Nucleon σ terms

Christian Hoelbling

Bergische Universität Wuppertal (BMW collaboration)

Santa Fe LQCD Workshop, Aug. 27th, 2019

Nucleon σ terms

Motivation

Standard model fermion masses

Elementary fermions: mass proportional Higgs coupling

$$m_f = \sqrt{2}g_f v \longrightarrow m_f = g_f \frac{\partial m_f}{\partial g_f}$$

All of an elementary fermions mass comes from its Higgs coupling

 $\frac{\partial \ln m_f}{\partial \ln g_{f'}} = \delta_{ff'}$

What fraction of the nucleon mass couples to the Higgs via g_f ?

 $f_f^N = \frac{\partial \ln M_N}{\partial \ln g_f} = \frac{\partial \ln M_N}{\partial \ln m_f}$ p/n p/n

Motivation

Nucleon mass in QCD

The QCD Hamiltonian is given by(Ji, 1995)

$$H = \sum_{q} \underbrace{m_{q} \bar{q} q}_{\text{quark mass}} + \underbrace{H_{g}(U)}_{\text{anomaly}} \quad \text{with} \quad \frac{\partial H_{g}}{\partial m_{q}} = 0$$

We extract masses as energy eigenvalues above the vacuum state

$$M_{\mathcal{N}}=\langle \mathcal{N}|\mathcal{H}|\mathcal{N}
angle -\langle 0|\mathcal{H}|0
angle$$

Varying the quark mass we thus find(Hellmann 33; Feynman 39)

$$\frac{\partial M_{N}}{\partial m_{q}} = \langle \mathbf{N} | \frac{\partial H}{\partial m_{q}} | \mathbf{N} \rangle - \langle \mathbf{0} | \frac{\partial H}{\partial m_{q}} | \mathbf{0} \rangle = \langle \mathbf{N} | \bar{q}q | \mathbf{N} \rangle - \langle \mathbf{0} | \bar{q}q | \mathbf{0} \rangle$$

relating nucleon mass variation to scalar quark content

Christian Hoelbling (Wuppertal)

Nucleon σ terms

m⊿N|āa|N

 $\langle N|H_a|N\rangle$

Motivation

Nucleon mass decomposition

One possible nucleon mass decomposition:

$$M_N = \sum_q \sigma_q + M_N^a$$

with Higgs coupling contribution and anomaly contribution

$$\sigma_q = M_N f_q^N = m_q \frac{\partial M_N}{\partial m_q} \qquad M_N^a = \langle N | H_g(U) | N \rangle$$

- Sum of positive contributions
- ✓ All contributions scale and scheme independent observables
- All contributions have clear physical meaning
- ✓ No reference to unphysical thery

Definition ambiguity

Not an unambiguous definition of m_q contribution to M_N

Relevance for DM searches

Spin independent WIMP cross section (E.g. Higgs portal models):

Perturbative Higgs-WIMP (dark matter) coupling

Scalar quark content from lattice QCD

$$f_N = \frac{1}{M_N} \sum_q \sigma_q$$

Relate spin independent DM coupling to nuclear recoil cross section

Strategy

Strategy

- Light sigma terms σ_{μ}^{N} , σ_{σ}^{N} , σ_{s}^{N} : lattice (via Feynman-Hellmann)
- Heavy sigma terms $\sigma_{h}^{N}, \sigma_{t}^{N}$: HQET
- Charm sigma term σ_c^N : lattice and in HQET as crosscheck

Strategy

Light quark σ terms

Strategy:

 $\frac{\partial \ln M_N}{\partial \ln m_q} = \frac{\partial \ln M_N}{\partial \ln M_P^2} \frac{\partial \ln M_P^2}{\partial \ln m_q}$

- $\partial \ln M_P^2 / \partial \ln m_q$ with physical point staggered data
- $\partial \ln M_N / \partial \ln M_P^2$ with 3-HEX clover

Ensembles

- Multiple fit ranges
- Per range, keep excited state error constant relative to statistical (Assume $\Delta M = 500 \text{MeV}$)
- Crosschecked for consistency with excited state fits

Calculation

Mass extraction

- Check for random distribution of ensemble fit qualities
- KS test of quality of fit cdf
- 4 plateaux ranges in final analysis

Analysis strategy

Problem:

• Determine $M_P^2 = M_\pi^2$, $M_{K_\chi}^2 (= M_K^2 - M_\pi^2/2)$ dependence of M_N at physical point

Method:

- Fit $M_N(M_{\pi}, M_{K_{\chi}}, L, a)$
 - Added dedicated FV configs from QCD+QCD ensembles (neutral mesons and baryons extracted)
- Set scale with M_N
 - Crosscheck with M_{Ω} scale setting
 - No discretization terms at physical point φ: either αa or a² times (M²_π - (M^φ_π)²) and (M²_{K_ν} - (M^φ_{K_ν})²)
- Estimate systematic error

Chiral continuum FV fit

Nucleon fit

- $\frac{M_{\pi}}{\text{MeV}} < \{360, 420\}$
- Various Polynomial, Padé and χPT ansätze
- Spread into systematic error
- $M_N \propto M_0 + cM_\pi$ bad Q and wrong M_Ω

Chiral continuum FV fit

Nucleon fit

- $\frac{M_{\pi}}{\text{MeV}} < \{360, 420\}$
- Various Polynomial, Padé and χPT ansätze
- Spread into systematic error
- $M_N \propto M_0 + cM_\pi$ bad Q and wrong M_Ω

• Compatible with χ PT expectation (Colangelo et. al., 2010)

Mixing matrix

Transforming from mesonic to quark basis:

Mixing matrix *J* best determined with staggered ensembles:

- ✓ No additive quark mass renormalization
- ✓ Only pseudoscalar meson masses need to be extracted
- ✓ Available configs bracket physical point

Calculation

Mixing matrix J

Meson mass extraction

Extracting staggered meson masses:

- Multi-state fit
- Time-shifted propagator

Basic idea: staggered propagator for $m(T/2 - t) \ll 1$

$$c_t = e^{-mt}(c_0 + (-1)^t c_1 e^{-\Delta t})$$

define time shifted propagator

$$d_t := c_t + e^{m + \Delta} c_{t+1}$$

Determine △ by minimizing effective mass fluctuations
Cross-checked with variational multi-state fit

Calculation

Mixing matrix J

Mixing Matrix result

Systematic errors

Systematic error

 σ_{sN}

- Total 6144 analyses:
- 64 variations of matrix *J*:
 - 4 *m_{ud}* continuum terms
 - 4 *m*_s continuum terms
 - 2 plateaux ranges
- 96 variations of $\sigma_{\pi,K_{\chi}}$
 - 2 $M_{K_{\gamma}}$ fit forms
 - 2 M_{π} fit forms
 - 2 M_{π} cuts
 - 3 continuum terms
 - 4 plateaux ranges
- Other variations crosschecked: no further relevant terms found

Aug. 27th, 2019 23 / 34

Systematic error

- Total 6144 analyses
- Difference: higher order effects
- Draw cdf of results
- Different weights possible
- Crosscheck agreement

Results

From the effective Hamiltonean

$$H = H_{\rm iso} + \frac{\delta m}{2} \int d^3 x (\bar{d}d - \bar{u}u) \int \sigma_{uN} \sigma_{dN} \sigma_{sN}$$

we obtain (with $\delta m = m_d - m_u$ and normalization $\langle N | N \rangle = 2M_N$)

$$\Delta_{QCD}M_N=rac{\delta m}{2M_p}\langle p|ar{u}u-ar{d}d|p
angle$$

which, together with

$$\sigma_{u/d}^{p} = \left(\frac{1}{2} \mp \frac{\delta m}{4m_{ud}}\right) \sigma_{ud}^{p} + \left(\frac{1}{4} \mp \frac{m_{ud}}{2\delta m}\right) \frac{\delta m}{2M_{p}} \langle p|\bar{d}d - \bar{u}u|p\rangle$$

gives $(r = m_{u}/m_{d})$

$$\sigma_{u}^{p/n} = \left(\frac{r}{1+r}\right) \sigma_{ud}^{N} \pm \frac{1}{2} \left(\frac{r}{1-r}\right) \Delta_{QCD} M_{N} + O(\delta m^{2}, m_{ud} \delta m)$$
$$\sigma_{d}^{p/n} = \left(\frac{1}{1+r}\right) \sigma_{ud}^{N} \pm \frac{1}{2} \left(\frac{1}{1-r}\right) \Delta_{QCD} M_{N} + O(\delta m^{2}, m_{ud} \delta m)$$

With $\Delta_{QCD}M_N = 2.52(17)(24)$ MeV from (BMWc 2014)

$$\sigma_u^p = 13.4(1.0)(1.4) \text{MeV} \qquad \sigma_d^p = 22.7(2.1)(2.8) \text{MeV}$$

$$\sigma_u^n = 11.0(1.0)(1.4) \text{MeV} \qquad \sigma_d^n = 27.6(2.0)(2.8) \text{MeV}$$

Heavy quark contributions?

 $M_N = \langle N | H_{N_f} | N \rangle$ from QCD N_f effective Hamiltonian at $O(\alpha_s)$

$$H_{N_f} = \sum_{q=1}^{N_f} m_q \bar{\Psi}_q \Psi_q + \frac{11 - \frac{2}{3}N_f}{2\alpha_s} G^2 + \text{regulator dep.}$$

Integrating heaviest quark, from $M_N = \langle N | H_{N_f} | N \rangle = \langle N | H_{N_f-1} | N \rangle$: $\sigma_Q = m_Q \langle N | \bar{\Psi}_Q \Psi_Q | N \rangle = \frac{\alpha_s}{12\pi} \langle N | G^2 | N \rangle + O((\Lambda/m_Q)^2) m_Q \bar{Q}Q$ Heavy quark relation(shifman et.al. 78) to $O(\alpha_s^4)$ (Hill, Solon 17)

$$\sigma_{Q} = \frac{2M_{N}}{33 - 2(N_{f} - 1)} \left(1 - \sum_{q=1}^{N_{f} - 1} \sigma_{q}\right) \left(1 + O(\alpha_{s})\right)$$

Charm sigma term strategy

Nucleon mass on 9 4-stout ensembles with physical m_{ud} , m_s .

 σ_{cN}

Computing charm sigma term

• Finite difference approximation:

$$\Delta^{+} M_{N} = M_{N} (m_{c} = \frac{5}{4} m_{c}^{(\phi)}) - M_{N} (m_{c} = m_{c}^{(\phi)})$$
$$\Delta^{-} M_{N} = M_{N} (m_{c} = m_{c}^{(\phi)}) - M_{N} (m_{c} = \frac{5}{4} m_{c}^{(\phi)})$$

Either simple Taylor expansion (error $O((\delta m_c/m_c)^2) \sim 1/16$): ۲

$$\sigma_c^N = 2(\Delta^+ M_N + \Delta^- M_N)$$

• Or HQ expansion based (error $O((\delta m_c/M_N)^3) \sim 3 \times 10^{-4})$:

$$\sigma_c^N = \frac{1}{\ln \frac{5}{4} \ln \frac{4}{3} \ln \frac{5}{3}} (\ln^2 \frac{4}{3} \Delta^+ M_N + \ln^2 \frac{5}{4} \Delta^- M_N)$$

Continuum extrapolation

- 3 lattice spacings with $O(a^2)$ term
- 3 lattice spacings without $O(a^2)$ term
- 2 lattice spacings without $O(a^2)$ term

Systematic errors

Continuum extrapolation dominates systematic error

 σ_{cN}

Comparison

PRELIMINARY results

Christian Hoelbling (Wuppertal)

Nucleon σ terms