit [<0.6 GeV] + Data [0.6-1.8 GeV]

<table>
<thead>
<tr>
<th>√s range [GeV]</th>
<th>a_{μ}^{had} $[10^{-10}]$</th>
<th>a_{μ}^{had} $[10^{-10}]$</th>
<th>a_{μ}^{had} $[10^{-10}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>threshold - 1.8</td>
<td>$506.9 \pm 1.9_{\text{total}}$</td>
<td>$505.0 \pm 2.1_{\text{total}}$</td>
<td>$510.6 \pm 2.2_{\text{total}}$</td>
</tr>
</tbody>
</table>

⇒ The difference “All but BABAR” and “All but KLOE” = 5.6 to be compared with 1.9 uncertainty with “All data”
 ➤ The local error inflation is not sufficient to amplify the uncertainty
 ➤ Global tension (normalisation/shape) not previously accounted for
 ➤ Potential underestimated uncertainty in at least one of the measurements?
 ➤ Other measurements not precise enough and are in agreement with BABAR or KLOE

⇒ Given the fact we do not know which dataset is problematic, we decide to
 ➤ Add half of the discrepancy (2.8) as an additional uncertainty (correcting the local PDG inflation to avoid double counting)
 ➤ Take the mean value “All but BABAR” and “All but KLOE” as our central value
Talk by Druzhinin at EPS 2019 (SND experiment preliminary):

\[e^+ e^- \rightarrow \pi^+ \pi^- \]

0.53 < \sqrt{s} < 0.88 GeV

<table>
<thead>
<tr>
<th></th>
<th>(\alpha_\mu(\pi^+ \pi^-) \times 10^{10})</th>
</tr>
</thead>
<tbody>
<tr>
<td>SND & VEPP-2000</td>
<td>411.8 \pm 1.0 \pm 3.7</td>
</tr>
<tr>
<td>SND & VEPP-2M</td>
<td>408.9 \pm 1.3 \pm 5.3</td>
</tr>
<tr>
<td>BABAR</td>
<td>414.9 \pm 0.3 \pm 2.1</td>
</tr>
</tbody>
</table>
Dispersive method - τ status

<table>
<thead>
<tr>
<th>Experiment</th>
<th>$2m_{π} \pm 0.36$ GeV</th>
<th>$a_{μ}^{\text{had,LO}}[ππ,τ] (10^{-10})$</th>
<th>$0.36 - 1.8$ GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALEPH</td>
<td>9.80 ± 0.40 ± 0.05 ± 0.07</td>
<td>501.2 ± 4.5 ± 2.7 ± 1.9</td>
<td></td>
</tr>
<tr>
<td>CLEO</td>
<td>9.65 ± 0.42 ± 0.17 ± 0.07</td>
<td>504.5 ± 5.4 ± 8.8 ± 1.9</td>
<td></td>
</tr>
<tr>
<td>OPAL</td>
<td>11.31 ± 0.76 ± 0.15 ± 0.07</td>
<td>515.6 ± 9.9 ± 6.9 ± 1.9</td>
<td></td>
</tr>
<tr>
<td>Belle</td>
<td>9.74 ± 0.28 ± 0.15 ± 0.07</td>
<td>503.9 ± 1.9 ± 7.8 ± 1.9</td>
<td></td>
</tr>
<tr>
<td>Combined</td>
<td>9.82 ± 0.13 ± 0.04 ± 0.07</td>
<td>506.4 ± 1.9 ± 2.2 ± 1.9</td>
<td></td>
</tr>
</tbody>
</table>

Davier et al. 2013: $a_{μ}^{\text{had,LO}}[ππ,τ] = 516.2(3.5) \times 10^{-10} \ (2m_{π}^\pm - 1.8 \ \text{GeV})$

Compare to $e^+ e^-$:

- $a_{μ}^{\text{had,LO}}[ππ, e^+ e^-] = 507.1(2.6) \times 10^{-10} \ (\text{DHMZ17}, \ 2m_{π}^\pm - 1.8 \ \text{GeV})$
- $a_{μ}^{\text{had,LO}}[ππ, e^+ e^-] = 503.7(2.0) \times 10^{-10} \ (\text{KNT18}, \ 2m_{π}^\pm - 1.937 \ \text{GeV})$

Here treatment of isospin-breaking to relate matrix elements of $V_{μ}^{l=1,l_3=1}$ to $V_{μ}^{l=1,l_3=0}$ crucial.

Can calculate from first-principles in lattice QCD+QED (Bruno, Izubuchi, CL, Meyer 2018)
Euclidean Space Representation

Starting from the vector current $J_\mu(x) = i \sum_f Q_f \overline{\Psi}_f(x) \gamma_\mu \Psi_f(x)$ we may write

$$a_{\mu}^{\text{HVP LO}} = \sum_{t=0}^{\infty} w_t C(t)$$

with

$$C(t) = \frac{1}{3} \sum_{\vec{x}} \sum_{j=0,1,2} \langle J_j(\vec{x}, t)J_j(0) \rangle$$

and w_t capturing the photon and muon part of the HVP diagrams.

The correlator $C(t)$ is computed in lattice QCD+QED at physical pion mass with non-degenerate up and down quark masses including up, down, strange, charm, and bottom quark contributions.
Window method (RBC/UKQCD 2018)

We therefore also consider a window method

\[a_\mu = a_{\mu}^{SD} + a_{\mu}^{W} + a_{\mu}^{LD} \]

with

\[a_{\mu}^{SD} = \sum_t C(t) w_t [1 - \Theta(t, t_0, \Delta)] , \]
\[a_{\mu}^{W} = \sum_t C(t) w_t [\Theta(t, t_0, \Delta) - \Theta(t, t_1, \Delta)] , \]
\[a_{\mu}^{LD} = \sum_t C(t) w_t \Theta(t, t_1, \Delta) , \]
\[\Theta(t, t', \Delta) = \frac{1 + \tanh \left(\frac{(t - t')/\Delta}{2} \right)}{2} . \]

In this version of the calculation, we use

\[C(t) = \frac{1}{12\pi^2} \int_0^\infty d(\sqrt{s}) R(s) s e^{-\sqrt{s}t} \]

with \(R(s) = \frac{3s}{4\pi\alpha^2} \sigma(s, e^+ e^- \rightarrow \text{had}) \)

to compute \(a_{\mu}^{SD} \) and \(a_{\mu}^{LD} \) and Lattice QCD+QED for \(a_{\mu}^{W} \).
How does this translate to the time-like region?

Most of $\pi\pi$ peak is captured by window from $t_0 = 0.4$ fm to $t_1 = 1.5$ fm, so replacing this region with lattice data reduces the dependence on BaBar versus KLOE data sets.
Calculation of the Hadronic Vacuum Polarization Contribution to the Muon Anomalous Magnetic Moment

T. Blum,1 P. A. Boyle,2 V. Gülpers,3 T. Izubuchi,4,5 L. Jin,1,5 C. Jung,4 A. Jüttner,3 C. Lehner,4,* A. Portelli,2 and J. T. Tsang2

(RBC and UKQCD Collaborations)

1Physics Department, University of Connecticut, Storrs, Connecticut 06269-3046, USA
2School of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
3School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, United Kingdom
4Physics Department, Brookhaven National Laboratory, Upton, New York 11973, USA
5RIKEN-BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973, USA

(Received 25 January 2018; published 12 July 2018)

We present a first-principles lattice QCD + QED calculation at physical pion mass of the leading-order hadronic vacuum polarization contribution to the muon anomalous magnetic moment. The total contribution of up, down, strange, and charm quarks including QED and strong isospin breaking effects is $a_{\mu}^{\text{HVP LO}} = 715.4(18.7) \times 10^{-10}$. By supplementing lattice data for very short and long distances with R-ratio data, we significantly improve the precision to $a_{\mu}^{\text{HVP LO}} = 692.5(2.7) \times 10^{-10}$. This is the currently most precise determination of $a_{\mu}^{\text{HVP LO}}$.

This method allows us to reduce HVP uncertainty over next years to $\delta a_{\mu}^{\text{LO HVP}} \sim 1 \times 10^{-10}$, below Fermilab E989 uncertainty.
Overview of individual contributions
Diagrams – Isospin limit

FIG. 1. Quark-connected (left) and quark-disconnected (right) diagram for the calculation of $a_{\mu}^{\text{HVP LO}}$. We do not draw gluons but consider each diagram to represent all orders in QCD.
with $C(t) = 1$

With appropriate definition of w_t, we can therefore write

The crosses denote the insertion of a scalar operator.

FIG. 3. Strong isospin-breaking correction diagrams. The

crosses denote the insertion of a scalar operator.
with \(C(t) = \frac{1}{3} \sum_{\mathbf{x}} P \sum_{j=0,1,2} h J_j(\mathbf{x}, t) J_j(0) \). With appropriate definition of \(w_t \), we can therefore write
\[a_\mu, s, \text{conn, isospin} \times 10^{10} \]

FIG. 3. Strong isospin-breaking correction diagrams. The crosses denote the insertion of a scalar operator.
with $C(t) = 1$

$P \sim x$

$P_j = 0, 1, 2h_j(x, t)j(0)i$. With appropriate definition of w_t, we can therefore write

\ldots small).

FIG. 3. Strong isospin-breaking correction diagrams. The crosses denote the insertion of a scalar operator.

HPQCD 2014
Mainz 2017
ETMC 2017
BMW 2017
RBC/UKQCD 2018
SK 2019
Mainz 2019

FIG. 2. QED-correction diagrams with external pseudo-scalar

FIG. 1. Quark-connected (left) and quark-disconnected

\mathcal{O} would yield a correction to the HVP

\mathcal{M} gives the valence, diagram R the sea quark mass shift

\mathcal{O}, \mathcal{R}, \mathcal{T}, \mathcal{D}_1, \mathcal{D}_2, and \mathcal{D}_3. This approximation is estimated to yield an

\ldots negligible diagrams are both $SU(3)$ and 1

\ldots neglected diagrams is still 1

\ldots diagram F as the QED-disconnected contribution. We

\ldots only the parts of diagram F with additional

\ldots photon line is possible. For this reason, we subtract the

\ldots note that only the parts of diagram F with additional

\ldots contribution (that likely is very small).

\ldots contribution of 1

\ldots correction to the meson masses. Diagram O

\ldots approximation. The external vertices are pseudo-scalar operators

\ldots separate quantum-averages of quark loops in diagram F.

\ldots note that only the parts of diagram F with additional

\ldots for the former and vector operators for the latter. We

\ldots for the latter. We

\ldots photon line is possible. For this reason, we subtract the

\ldots contribution of 1

\ldots correction to the meson masses. Diagram O

\ldots approximation. The external vertices are pseudo-scalar operators

\ldots separate quantum-averages of quark loops in diagram F.

\ldots note that only the parts of diagram F with additional

\ldots contribution of 1

\ldots correction to the meson masses. Diagram O

\ldots approximation. The external vertices are pseudo-scalar operators

\ldots separate quantum-averages of quark loops in diagram F.
with C(t) = 1

P
~x
P
j=0,1,2hJj(~x, t)Jj(0)i. With appropriate definition of wt, we can therefore write

aµ, uds, disc, isospin × 10^{10}

FIG. 3. Strong isospin-breaking correction diagrams. The crosses denote the insertion of a scalar operator.
FIG. 9: Extrapolation of the disconnected contribution to a_{μ}^{hvp} in the SU(3)-breaking variable $\Delta_2 \equiv m_K^2 - m_\pi^2$. The data points for the local-local and the local-conserved discretizations are shown. A linear fit (straight black line), as well as a fit based on ansatz (30) are shown.

Mainz 2019: arXiv:1904.03120; better control of chiral extrapolation could be helpful
Diagrams – QED corrections

For diagram F we enforce exchange of gluons between the quark loops as otherwise a cut through a single photon line would be possible. This single-photon contribution is counted as part of the HVP NLO and not included for the HVP LO.
For the finite-volume errors, the two-pion states in d are identical to the $I = 1$ contributions of c and can be calculated using the GSL estimate which we use for c. For the omega-related finite-volume errors, I will take the fitted $d!$ and $E!$ and use this as the full result at finite-volume and compare it to a GS model with omega mass from the fitted $E!$ and width from the PDG in infinite-volume. I should also compare this to R-ratio results for the $I = 0$ channel.

Do this entire exercise for 24ID and 32ID to estimate discretization errors.

4 QED and SIB diagrams

We will perform a full first-principles calculation of all $O(\alpha)$ and $O(a_{\mu})$ corrections. The corresponding list of diagrams is given in Figs. 1 and 2.

(a) V
(b) S
(c) T
(d) T_d
(e) $D1$
(f) $D1_d$

(g) $D2$
(h) $D2_d$
(i) F
(j) $D3$

Figure 1: QED corrections

Figure 2: SIB corrections

μ, QED, conn $\times 10^{10}$
For the finite-volume errors, the two-pion states in \(d \) are identical to the \(I = 1 \) contributions of \(c \) and can be calculated using the GSL estimate which we use for \(c \). For the omega-related finite-volume errors, I will take the fitted \(d \) and \(E \) and use this as the full result at finite-volume and compare it to a GS model with omega mass from the fitted \(E \) and width from the PDG in infinite-volume. I should also compare this to R-ratio results for the \(I = 0 \) channel.

Do this entire exercise for 24ID and 32ID to estimate discretization errors.

4 QED and SIB diagrams

We will perform a full first-principles calculation of all \(O(\alpha) \) and \(O(\mu^m) \) corrections. The corresponding list of diagrams is given in Figs. 1 and 2.

(a) V
(b) S
(c) T
(d) T\textsubscript{d}
(e) D1
(f) D1\textsubscript{d}
(g) D2
(h) D2\textsubscript{d}
(i) F
(j) D3

Figure 1: QED corrections

(a) M
(b) R
(c) R\textsubscript{d}
(d) O

Figure 2: SIB corrections

\[a_\mu, \text{QED, disc} \times 10^{10} \]
Diagrams – Strong isospin breaking

For the HVP R is negligible since $\Delta m_u \approx -\Delta m_d$ and O is SU(3) and $1/N_c$ suppressed.
For the finite-volume errors, the two-pion states in d are identical to the $I = 1$ contributions of c and can be calculated using the GSL estimate which we use for c. For the omega-related finite-volume errors, I will take the fitted d and E and use this as the full result at finite-volume and compare it to a GS model with omega mass from the fitted E and width from the PDG in infinite-volume. I should also compare this to R-ratio results for the $I = 0$ channel.

Do this entire exercise for 24ID and 32ID to estimate discretization errors.

4 QED and SIB diagrams

We will perform a full first-principles calculation of all $\mathcal{O}(\tilde{\alpha})$ and $\mathcal{O}(a_\mu)$ corrections. The corresponding list of diagrams is given in Figs. 1 and 2.

(a) V
(b) S
(c) T
(d) T_d
(e) D_1
(f) D_1_d
(g) D_2
(h) D_2_d
(i) F
(j) D_3

Figure 1: QED corrections

Figure 2: SIB corrections
Status of RBC/UKQCD HVP effort
The pure lattice calculation of RBC/UKQCD 2018:

\[10^{10} \times a_\mu^{\text{HVP LO}} = 715.4(18.7) \]
\[= 715.4(16.3)_S(7.8)_V(3.0)_C(1.9)_A(3.2)_{\text{other}} \]

(S) statistics, (V) finite-volume errors, (C) the continuum limit extrapolation, (A) scale setting uncertainty;
other ⊃ neglected diagrams for QED and SIB, estimate of bottom quark contribution

Statistical noise mostly from isospin symmetric light quark connected (14.2) and disconnected (3.3), QED (5.7), SIB (4.3)

RBC/UKQCD 2019 update (in preparation):

- Improved methodology
- A lot of new data
The RBC & UKQCD collaborations

BNL and BNL/RBRC
- Yasumichi Aoki (KEK)
- Taku Izubuchi
- Yong-Chull Jang
- Chulwoo Jung
- Meifeng Lin
- Aaron Meyer
- Hiroshi Ohki
- Shigemi Ohta (KEK)
- Amarjit Soni

University of Connecticut
- Tom Blum
- Dan Hoying (BNL)
- Luchang Jin (RBRC)
- Cheng Tu

Edinburgh University
- Peter Boyle
- Luigi Del Debbio
- Felix Erben
- Vera Gülpers
- Tadeusz Janowski
- Julia Kettle
- Michael Marshall
- Fionn Ó hÓgáin
- Antonin Portelli
- Tobias Tsang
- Andrew Yong
- Azusa Yamaguchi

KeK
- Julien Frison

University of Liverpool
- Nicolas Garron

MIT
- David Murphy

Peking University
- Xu Feng

University of Regensburg
- Christoph Lehner (BNL)

University of Southampton
- Nils Asmussen
- Jonathan Flynn
- Ryan Hill
- Andreas Jüttner
- James Richings
- Chris Sachrajda

Stony Brook University
- Jun-Sik Yoo
- Sergey Syritsyn (RBRC)

Aaron & Mattia joined since 2018 paper
The correlator in finite volume

\[C(t) = \sum_n |\langle 0 | V | n \rangle|^2 e^{-E_n t}. \]

We can bound this correlator at each \(t \) from above and below by the correlators

\[\tilde{C}(t; T, \tilde{E}) = \begin{cases} C(t) & t < T, \\ C(T) e^{-(t-T)\tilde{E}} & t \geq T \end{cases} \]

for proper choice of \(\tilde{E} \). We can chose \(\tilde{E} = E_0 \) (assuming \(E_0 < E_1 < \ldots \)) to create a strict upper bound and any \(\tilde{E} \) larger than the local effective mass to define a strict lower bound.
Improved Bounding Method

Therefore if we had precise knowledge of the lowest \(n = 0, \ldots, N \) values of \(|\langle 0|V|n \rangle| \) and \(E_n \), we could define a new correlator

\[
C^N(t) = C(t) - \sum_{n=0}^{N} |\langle 0|V|n \rangle|^2 e^{-E_n t}
\]

which we could bound much more strongly through the larger lowest energy \(E_{N+1} \gg E_0 \).

New method: do a GEVP study of FV spectrum to perform this subtraction

- 10 operator basis including two \(4\pi \) operators
- Automatic group theory by A. Meyer
- Automatic contractions/evaluations using distillation: \(\text{https://github.com/lehner/Wick} \)

Reduces statistical error of light quark contribution by more than a factor of 3.
Other improvements:

- FV corrections both directly calculated at physical pion mass \(a_\mu(L = 6.22 \text{ fm}) - a_\mu(L = 4.66 \text{ fm})\), GSL\(^2\) method, update of Hansen and Patella.

- HVP QED from re-analysis of HLbL point-source data (see also RBC/UKQCD \(\tau\) project, Bruno et al. 1811.00508) reduces statistical noise by \(\approx 10\times\) for V and S

- Infinite-volume and continuum limit also for diagram V, S, and F

- First results for T, D1, and R; other sub-leading in preparation

- Global fit combined with calculation of mass derivatives gives much reduced uncertainty for diagrams M and O (connected and disconnected SIB)
Ensembles at physical pion mass:

48I (1.73 GeV, 5.5fm), 64I (2.359 GeV, 5.4fm), 24ID (1 GeV, 4.7fm), 32ID (1 GeV, 6.2fm), 48ID (1 GeV, 9.3fm), 32IDf (1.37 GeV, 4.6fm)

RBC/UKQCD 2019 (data for light quarks, changes from 2018):

- A2A data for connected isospin symmetric: 48I (127 conf → 400 conf), 64I (160 conf → 250 conf), 24ID (new 130 conf, multi mass), 32ID (new 88 conf, multi mass)

- A2A data (tadpole fields) for disconnected: 48I (33 conf), 24ID (new 260 conf, multi mass), 32IDf (new 103 conf)

- QED and SIB corrections to meson and Ω masses, Z_V: 48I (30 conf) and 64I (new 30 conf)

- QED and SIB from HLbL point sources on 48I, 24ID, 32ID, 32IDf (on order of 20 conf each, 2000 points per config)

- Distillation data on 48I (33 conf), 64I (in progr.), 24ID (33 conf), 32ID (11 conf, multi-mass)

- New Ω mass operators (excited states control): 48I (130 conf)
Add $a^{-1} = 2.77$ GeV lattice spacing

- Third lattice spacing for strange data ($a^{-1} = 2.77$ GeV with $m_\pi = 234$ MeV with sea light-quark mass corrected from global fit):

![Graph showing linear fit in a^2]

- For light quark need new ensemble at physical pion mass. Started run on Summit Machine at Oak Ridge this year ($a^{-1} = 2.77$ GeV with $m_\pi = 139$ MeV).
HLbL contribution
Current HLbL value is model estimate

Contributions to $a_\mu^{\text{HLbL}} \times 10^{10}$

<table>
<thead>
<tr>
<th>Source</th>
<th>PdRV09</th>
<th>JN09</th>
<th>FJ17</th>
</tr>
</thead>
<tbody>
<tr>
<td>π^0, η, η'</td>
<td>11.4(1.3)</td>
<td>9.9(1.6)</td>
<td>9.5(1.2)</td>
</tr>
<tr>
<td>π, K loops</td>
<td>-1.9(1.9)</td>
<td>-1.9(1.3)</td>
<td>-2.0(5)</td>
</tr>
<tr>
<td>axial-vector</td>
<td>1.5(1.0)</td>
<td>2.2(5)</td>
<td>0.8(3)</td>
</tr>
<tr>
<td>scalar</td>
<td>-0.7(7)</td>
<td>-0.7(2)</td>
<td>-0.6(1)</td>
</tr>
<tr>
<td>quark loops</td>
<td>0.2 (charm)</td>
<td>2.1(3)</td>
<td>2.2(4)</td>
</tr>
<tr>
<td>tensor</td>
<td></td>
<td></td>
<td>0.1(0)</td>
</tr>
<tr>
<td>NLO</td>
<td></td>
<td></td>
<td>0.3(2)</td>
</tr>
<tr>
<td>Total</td>
<td>10.5(4.9)</td>
<td>11.6(3.9)</td>
<td>10.3(2.9)</td>
</tr>
<tr>
<td></td>
<td>10.5(2.6) (quadrature)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Potential double-counting and ad-hoc uncertainties
Two new avenues for a model-independent value for the HLbL

Dispersive analysis + Experimental/lattice input

Direct lattice calculation

How to estimate uncertainty of truncation of cuts/states?

... 7 quark-level topologies
Dispersive analysis - recent results

- PRD94(2016)074507 (Mainz): Pion-pole contribution
 \[a_{\mu}^{\pi-pole} = 6.50(83) \times 10^{-10} \]
 using a model parametrization of the \(\pi \rightarrow \gamma^*\gamma^* \)
 form factor constrained by lattice data

\[
F_{\pi^0\gamma^*\gamma^*}^{LMD+V}(q_1^2, q_2^2) = \frac{h_0 q_1^2 q_2^2 (q_1^2 + q_2^2) + h_1 (q_1^2 + q_2^2)^2 + h_2 q_1^2 q_2^2 + h_5 M_{V_1}^2 M_{V_2}^2 (q_1^2 + q_2^2) + \alpha M_{V_1}^4 M_{V_2}^4}{(M_{V_1}^2 - q_1^2)(M_{V_2}^2 - q_2^2)(M_{V_1}^2 - q_2^2)(M_{V_2}^2 - q_1^2)}
\]

- JHEP1704(2017)161 (Colangelo et al.): Pion-box plus S-wave rescattering
 \[a_{\mu}^{\pi-box} + a_{\mu}^{\pi\pi,\pi-pole} \] \(LHC, J=0 \)
 \[= -2.4(1) \times 10^{-10} \]

- PRL121(2018)112002 (Hoferichter et al.); 1808.04823: Pion-pole contribution
 \[a_{\mu}^{\pi-pole} = 6.26(30) \times 10^{-10} \]
 reconstructing \(\pi \rightarrow \gamma^*\gamma^* \) form factor from
 \(e^+ e^- \rightarrow 3\pi, e^+ e^- \pi^0 \) and \(\pi^0 \rightarrow \gamma\gamma \) width

Combining these results one finds:
\[a_{\mu}^{\pi-pole} + a_{\mu}^{\pi-box} + a_{\mu}^{\pi\pi} = 3.9(3) \times 10^{-10} \]

Further estimates:
\[a_{\mu}^{\eta',\eta'} \approx 3 \times 10^{-10}, \]
\[a_{\mu}^{\text{axial vector}} \approx 1 \times 10^{-10}, \]
\[a_{\mu}^{\text{short distance}} \approx 1 \times 10^{-10} \]

Control of truncation error very important.
7 quark-level topologies of direct lattice calculation

Hierarchy imposed by QED charges of dominant up- and down-quark contribution

\[Q_u^4 + Q_d^4 = \frac{17}{81} \]

\[(Q_u^2 + Q_d^2)^2 = \frac{25}{81} \]

\[(Q_u^3 + Q_d^3)(Q_u + Q_d) = \frac{9}{81} \]

\[(Q_u^2 + Q_d^2)(Q_u + Q_d)^2 = \frac{5}{81} \]

\[(Q_u + Q_d)^4 = \frac{1}{81} \]

Further insight for magnitude of individual topologies can be gained by studying long-distance behavior of QCD correlation functions (Bijnens, RBC, . . .)
7 quark-level topologies of direct lattice calculation

Hierarchy imposed by QED charges of dominant up- and down-quark contribution

\[Q_u^4 + Q_d^4 = \frac{17}{81} \]

\[(Q_u^2 + Q_d^2)^2 = \frac{25}{81} \]

Dominant diagrams in top row: connected and leading disconnected diagram

\[(Q_u^3 + Q_d^3)(Q_u + Q_d) = \frac{9}{81} \]

\[(Q_u^2 + Q_d^2)(Q_u + Q_d)^2 = \frac{5}{81} \]

\[(Q_u + Q_d)^4 = \frac{1}{81} \]

Further insight for magnitude of individual topologies can be gained by studying long-distance behavior of QCD correlation functions (Bijnens, RBC, ...)
New sampling strategy with 10x reduced noise for same cost (red versus black):

Stochastically evaluate the sum over vertices \(x \) and \(y \):

- Pick random point \(x \) on lattice
- Sample all points \(y \) up to a specific distance \(r = |x - y| \)
- Pick \(y \) following a distribution \(P(|x - y|) \) that is peaked at short distances
Calculation at physical pion mass with finite-volume QED prescription (QED_L) at single lattice cutoff of $a^{-1} = 1.73$ GeV and lattice size $L = 5.5$ fm.

Connected diagram:

$$a^\mu_{\text{cHLbL}} = 11.6(0.96) \times 10^{-10}$$

Leading disconnected diagram:

$$a^\mu_{\text{dHLbL}} = -6.25(0.80) \times 10^{-10}$$

Large cancellation expected from pion-pole-dominance considerations is realized:

$$a^\mu_{\text{HLbL}} = a^\mu_{\text{cHLbL}} + a^\mu_{\text{dHLbL}} = 5.35(1.35) \times 10^{-10}$$

Potentially large systematics due to finite-volume QED!
Preliminary results for infinite-volume extrapolation
Preliminary results for infinite-volume extrapolation

Data used for finite-volume result in PRL118(2016)022005
We report preliminary results for the hadronic light-by-light scattering contribution to the muon anomalous magnetic moment. Several ensembles using 2+1 flavors of Möbius domain-wall fermions, generated by the RBC/UKQCD collaborations, are employed to take the continuum and infinite volume limits of finite volume lattice QED+QCD. We find $a_{\mu}^{\mu \text{HLbL}} = (7.41 \pm 6.33) \times 10^{-10}$.
Next steps in first-principles calculation of HLbL

- Further reduce statistical and finite-volume errors

- Take infinite-volume limit also with finite-volume QCD+infinite-volume QED mixed approach

 \[\text{PRD96(2017)034515} \ (\text{Blum, Christ, Hayakawa, Izubuchi, Jin, Jung, and CL}) \]

Continued effort using these methods to reduce HLbL uncertainty over next years to $\delta a^\text{HLbL}_\mu \sim 1 \times 10^{-10}$, below Fermilab E989 uncertainty
g-2 theory initiative
Muon g-2 Theory Initiative – Goals

Theory Support for the Fermilab E989 experiment to maximize its impact:

- Work towards reduction and scrutiny of uncertainties of hadronic contributions

- Provide summary of theory calculations of the hadronic contributions

⇒ Write report (whitepaper) before Fermilab experiment has first results (target December 2019)

- Steering Committee: Colangelo, Davier, Eidelman, El-Khadra, Lehner, Mibe, Nyffeler, Roberts, Teubner
Muon g-2 Theory Initiative – Workshops and Whitepaper

- Plenary and working-group workshops:
 - 3-6 June 2017, near Fermilab, first plenary workshop
 - 12-14 February 2018, KEK, HVP working group workshop
 - 12-14 March 2018, University of Connecticut, HLbL WG workshop
 - 18-22 June 2018, Mainz, 2018 plenary meeting
 - 9-13 September 2019, Seattle, 2019 workshop with focus on whitepapers

As whitepapers are being finalized, there are still opportunities to participate in the effort!
A tale of two anomalies
Assuming further improvements solidify the tensions

\[a_e^{\text{EXP}} - a_e^{\text{SM}} = -88 (23) (02) (28) \times 10^{-14} \]

and

\[a_\mu^{\text{EXP}} - a_\mu^{\text{SM}} = 27.4 (2.7) (2.6) (0.1) (6.3) \times 10^{-10} , \]

is there a plausible BSM scenario?
Davoudiasl & Marciano 2018: Light new physics

\[\mathcal{L}_\phi = -\frac{1}{2} m_\phi^2 \phi^2 - \sum_f \lambda_f \phi \bar{f} f - \frac{\kappa}{4} \phi F_{\mu\nu} F^{\mu\nu} \]

- 1-loop \(\Delta a_\mu \), 2-loop (Barr-Zee) for \(\Delta a_e \) gives opposite signs!
- Real scalar \(\phi \); \(\phi \gamma \gamma \) coupling from integrating out heavy fermion
- For \(m_\phi = 250 \text{ MeV} \), \(\lambda_\mu = 10^{-3} \), \(\lambda_e = 4 \times 10^{-6} \), \(\lambda_\tau = 0.06 \), can obtain both anomalies. This parameter space is not yet ruled out by other experiments.
- This model can be tested in \(e^+ e^- \rightarrow \tau^+ \tau^- \phi \rightarrow \tau^+ \tau^- \ell^+ \ell^- \) decays at Belle II (Batell et al. 2016)
Stöckinger et al. 2015: MSSM ($\tan \beta \rightarrow \infty$) with radiative muon mass

\[m_{\mu}^{\text{Pole}} \sim y_{\mu} v_d + y_{\mu} v_u \times \text{loop} \quad \text{and} \quad a_{\mu}^{\text{SUSY}} \sim y_{\mu} v_u \times \text{loop} \]

\[\Delta a_e = -7 \times 10^{-13} , \quad \Delta a_{\mu} = 30 \times 10^{-10} . \]
Conclusions and Outlook
• Expect experimental results from Fermilab E989 before end of year

• Concerted effort of theory community both lattice and non-lattice methods (g-2 theory initiative whitepaper to appear before experimental result)

• Interplay of lattice and non-lattice methods for both HVP and HLbL useful to address leading systematics in dispersive approaches

• Pure lattice QCD calculations for HVP have made significant progress and may soon rival precision of dispersive approach

• RBC/UKQCD:
 • HVP: New methods to reduce statistical and systematic errors and a lot of additional data, by end of year first-principles lattice result could have uncertainty of \(O(5 \times 10^{-10}) \)
 • HLbL: First ab-initio calculation with complete error budget in preparation with uncertainty of \(O(5 \times 10^{-10}) \), publish before end of year