QED corrections to leptonic meson decays

Vera Gülpers

School of Physics and Astronomy University of Edinburgh

August 26, 2019

European Research Council

Established by the European Commission

RBC/UKQCD Collaboration

BNL and BNL/RBRC

Yasumichi Aoki (KEK) Taku Izubuchi Yong-Chull Jang Chulwoo Jung Meifeng Lin Aaron Meyer Hiroshi Ohki Shigemi Ohta (KEK) Amarjit Soni

UC Boulder

Oliver Witzel

CERN

Mattia Bruno

Columbia University

Ryan Abbot Norman Christ Duo Guo Christopher Kelly Bob Mawhinney Masaaki Tomii Jiqun Tu Bigeng Wang Tianle Wang Yidi Zhao

University of Connecticut

Tom Blum Dan Hoying (BNL) Luchang Jin (RBRC) Cheng Tu

Edinburgh University

Peter Boyle Luigi Del Debbio Felix Erben Vera Gülpers Tadeusz Janowski Julia Kettle Michael Marshall Fionn Ó hÓgáin Antonin Portelli Tobias Tsang Andrew Yong Azusa Yamaguchi

University of Liverpool

Nicolas Garron

<u>MIT</u> David Murphy

Peking University

Xu Feng

University of Regensburg Christoph Lehner (BNL)

University of Southampton

Nils Asmussen Jonathan Flynn Ryan Hill Andreas Jüttner James Richings Chris Sachrajda

Stony Brook University

Jun-Sik Yoo Sergey Syritsyn (RBRC)

Introduction

quark-mixing Cabibbo–Kobayashi–Maskawa (CKM) matrix

Unitarity of the CKM matrix

V_{us} from leptonic Kaon decays

- ► leptonic Kaon decay $\mathbf{K}^+ \rightarrow \ell^+ \nu_\ell$ $\mathbf{K}^+_{\overline{\mathbf{s}}}$ $\mathbf{W}^+_{W^+}$ $\mathbf{W}^+_{V_\ell}$
- effective weak Hamiltonian

decay rate (can be measured experimentally)

$$\Gamma(\mathsf{K}^+ \to \ell^+ \nu_\ell) = \frac{\mathsf{G}_\mathsf{F}^2 \left|\mathsf{V}_{\mathsf{us}}\right|^2 \mathsf{f}_\mathsf{K}^2}{8\pi} \,\,\mathsf{M}_\mathsf{K} \,\mathsf{m}_\ell^2 \left(1 - \frac{\mathsf{m}_\ell^2}{\mathsf{M}_\mathsf{K}^2}\right)^2$$

- ► known factors (Fermi constant **G**_F, masses **m**)
- \blacktriangleright kaon decay constant $f_{K},$ can be calculated on the lattice
- CKM matrix element V_{us}

$\mathbf{f}_{\mathsf{K}}/\mathbf{f}_{\pi}$ from the lattice

- pseudoscalar meson decay constant from the lattice
- axial-vector matrix element

 $\mathcal{A}_{\mathsf{K}} = \left< 0 \right| \overline{\mathsf{u}} \gamma_0 \gamma_5 \mathsf{s} \left| \mathsf{K} \right> = \mathsf{M}_{\mathsf{K}} \mathsf{f}_{\mathsf{K}}$

overview Kaon/Pion decay constants


```
• results with precision < 1\%
```

Isospin Breaking Corrections

- lattice calculations usually done in the isospin symmetric limit
- two sources of isospin breaking effects
 - different masses for up- and down quark (of $\mathcal{O}((m_d m_u)/\Lambda_{\text{QCD}}))$
 - Quarks have electrical charge (of $\mathcal{O}(\alpha)$)
- \blacktriangleright lattice calculation aiming at 1% precision requires to include isospin breaking
- separation of strong IB and QED effects requires renormalization scheme
- definition of "physical point" in a "QCD only world" also scheme dependent

Isospin Breaking Corrections

- lattice calculations usually done in the isospin symmetric limit
- two sources of isospin breaking effects
 - different masses for up- and down quark (of $\mathcal{O}((m_d m_u)/\Lambda_{\text{QCD}}))$
 - Quarks have electrical charge (of $\mathcal{O}(\alpha)$)
- \blacktriangleright lattice calculation aiming at 1% precision requires to include isospin breaking
- separation of strong IB and QED effects requires renormalization scheme
- definition of "physical point" in a "QCD only world" also scheme dependent
- Euclidean path integral including QED

$$\langle \mathbf{0} \rangle = \frac{1}{\mathsf{Z}} \int \mathcal{D}[\Psi, \overline{\Psi}] \mathcal{D}[\mathsf{U}] \mathcal{D}[\mathsf{A}] \ \mathbf{0} \ e^{-\mathsf{S}_{\mathsf{F}}[\Psi, \overline{\Psi}, \mathsf{U}, \mathsf{A}]} e^{-\mathsf{S}_{\mathsf{G}}[\mathsf{U}]} e^{-\mathsf{S}_{\gamma}[\mathsf{A}]}$$

photons in a box: finite volume corrections

Expansion around IB symmetric (eg IB corrections to meson masses)

• perturbative expansion in α [RM123 Collaboration, Phys.Rev. **D87**, 114505 (2013)]

$$\left\langle \mathbf{O} \right\rangle = \left\langle \mathbf{O} \right\rangle_{\mathrm{e}=0} + \frac{1}{2} \, \mathrm{e}^2 \left. \frac{\partial^2}{\partial \mathrm{e}^2} \left\langle \mathbf{O} \right\rangle \right|_{\mathrm{e}=0} + \mathcal{O}(\alpha^2)$$

Expansion around IB symmetric (eg IB corrections to meson masses)

• perturbative expansion in α [RM123 Collaboration, Phys.Rev. D87, 114505 (2013)]

$$\left\langle \mathbf{O} \right\rangle = \left\langle \mathbf{O} \right\rangle_{\mathrm{e}=0} + rac{1}{2} \,\mathrm{e}^2 \left. rac{\partial^2}{\partial \mathrm{e}^2} \left\langle \mathbf{O} \right\rangle
ight|_{\mathrm{e}=0} + \mathcal{O}(\alpha^2)$$

electro-quenched approximation

sea-quark effects

Expansion around IB symmetric (eg IB corrections to meson masses)

• perturbative expansion in lpha [RM123 Collaboration, Phys.Rev. **D87**, 114505 (2013)]

$$\left\langle \mathbf{0} \right\rangle = \left\langle \mathbf{0} \right\rangle_{\mathrm{e}=0} + rac{1}{2} \,\mathrm{e}^2 \left. rac{\partial^2}{\partial \mathrm{e}^2} \left\langle \mathbf{0} \right\rangle
ight|_{\mathrm{e}=0} + \mathcal{O}(\alpha^2)$$

electro-quenched approximation

sea-quark effects

 \blacktriangleright perturbative expansion in $\Delta m_f = (m_f^0 - m_f)$ [G.M. de Divitiis et al, JHEP 1204 (2012) 124]

$$\langle \mathbf{0} \rangle_{m_{f}} = \langle \mathbf{0} \rangle_{m_{f}^{0}} + \Delta m_{f} \left. \frac{\partial}{\partial m_{f}} \left\langle \mathbf{0} \right\rangle \right|_{m_{f}^{0}} + \mathcal{O} \left(\Delta m_{f}^{2} \right)$$
sea quark effects:
quark-disconnected diagrams

- ▶ isospin symmetric calculation using quark masses determined without QED
- physical quark masses including QED:
- \rightarrow tune (u,d,s) masses to reproduce experimental $\pi^+,\, {\rm K}^+$ and ${\rm K}_0$ mass (and check π^0 mass)

$$\begin{split} am_{\pi^+}^{\text{exp}} &= \left[m_{\pi}^0 + \alpha m_{\pi^+}^{\text{QED}} + \Delta m_d \ m_{\pi^+}^{\Delta m_d} + \Delta m_u \ m_{\pi^+}^{\Delta m_u} \right] \\ am_{K^+}^{\text{exp}} &= \left[m_{K}^0 + \alpha m_{K^+}^{\text{QED}} + \Delta m_u \ m_{K^+}^{\Delta m_u} + \Delta m_s \ m_{K^+}^{\Delta m_s} \right] \\ am_{K^0}^{\text{exp}} &= \left[m_{K}^0 + \alpha m_{K^0}^{\text{QED}} + \Delta m_d \ m_{K^0}^{\Delta m_d} + \Delta m_s \ m_{K^0}^{\Delta m_s} \right] \end{split}$$

- ▶ isospin symmetric calculation using quark masses determined without QED
- physical quark masses including QED:
- \rightarrow tune (u,d,s) masses to reproduce experimental $\pi^+,\, {\rm K}^+$ and ${\rm K}_0$ mass (and check π^0 mass)

$$am_{\pi^+}^{exp} = \begin{bmatrix} m_{\pi}^0 + \alpha m_{\pi^+}^{QED} + \Delta m_d & m_{\pi^+}^{\Delta m_d} + \Delta m_u & m_{\pi^+}^{\Delta m_u} \end{bmatrix} am_{K^+}^{exp} = \begin{bmatrix} m_{K}^0 + \alpha m_{K^+}^{QED} + \Delta m_u & m_{K^+}^{\Delta m_u} + \Delta m_s & m_{K^+}^{\Delta m_s} \end{bmatrix} am_{K^0}^{exp} = \begin{bmatrix} m_{K}^0 + \alpha m_{K^0}^{QED} + \Delta m_d & m_{K^0}^{\Delta m_d} + \Delta m_s & m_{K^0}^{\Delta m_s} \end{bmatrix}$$

mass from isospin symmetric calculation

- ▶ isospin symmetric calculation using quark masses determined without QED
- physical quark masses including QED:
- \rightarrow tune (u,d,s) masses to reproduce experimental $\pi^+,\, {\rm K}^+$ and ${\rm K}_0$ mass (and check π^0 mass)

$$\begin{split} & am_{\pi^+}^{exp} = \begin{bmatrix} m_{\pi}^0 \\ m_{\pi}^0 \end{bmatrix} + \alpha m_{\pi^+}^{QED} + \Delta m_d \ m_{\pi^+}^{\Delta m_d} + \Delta m_u \ m_{\pi^+}^{\Delta m_u} \end{bmatrix} \\ & am_{K^+}^{exp} = \begin{bmatrix} m_{K}^0 \\ m_{K}^0 \end{bmatrix} + \alpha m_{K^+}^{QED} + \Delta m_u \ m_{K^+}^{\Delta m_u} + \Delta m_s \ m_{K^+}^{\Delta m_s} \end{bmatrix} \\ & am_{K^0}^{exp} = \begin{bmatrix} m_{K}^0 \\ m_{K}^0 \end{bmatrix} + \alpha m_{K^0}^{QED} + \Delta m_d \ m_{K^0}^{\Delta m_d} + \Delta m_s \ m_{K^0}^{\Delta m_s} \end{bmatrix}$$

mass from isospin symmetric calculation

- ▶ isospin symmetric calculation using quark masses determined without QED
- physical quark masses including QED:
- \rightarrow tune (u,d,s) masses to reproduce experimental $\pi^+,\, {\rm K}^+$ and ${\rm K}_0$ mass (and check π^0 mass)

$$\begin{aligned} & am_{\pi^+}^{exp} = \begin{bmatrix} m_{\pi}^0 \\ m_{\pi}^0 \end{bmatrix} + \begin{bmatrix} \alpha m_{\pi^+}^{QED} \\ m_{K^+}^{qED} \end{bmatrix} + \begin{bmatrix} \Delta m_d & m_{\pi^+}^{\Delta m_d} + \Delta m_u & m_{\pi^+}^{\Delta m_u} \end{bmatrix} \\ & am_{K^0}^{exp} = \begin{bmatrix} m_K^0 \\ m_K^0 \end{bmatrix} + \begin{bmatrix} \alpha m_{K^0}^{QED} \\ \alpha m_{K^0}^{QED} \end{bmatrix} + \begin{bmatrix} \Delta m_d & m_{K^0}^{\Delta m_d} + \Delta m_s & m_{K^0}^{\Delta m_s} \end{bmatrix} \end{aligned}$$

mass from isospin symmetric calculation

- \blacktriangleright isospin symmetric calculation using quark masses determined without QED
- physical quark masses including QED:
- \rightarrow tune (u,d,s) masses to reproduce experimental $\pi^+,\, {\rm K}^+$ and ${\rm K}_0$ mass (and check π^0 mass)

$$\begin{split} am_{\pi^+}^{exp} &= \left[m_{\pi}^0 + \alpha m_{\pi^+}^{\text{QED}} + \Delta m_d \ m_{\pi^+}^{\Delta m_d} + \Delta m_u \ m_{\pi^+}^{\Delta m_u} \right] \\ am_{K^+}^{exp} &= \left[m_{K}^0 + \alpha m_{K^+}^{\text{QED}} + \Delta m_u \ m_{K^+}^{\Delta m_u} + \Delta m_s \ m_{K^+}^{\Delta m_s} \right] \\ am_{K^0}^{exp} &= \left[m_{K}^0 + \alpha m_{K^0}^{\text{QED}} + \Delta m_d \ m_{K^0}^{\Delta m_d} + \Delta m_s \ m_{K^0}^{\Delta m_s} \right] \end{split}$$

▶ lattice spacing a: fix another mass including QED
 → e.g. Omega-Baryon (sss)

$${
m a}
ightarrow {
m a}(\Delta m_{
m s}) = \left({
m m}_{\Omega}^{0} + lpha {
m m}_{\Omega}^{
m QED} + 3\,\Delta m_{
m s}\,\, {
m m}_{\Omega}^{\Delta m_{
m s}}
ight) / {
m m}_{\Omega}^{
m exp}$$

→ shift in **a** smaller then statistical error on lattice spacing [T. Blum, VG,*et al.*, Phys. Rev. Lett. 121, 022003 (2018)]

Decay rate leptonic meson decays

• P^+ decay rate in rest frame ($P = \{\pi, K\}$)

$$\Gamma(\mathsf{P}^+
ightarrow \ell^+
u_\ell) = \mathsf{K} \, \sum_{\mathsf{r},\mathsf{s}} |\mathcal{M}^{\mathsf{r},\mathsf{s}}|^2$$

summed over spins ${\boldsymbol{r}}, {\boldsymbol{s}}$ of final state

matrix element

$$\mathcal{M}^{\mathsf{r},\mathsf{s}} = \langle \ell^+,\mathsf{r};\nu_\ell,\mathsf{s}|\mathsf{H}_{\mathsf{W}}|\mathsf{P}^+\rangle = \overline{\mathsf{u}}_{\nu_\ell}^{\mathsf{r}}\,\widetilde{\mathcal{M}}\,\mathsf{v}_\ell^{\mathsf{s}}$$

- weak Hamiltonian Hw
- tree-level matrix element (hadronic and leptonic part factorisable)

$$\mathcal{M}_0^{\rm r,s} = {\rm f}_{\rm P} \, {\rm M}_{\rm P} \, \left(\overline{{\rm u}}_{\nu_\ell}^{\rm r} \, \gamma_{\rm L}^{\mu} \, {\rm v}_{\ell}^{\rm s} \right) \qquad \qquad \gamma_{\rm L}^{\mu} = \gamma_{\mu} (1-\gamma_5) \label{eq:mass_states}$$

Vera Gülpers (University of Edinburgh)

Decay rate leptonic meson decays

► tree-level decay rate

$$\Gamma^0(\mathsf{P}^+ \to \ell^+ \nu_\ell) = \frac{\mathsf{G}_\mathsf{F}^2 \left|\mathsf{V}_{us}\right|^2 \mathsf{f}_\mathsf{P}^2}{8\pi} \,\, \mathsf{M}_\mathsf{P} \, \mathsf{m}_\ell^2 \left(1 - \frac{\mathsf{m}_\ell^2}{\mathsf{M}_\mathsf{P}^2}\right)^2$$

full QCD+QED decay rate

$$\Gamma = \Gamma^{0} + \delta \Gamma = \Gamma^{0} (1 + \delta R) \qquad \qquad \delta R = \delta \Gamma / \Gamma_{0}$$

▶ first order $\mathcal{O}(\alpha, \mathbf{m}_{\mathsf{d}} - \mathbf{m}_{\mathsf{u}})$ in isospin breaking

$$\delta \Gamma = \delta \mathsf{K} \sum_{\mathsf{r},\mathsf{s}} \left| \mathcal{M}_0^{\mathsf{r},\mathsf{s}} \right|^2 + 2\mathsf{K}_0 \sum_{\mathsf{r},\mathsf{s}} \Re(\mathcal{M}_0^{\mathsf{r},\mathsf{s}} \ \delta \mathcal{M}^{\mathsf{r},\mathsf{s},*})$$

with

$$\mathcal{M}_0^{\rm r,s} = f_{\rm P} \, \mathsf{M}_{\rm P} \, \left(\bar{\mathsf{u}}_{\nu_\ell}^{\rm r} \, \gamma_{\rm L}^{\mu} \, \mathsf{v}_{\ell}^{\rm s} \right) \qquad \qquad \delta \mathcal{M}^{\rm r,s} = \bar{\mathsf{u}}_{\nu_\ell}^{\rm r} \, \delta \widetilde{\mathcal{M}} \, \mathsf{v}_{\ell}^{\rm s}$$

$$\Rightarrow \sum_{\mathbf{r},\mathbf{s}} \Re(\mathcal{M}_0^{\mathbf{r},\mathbf{s}} \ \delta \mathcal{M}^{\mathbf{r},\mathbf{s},*}) = f_{\mathsf{P}} \operatorname{M}_{\mathsf{P}} \operatorname{Tr}[\mathbf{p}_{\nu} \delta \widetilde{\mathcal{M}}(-\mathbf{p}_{\ell} + \mathrm{i} \mathbf{m}_{\ell}) \gamma_{\mathsf{L}}^{\mu}]$$

perturbative expansion - leptonic meson decay

- ► strong IB corrections $\mathcal{O}(\mathbf{m}_{d} \mathbf{m}_{u})$
- quark QED corrections $\mathcal{O}(e_a^2)$

• lepton QED corrections $\mathcal{O}(\mathbf{e}_{\ell}^2)$

• quark-lepton QED correction $\mathcal{O}(\mathbf{e}_{\ell}\mathbf{e}_{q})$

perturbative expansion - leptonic meson decay

▶ strong IB corrections $\mathcal{O}(\mathbf{m}_{d} - \mathbf{m}_{u})$ • quark QED corrections $\mathcal{O}(e_a^2)$ lepton QED corrections $O(\mathbf{e}_{\ell}^2)$ \rightarrow absorbed in renormalisation of lepton • quark-lepton QED correction $\mathcal{O}(\mathbf{e}_{\ell}\mathbf{e}_{\mathbf{q}})$

perturbative expansion - leptonic meson decay

factorisable

perturbative expansion - leptonic meson decay

IB corrections to leptonic meson decay

Infrared divergencies cancled by diagrams with one final state photon

 $\Gamma(\mathsf{K}^+ \to \ell^+ \nu_\ell, \alpha) + \Gamma(\mathsf{K}^+ \to \ell^+ \nu_\ell \gamma)$

pioneering work to calculate IB correction to decay rate by RM123

- formalism developed in [N. Carrasco et al, Phys.Rev. D91, 074506 (2015)]
- finite volume effects [V. Lubicz et al, Phys. Rev. D95, 034504 (2017)]
- first lattice results [M. Di Carlo *et al*, arXiv:1904.08731], [D. Giusti *et al*, Phys. Rev. Lett. 120, 072001 (2018)]
- this work: calculation directly at the physical point

Lattice Setup

- $N_f = 2 + 1$ Möbius Domain Wall Fermions
- near physical quark masses
- inverse lattice spacing $a^{-1} = 1.730(4)$ GeV
- $\blacktriangleright~48^3\times96$ with $L_s=24$
- \blacktriangleright valence light quarks: physical mass z-Möbius DWF with $L_s=10$
- Feynman gauge and QED_L for photon propagators

$$\Delta_{\mu\nu}(\mathbf{x} - \mathbf{y}) = \langle \mathsf{A}_{\mu}(\mathbf{x})\mathsf{A}_{\nu}(\mathbf{y}) \rangle = \delta_{\mu\nu} \frac{1}{\mathsf{N}} \sum_{\mathbf{k}, \vec{\mathbf{k}} \neq 0} \frac{\mathsf{e}^{\mathsf{i}\mathbf{k} \cdot (\mathbf{x} - \mathbf{y})}}{\hat{\mathsf{k}}^2}$$

- use stochastic photon fields $A_{\mu}(x)$ to estimate $\Delta_{\mu\nu}(x y)$ [D. Giusti et al. Phys.Rev. D95 (2017) 114504]
- em vertices using local vector currents $\gamma_{\mu} A_{\mu} = A$
- all results shown in this talk are very preliminary

factorisable QED diagrams

factorisable diagrams QED correction

 \rightarrow hadronic and leptonic part can be factorised (as in tree-level)

only need to calculate

IB correction from factorisable diagrams

$$\delta^{\rm qq} \mathcal{M}^{\rm rs} = \left(\overline{\mathsf{u}}_{\nu_{\ell}}^{\rm r} \, \gamma_{\mathsf{L}}^{\mu} \, \mathsf{v}_{\ell}^{\rm s} \right) \delta \mathcal{A}$$

with

$$\delta \mathcal{A} = \delta \langle \mathbf{0} | \overline{\mathbf{q}}_1 \gamma_0 \gamma_5 \mathbf{q}_2 | \mathbf{P}^+
angle$$

IB correction from factorisable diagrams

correlators w/o QED (example: Kaon)

$$\begin{split} \mathsf{C}_{\mathsf{PP}}^{0}(\mathsf{t}) &= \langle 0 | (\bar{\mathsf{s}}\gamma_{5}\mathsf{u}) (\bar{\mathsf{u}}\gamma_{5}\mathsf{s}) | 0 \rangle = \mathsf{A}_{0} \, \mathsf{e}^{-\mathsf{m}_{0}\mathsf{t}} & \mathsf{A}_{0} = \frac{\phi_{0}^{2}}{2\mathsf{m}_{0}} \\ \mathsf{C}_{\mathsf{AP}}^{0}(\mathsf{t}) &= \langle 0 | (\bar{\mathsf{s}}\gamma_{0}\gamma_{5}\mathsf{u}) (\bar{\mathsf{u}}\gamma_{5}\mathsf{s}) | 0 \rangle = \mathsf{B}_{0} \, \mathsf{e}^{-\mathsf{m}_{0}\mathsf{t}} & \mathsf{B}_{0} = \frac{\phi_{0}\mathcal{A}_{0}}{2\mathsf{m}_{0}} \end{split}$$

• $\mathcal{O}(\alpha)$ QED corrections

$$\frac{\delta C_{PP}(t)}{C_{PP}^{0}(t)} = \frac{\delta A}{A_{0}} - \delta m t = 2\frac{\delta \phi}{\phi_{0}} - \frac{\delta m}{m_{0}} - \delta m t$$
$$\frac{\delta C_{AP}(t)}{C_{AP}^{0}(t)} = \frac{\delta B}{B_{0}} - \delta m t = \frac{\delta \phi}{\phi_{0}} + \frac{\delta A}{A_{0}} - \frac{\delta m}{m_{0}} - \delta m t$$

. 2

IB correction from factorisable diagrams

correlators w/o QED (example: Kaon)

$$\begin{split} \mathsf{C}^{0}_{\mathsf{PP}}(\mathsf{t}) &= \langle 0 | (\bar{\mathsf{s}}\gamma_5 \mathsf{u}) (\bar{\mathsf{u}}\gamma_5 \mathsf{s}) | 0 \rangle = \mathsf{A}_0 \, \mathsf{e}^{-\mathsf{m}_0 \mathsf{t}} & \mathsf{A}_0 = \frac{\phi_0^2}{2\mathsf{m}_0} \\ \mathsf{C}^{0}_{\mathsf{AP}}(\mathsf{t}) &= \langle 0 | (\bar{\mathsf{s}}\gamma_0\gamma_5 \mathsf{u}) (\bar{\mathsf{u}}\gamma_5 \mathsf{s}) | 0 \rangle = \mathsf{B}_0 \, \mathsf{e}^{-\mathsf{m}_0 \mathsf{t}} & \mathsf{B}_0 = \frac{\phi_0 \mathcal{A}_0}{2\mathsf{m}_0} \end{split}$$

• $\mathcal{O}(\alpha)$ QED corrections

$$\frac{\delta C_{PP}(t)}{C_{PP}^{0}(t)} = \frac{\delta A}{A_{0}} - \delta m t = 2\frac{\delta \phi}{\phi_{0}} - \frac{\delta m}{m_{0}} - \delta m t$$
$$\frac{\delta C_{AP}(t)}{C_{AP}^{0}(t)} = \frac{\delta B}{B_{0}} - \delta m t = \frac{\delta \phi}{\phi_{0}} + \frac{\delta A}{A_{0}} - \frac{\delta m}{m_{0}} - \delta m t$$

. 2

IB correction from factorisable diagrams

correlators w/o QED (including backward propagating signal)

$$\mathsf{C}_{\mathsf{PP}}^{0}(\mathsf{t}) = 2\,\mathsf{A}_{0}\,\mathsf{e}^{-\mathsf{m}_{0}\frac{\mathsf{T}}{2}}\,\mathsf{cosh}\left[\mathsf{m}_{0}\left(\frac{\mathsf{T}}{2}-\mathsf{t}\right)^{\mathsf{T}}\right]$$

$$\mathsf{C}^{0}_{\mathsf{AP}}(t) = 2\,\mathsf{B}_{0}\,\mathrm{e}^{-m_{0}\frac{\mathsf{T}}{2}}\,\mathsf{sinh}\left[m_{0}\left(\frac{\mathsf{T}}{2}-t\right)\right]$$

• $\mathcal{O}(\alpha)$ QED corrections

$$\begin{split} \frac{\delta C_{PP}(t)}{C_{PP}^0(t)} &= \frac{\delta A}{A_0} - \delta m \frac{T}{2} + \delta m \left(\frac{T}{2} - t \right) tanh \left[m_0 \left(\frac{T}{2} - t \right) \right] \\ \frac{\delta C_{AP}(t)}{C_{AP}^0(t)} &= \frac{\delta B}{B_0} - \delta m \frac{T}{2} + \delta m \left(\frac{T}{2} - t \right) coth \left[m_0 \left(\frac{T}{2} - t \right) \right] \end{split}$$

results QED factorisable diagrams

- 20 configurations on the physical point ensemble
- combined fit to $\delta C_{PP}(t)/C_{PP}^{0}(t)$ and $\delta C_{AP}(t)/C_{AP}^{0}(t)$
 - \rightarrow three parameters δm , $^{\delta A}\!/_{A_0},~^{\delta B}\!/_{B_0}$

non-factorisable diagrams

non-factorisable diagrams

- include lepton in lattice calculation
- neutrino can be done anlytically
- amputated weak Hamiltonian and matrix element

$$\overline{\mathsf{H}}^{\alpha}_{\mathsf{W}} = (\gamma^{\mathsf{L}}_{\mu}\ell)^{\alpha} \, (\overline{\mathsf{q}}_{1}\gamma^{\mathsf{L}}_{\mu}\mathsf{q}_{2}) \qquad \overline{\mathcal{M}}^{\mathsf{r},\alpha} = \langle \ell^{+},\mathsf{r}|\overline{\mathsf{H}}^{\alpha}_{\mathsf{W}}|\mathsf{P}^{+}\rangle = (\widetilde{\mathcal{M}}\mathsf{v}^{\mathsf{r}}_{\ell})^{\alpha}$$

Euclidean three-point function (in full QCD+QED)

$$\mathsf{C}^{\alpha\beta}(\mathsf{t}_{\ell},\mathsf{t}_{\mathsf{H}},\mathsf{t}_{\mathsf{P}}) = \left\langle \overline{\ell}^{\alpha}(\mathsf{t}_{\ell})\,\overline{\mathsf{H}}^{\beta}_{\mathsf{W}}(\mathsf{t}_{\mathsf{H}})\,\phi^{\dagger}_{\mathsf{P}}(\mathsf{t}_{\mathsf{P}}) \right\rangle$$

▶ at O(α)

$$\mathsf{C}^{\alpha\beta}(\mathsf{t}_{\ell},\mathsf{t}_{\mathsf{H}},\mathsf{t}_{\mathsf{P}})=\mathsf{C}_{0}^{\alpha\beta}(\mathsf{t}_{\ell},\mathsf{t}_{\mathsf{H}},\mathsf{t}_{\mathsf{P}})+\delta\mathsf{C}^{\alpha\beta}(\mathsf{t}_{\ell},\mathsf{t}_{\mathsf{H}},\mathsf{t}_{\mathsf{P}})+\mathcal{O}(\alpha^{2})$$

lattice setup non-factorisable diagrams

lattice calculation

correlation function

recap: QED correction to decay rate

Vera Gülpers (University of Edinburgh)

extract correction to decay rate

spectral representation

include the lepton trace

$$\mathsf{Tr}\left[\boldsymbol{\flat}_{\nu}\delta^{\ell q}\mathsf{C}(\mathsf{t}_{\mathsf{H}})\gamma_{\mathsf{L}}^{\mu}\right] \propto \mathsf{Tr}\left[\boldsymbol{\flat}_{\nu}\delta^{\ell q}\widetilde{\mathcal{M}}\left(-\boldsymbol{\flat}_{\ell}+\mathsf{i} \mathsf{m}_{\ell}\right)\gamma_{\mathsf{L}}^{\mu}\right]$$

~~

▶ $\delta^{\ell q}\Gamma/\Gamma_0$ can be obtained from long distance behaviour of

$$\mathsf{R}(\mathsf{t}_{\ell},\mathsf{t}_{\mathsf{H}},\mathsf{t}_{\mathsf{P}}) = \frac{\mathsf{Tr}\left[\mathbf{p}_{\nu}\delta^{\ell \mathsf{q}}\mathsf{C}(\mathsf{t}_{\ell},\mathsf{t}_{\mathsf{H}},\mathsf{t}_{\mathsf{P}})\gamma_{\mathsf{L}}^{\mu}\right]}{\mathsf{Tr}\left[\mathbf{p}_{\nu}\mathsf{C}^{0}(\mathsf{t}_{\ell},\mathsf{t}_{\mathsf{H}},\mathsf{t}_{\mathsf{P}})\gamma_{\mathsf{L}}^{\mu}\right]}$$

extract correction to decay rate

part of correction to decay rate

► spectral representation

$$\delta^{\ell q} \mathsf{C}^{\alpha\beta}(\mathsf{t}_{\ell}, \mathsf{t}_{\mathsf{H}}, \mathsf{t}_{\mathsf{P}}) = \frac{\phi_0 \left[\delta^{\ell q} \widetilde{\mathcal{M}} \left(- \not{p}_{\ell} + \mathsf{im}_{\ell} \right) \right]_{\alpha\beta}}{4\mathsf{E}_{\ell} \mathsf{M}_{\mathsf{P}}} e^{-(\mathsf{t}_{\mathsf{H}} - \mathsf{t}_{\mathsf{P}})\mathsf{M}_{\mathsf{P}}} e^{-(\mathsf{t}_{\ell} - \mathsf{t}_{\mathsf{H}})\mathsf{E}_{\ell}}$$

include the lepton trace

▶ $\delta^{\ell q} \Gamma / \Gamma_0$ can be obtained from long distance behaviour of

$$\mathsf{R}(\mathsf{t}_{\ell},\mathsf{t}_{\mathsf{H}},\mathsf{t}_{\mathsf{P}}) = \frac{\mathsf{Tr}\left[\mathbf{p}_{\nu}\delta^{\ell \mathsf{q}}\mathsf{C}(\mathsf{t}_{\ell},\mathsf{t}_{\mathsf{H}},\mathsf{t}_{\mathsf{P}})\gamma_{\mathsf{L}}^{\mu}\right]}{\mathsf{Tr}\left[\mathbf{p}_{\nu}\mathsf{C}^{0}(\mathsf{t}_{\ell},\mathsf{t}_{\mathsf{H}},\mathsf{t}_{\mathsf{P}})\gamma_{\mathsf{L}}^{\mu}\right]}$$

lattice setup non-factorisable diagrams

lattice calculation

- 7 configurations on the physical point ensemble
- ▶ 96 source positions for t_P (Z2-Wall sources)
 - \rightarrow bin 8 consecutive source positions
- $\blacktriangleright~t_\ell-t_H$ fixed (varied between 12-40 to check for systematic effects)
- lepton: free Domain Wall Fermion with muon mass as pole mass
- twisted boundary conditions for muon for energy/momentum conservation

Results QED diagrams

decays exponentially with pion/kaon mass

Results ratio

ratio of QED diagram over tree-level diagram

$$\mathsf{R}(\mathsf{t}_{\mathsf{H}}) = \frac{\mathsf{Tr}\left[\mathbf{p}_{\nu}\delta^{\ell q}\mathsf{C}(\mathsf{t}_{\mathsf{H}})\gamma_{0}^{\mathsf{L}}\right]}{\mathsf{Tr}\left[\mathbf{p}_{\nu}\mathsf{C}^{0}(\mathsf{t}_{\mathsf{H}})\gamma_{0}^{\mathsf{L}}\right]} \longrightarrow \delta^{\ell q}\mathsf{\Gamma}/\mathsf{\Gamma}_{0}$$

result physical point ensemble

Conclusions

Summary

- ▶ lattice determinations of f_{K} , f_{π} have reached precision of $\leq 1\%$ → isospin breaking correction become important
 - \rightarrow necessary to improve determination of CKM matrix elements
- > preliminary results for QED corrections to leptonic meson decays
 - physical point ensemble
 - factorisable and non-factorisable QED corrections to decay rate

• low statistics, but results look encouraging

Outlook

- work in progress
 - increase statistics and complete analysis
 - disconnected diagrams & sea-quark effects, e.g.

- future work
 - renormalisation of the weak Hamiltonian including QED
 - diagrams with final state photon
 - semi-leptonic meson decays $\mathsf{K} o \pi \ell
 u$

Thank you

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme under grant agreement No 757646.

Backup

The zero-mode of the photon field

- ► zero-mode of the photon field shift symmetry of the of the photon action $A_{\mu}(x) \rightarrow A_{\mu}(x) + c_{\mu}$ \rightarrow cannot be constrained by gauge fixing
- different prescriptions of QED:
- ► QED_{TL}: remove the zero-mode of the photon field, i.e. $\tilde{A}_{\mu}(k = 0) = 0$ [A. Duncan, E. Eichten, H. Thacker, Phys.Rev.Lett. **76**, 3894 (1996)]
- QED_L: remove all the spatial zero-modes, i.e. $\tilde{A}_{\mu}(k_0, \vec{k} = 0) = 0$ [S. Uno and M. Hayakawa, Prog. Theor. Phys. 120, 413 (2008)]
- ▶ QED_m: use a massive photon and take $\mathbf{m}_{\gamma} \rightarrow \mathbf{0}$ [M. Endres et al.,Phys. Rev. Lett. 117 (2016) 072002]
- QED_C: C* boundary conditions in spatial direction, i.e. fields are periodic up to charge conjugation [B. Luchini et al. JHEP 02 (2016) 076]

all-to-all propagators and meson fields

all-to-all propagator [J. Foley et al, Comput.Phys.Commun. 172, 145-162 (2005)]

$$D^{-1}(x,y) = \sum_{i=1}^{N_l + N_h} v_i(x) w_i^{\dagger}(y) = \sum_{i=1}^{N_l} v_i(x) w_i^{\dagger}(y) + \sum_{i=N_l+1}^{N_l + N_h} v_i(x) w_i^{\dagger}(y)$$

all-to-all vectors v_i(x), w_i(x)

low-modes (eigenvectors $\phi(\mathbf{x})$)

$$\mathbf{v}_{i}(\mathbf{x}) = \phi_{i}(\mathbf{x})$$

 $\mathbf{w}_{i}(\mathbf{x}) = \phi_{i}(\mathbf{x})/\lambda_{i}$

$$S_{1}(\mathbf{x}, \mathbf{y})$$

$$\gamma_{5}$$

$$S_{2}(\mathbf{y}, \mathbf{x})$$

$$C(\mathbf{y}_{0} - \mathbf{x}_{0}) = \sum_{\vec{x}, \vec{y}} \operatorname{Tr}[\gamma_{5} S_{1}(\mathbf{x}, \mathbf{y}) \gamma_{5} S_{2}(\mathbf{y}, \mathbf{x})]$$

Vera Gülpers (University of Edinburgh)

 $high-modes (from stochastic solves) \\ v_i(x) = D_{defl}^{-1}(x, y) \eta_i(y) \\ w_i(x) = \eta_i(x)$

all-to-all propagators and meson fields

all-to-all propagator [J. Foley et al, Comput.Phys.Commun. 172, 145-162 (2005)]

$$D^{-1}(x,y) = \sum_{i=1}^{N_l + N_h} v_i(x) w_i^{\dagger}(y) = \sum_{i=1}^{N_l} v_i(x) w_i^{\dagger}(y) + \sum_{i=N_l+1}^{N_l + N_h} v_i(x) w_i^{\dagger}(y)$$

all-to-all vectors v_i(x), w_i(x)

low-modes (eigenvectors $\phi(\mathbf{x})$)

$$\mathbf{v}_{i}(\mathbf{x}) = \phi_{i}(\mathbf{x})$$

 $\mathbf{w}_{i}(\mathbf{x}) = \phi_{i}(\mathbf{x})/\lambda_{i}$

high-modes (from stochastic solves) $v_i(x) = D_{defl}^{-1}(x, y)\eta_i(y)$ $w_i(x) = \eta_i(x)$

e.g. pseudoscalar two-point function

$$\begin{split} & \sum_{i} \mathbf{v}_{i}(\mathbf{x}) \mathbf{w}_{i}^{\dagger}(\mathbf{y}) \\ & \gamma_{5} \\ & \sum_{j} \mathbf{v}_{j}(\mathbf{y}) \mathbf{w}_{j}^{\dagger}(\mathbf{x}) \\ & \mathbf{C}(\mathbf{y}_{0} - \mathbf{x}_{0}) = \sum_{\vec{x}, \vec{y}} \operatorname{Tr}[\gamma_{5} \sum_{i} \mathbf{v}_{i}(\mathbf{x}) \mathbf{w}_{i}^{\dagger}(\mathbf{y}) \gamma_{5} \sum_{j} \mathbf{v}_{j}(\mathbf{y}) \mathbf{w}_{j}^{\dagger}(\mathbf{x})] \end{split}$$

all-to-all propagators and meson fields

all-to-all propagator [J. Foley et al, Comput.Phys.Commun. 172, 145-162 (2005)]

$$D^{-1}(x,y) = \sum_{i=1}^{N_l + N_h} v_i(x) w_i^{\dagger}(y) = \sum_{i=1}^{N_l} v_i(x) w_i^{\dagger}(y) + \sum_{i=N_l+1}^{N_l + N_h} v_i(x) w_i^{\dagger}(y)$$

all-to-all vectors v_i(x), w_i(x)

low-modes (eigenvectors $\phi(\mathbf{x})$)

$$egin{aligned} \mathsf{v}_{\mathsf{i}}(\mathsf{x}) &= \phi_{\mathsf{i}}(\mathsf{x}) \ \mathsf{w}_{\mathsf{i}}(\mathsf{x}) &= \phi_{\mathsf{i}}(\mathsf{x})/\lambda_{\mathsf{i}} \end{aligned}$$

 $high-modes (from stochastic solves) \\ v_i(x) = D_{defi}^{-1}(x, y)\eta_i(y) \\ w_i(x) = \eta_i(x)$

e.g. pseudoscalar two-point function

$$\mathsf{C}(\mathsf{y}_0-\mathsf{x}_0) = \sum_{i,j} \mathsf{Tr}\big[\sum_{\overrightarrow{y}} \mathsf{w}_i^\dagger(y) \gamma_5 \mathsf{v}_j(y) \ \sum_{\overrightarrow{x}} \mathsf{w}_j^\dagger(x) \gamma_5 \mathsf{v}_i(x)\big]$$

all-to-all propagators and meson fields

all-to-all propagator [J. Foley et al, Comput.Phys.Commun. 172, 145-162 (2005)]

$$D^{-1}(x,y) = \sum_{i=1}^{N_l + N_h} v_i(x) w_i^{\dagger}(y) = \sum_{i=1}^{N_l} v_i(x) w_i^{\dagger}(y) + \sum_{i=N_l+1}^{N_l + N_h} v_i(x) w_i^{\dagger}(y)$$

all-to-all vectors v_i(x), w_i(x)

low-modes (eigenvectors $\phi(\mathbf{x})$)

$$\mathbf{v}_{i}(\mathbf{x}) = \phi_{i}(\mathbf{x})$$

 $\mathbf{w}_{i}(\mathbf{x}) = \phi_{i}(\mathbf{x})/\lambda_{i}$

e.g. pseudoscalar two-point function

 $high-modes (from stochastic solves) \\ v_i(x) = D_{defi}^{-1}(x, y)\eta_i(y) \\ w_i(x) = \eta_i(x)$

Meson field

$$\Pi_{ji}(x_0;\Gamma) = \sum_{\vec{x}} w_j^{\dagger}(x) \Gamma v_i(x)$$

$$\mathsf{C}(\mathsf{y}_0-\mathsf{x}_0) = \sum_{\mathsf{i},\mathsf{j}} \mathsf{Tr}\big[\mathsf{\Pi}_{\mathsf{i}\mathsf{j}}(\mathsf{y}_0;\gamma_5) \; \mathsf{\Pi}_{\mathsf{j}\mathsf{i}}(\mathsf{x}_0;\gamma_5) \big]$$

Vera Gülpers (University of Edinburgh)

QED meson fields

- \blacktriangleright sequential propagators on $\nu\text{-vectors}$ & sequential <code>Å</code>-meson fields

$$\begin{split} \tilde{v}_{i}(x) &= \sum_{y} S(x, y) i \gamma_{\mu} A^{\mu}(y) v_{i}(y) & \Pi_{ji}(x_{0}; \Gamma S \not A) = \sum_{\vec{x}} w_{j}^{\dagger}(x) \Gamma \tilde{v}_{i}(x) \\ \tilde{\tilde{v}}_{i}(x) &= \sum_{y} S(x, y) i \gamma_{\mu} A^{\mu}(y) \tilde{v}_{i}(y) & \Pi_{ji}(x_{0}; \Gamma S \not A S \not A) = \sum_{\vec{x}} w_{j}^{\dagger}(x) \Gamma \tilde{\tilde{v}}_{i}(x) \end{split}$$

- ► sequential A-meson fields give smaller statistical errors
- A-meson fields can be used for disconnected diagrams (sea-quark effects) [see talk by J. Richings, Lattice 2019]

QED corrections to meson masses

- ▶ 2000 low-modes for light quark, 96×12 time-diluted, spin-color diagonal stochastic sources for high-modes with sequential **Å**-meson fields
- difference of charged and neutral pion mass

► Finite volume corrections QED_L [BMW Collaboration, Science 347 (2015) 1452–1455]

$$m^{2}(L) \sim m^{2} \left\{ 1 - q^{2} \alpha \left[\frac{\kappa}{mL} \left(1 + \frac{2}{mL} \right) \right] \right\}$$
 with $\kappa = 2.837297$

Vera Gülpers (University of Edinburgh)