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@ Hadronic contributions to the muon g — 2

Hadronic vacuum polarisation (HVP)

e problem: QCD is
non-perturbative at low
energies

e much progress using lattice
QCD first-principle
calculations
e best current evaluations
had. based on dispersion relations
and data (or combinations
with lattice)



@ Hadronic contributions to the muon g — 2

Hadronic vacuum polarisation (HVP)

Photon HVP function:

WWQMM = i(nguv - qqu)H(qz)

Unitarity of the S-matrix implies the optical theorem:

ImlIl(s) = *

o(eTe” — hadrons)

e(s)?



@ Hadronic contributions to the muon g — 2

Dispersion relation

Causality implies analyticity:

Im(s)
Cauchy integral formula:

m@—l;égﬁhy

271 s'—s

Deform integration path:

m@—mm:flm—ﬂﬁEl—m

T Jansz (8 — s —i€)s’




@ Hadronic contributions to the muon g — 2

HVP contribution to (g — 2),

GHVP ;QL > ds K(s)

K 1273 Jo s

o(ete” — hadrons)

e basic principles: unitarity and analyticity
e direct relation to experiment: total hadronic cross
section o(ete™ — hadrons)

e can be systematically improved: dedicated e*e™
program (BaBar, Belle, BESIIl, CMD3, KLOE2, SND)



@ Hadronic contributions to the muon g — 2

Hadronic light-by-light (HLbL) scattering

e previously only model calculations

e uncertainty estimate based rather
on consensus than on a systematic
method

e with recent progress on HVP,
HLbL starts to dominate the theory
uncertainty

e progress with lattice QCD and
dispersive approach
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(2) HvP DR for the pion VFF

Two-pion contribution to HVP

e 77 contribution amounts to more than 70% of HVP
contribution

e responsible for a similar fraction of HVP uncertainty

e unitarity relation for 77 contribution to HVP: pion
vector form factor (VFF)

w@m : olete” = wtrT) o |[EY (s))?



(2) HvP DR for the pion VFF

Two-pion contribution to HVP
e VFF itself fulfils again a unitarity relation:

¢ use the constraints of analyticity and unitarity to
better understand uncertainties in HVP 77 channel
— de Troconiz, Yndurain, 2001, 2004; Leutwyler, Colangelo 2002, 2003;

Ananthanarayan et al. 2013, 2016



(2) HvP DR for the pion VFF

Dispersive representation of pion VFF

F(s) = Qi(s) x Gu(s) x Giy(s)
e Omnes function with elastic mr-scattering P-wave
phase shift 4 (s) as input:

s [, 0x(s
Q%(s) = exp {% /4M2 ds —s’(;’(—)s) }



(2) HvP

Dispersive representation of pion VFF

FY (s) = N(s) x Guls) x Gin(s)
e isospin-breaking 37 intermediate state: negligible
apart from w resonance (p—w interference effect)

2 4
s [ Img,(s') [ 1— W

Gy(s) =1+ — ds' s ,
) =1+7 /gMz T —s) \1- oz

M3

DR for the pion VFF



(2) HvP DR for the pion VFF

Dispersive representation of pion VFF

F(s) = Qi(s) x Gu(s) x Giy(s)
 heavier intermediate states: 47 (mainly m°w), KK, ...

e described in terms of a conformal polynomial with cut
starting at 7%w threshold

Gh(s) =14+ cl2"(s) — 25(0))

e correct P-wave threshold behaviour imposed



@ HVP Fit strategy

Input and systematic uncertainties
e elastic mr-scattering P-wave phase shift 6] (s) from
Roy-equation analysis, including uncertainties
— Ananthanarayan et al., 2001; Caprini et al., 2012
¢ high-energy continuation of phase shift above validity
of Roy equations
e w width

e systematics in conformal polynomial: order N, one
mapping parameter



@ HVP Fit strategy

Free fit parameters

e value of the elastic mr-scattering P-wave phase shift
41 at two points (0.8 GeV and 1.15 GeV)

p—w Mixing parameter ¢,

w mass

energy rescaling for the experimental input, which
allows for a calibration uncertainty

N — 1 coefficients in the conformal polynomial



@ HVP Fit strategy

VFF fit to the following data
o time-like cross section data from high-statistics ete™
experiments SND, CMD-2, BaBar, KLOE
e space-like VFF data from NA7
e Eidelman—tukaszuk bound on inelastic phase:

— Eidelman, Ltukaszuk, 2004

e iterative fit routine including full experimental
covariance matrices and avoiding D’Agostini bias

— D’Agostini, 1994; Ball et al. (NNPDF) 2010



@ HVP Fit results and contribution to (g — 2),,

VFF fit results

2 /dof M, [MeV] 18 x&  61(s0) 1] Sls) [Pl 10° x ey

SND 51.9/37 = 140  781.49(32)(2) 0.0(6)(0) 110.5(5)(8) 165.7(0.3)(2.4) 2.03(5)(2)

CMD-2 87.4/74 =118 781.98(29)(1) 0.0(6)(0) 110.5(5)(8) 166.4(0.4)(2.4) 1.88(6)(2)

BaBar 299.1/262 = 1.14  781.86(14)(1) 0.0(2)(0) 110.4(3)(7) 165.7(0.2)(2.5) 2.04(3)(2)
0.5(2)(0)

KLOE” 222.5/185 = 1.20 781.81(16)(3) {7[)‘3(2)(0) 110.3(2)(6) 165.6(0.1)(2.4) 1.98(4)(1)
—0.2(3)(0)

Energy scan  152.5/119 = 1.28  781.75(22)(1) 110.4(3)(8)  166.0(0.2)(2.4) 1.97(4)(2)

All e~ 731.6/582 = 1.26  781.68(9)(4) 110.4(1)(7)  165.8(0.1)(2.4)  2.02(2)(3)

Allete™, NA7  776.2/627 = 1.24  781.68(9)(3) 110.4(1)(7)  165.7(0.1)(2.4)  2.02(2)(3)

® 15t grror: fit uncertainty; 2" error: systematics
® fit uncertainty inflated by /x2/dof



@ HVP Fit results and contribution to (g — 2),,

VFF fit results
e good fits to all experiments possible (p-value around
3% to 14%) with a few caveats:
e either M, or energy recalibration has to be fit
(practically identical results)
o two outliers in KLOEOS set (> 30 units in x?)
o BESIII covariance matrix cannot be used

o well-known discrepancy between BaBar and KLOE
= fit all data sets and inflate errors by /x?/dof

« inelastic effects dominate uncertainty for (¢ — 2),



50
45
40

35

30

[FY (s)?

20
15
10

25

Fit results and contribution to (g — 2),,

Fit result for the VFF |FY (s)|?

T T
Total error

- Fit error
NA7

i SND
CMD-2
BaBar
KLOEO8
KLOE10
KLOE12




@ HVP Fit results and contribution to (g — 2),,

[FY (s)?

VFF fit result and data with energy rescaling
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(2) HvP

[FY (s)?

Fit results and contribution to (g — 2),,

VFF fit result with M/PPG and data without energy rescaling
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[FY (s)?
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@ HVP Fit results and contribution to (g — 2),,

Contribution to (¢ — 2),,

e low-energy w7 contribution:

VP < 63 Gev = 132.8(0.4)(1.0) x 1071

= compare to 131.1(1.0) — KNT18, 132.9(8) — Ananthanarayan et al., 2018

e 7 contribution up to 1 GeV:

&ZIVP,m’SlGeV =495.0(1.5)(2.1) x 107"

22



(2) HvP

Result for aEVP“ below 1 GeV

23

Fit results and contribution to (g — 2),,
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(2) HvP

Improved determination of 6;(s)

24
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Fit results and contribution to (g — 2),,
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(2) HvP

25

Determination of the pion charge radius

FYV(s) =1+ é(rfr)s + O(s?)

DR for Y implies sum rule for charge radius:

6 [  ImEY(s)

== — T = 0.429(4) fm?
(r3) - /4M,2, ds = (4)

together with (r2) = 0.432(4) — Ananthanarayan et al., 2017
triggered a revision of the PDG value:
PDG 2018: (r2) = 0.452(11) fm?
PDG 2019: (r2) = 0.434(5) fm®
(model-dependent eN — er N now excluded)

Fit results and contribution to (g — 2),,



Overview
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(3) HLbL

Dispersive approach

e make use of fundamental principles:
e gauge invariance, crossing symmetry
e unitarity, analyticity

e relate HLbL to experimentally
accessible quantities

27



@ HLbL Tensor decomposition and Mandelstam representation

28

BTT Lorentz decomposition

Lorentz decomposition of the HLbL tensor:

— Bardeen, Tung (1968) and Tarrach (1975)

127 (g1, g2, q3) ZT‘M‘U st u;q))

e Lorentz structures manifestly gauge invariant

e scalar functions II; free of kinematic singularities
= dispersion relation in the Mandelstam variables



@ HLbL Tensor decomposition and Mandelstam representation

29

Dispersive representation

e write down a double-spectral (Mandelstam)
representation for the HLbL tensor

e split the HLbL tensor according to the sum over
intermediate (on-shell) states in unitarity relations

_ 1ym-pole box Lo
H,uzz/\a' - H,w/)\a + H,ul/)\a + H;UJ)\U



@ HLbL Tensor decomposition and Mandelstam representation

29

Dispersive representation

e write down a double-spectral (Mandelstam)
representation for the HLbL tensor

e split the HLbL tensor according to the sum over
intermediate (on-shell) states in unitarity relations

_ 17m°-pole box Lo
H,uzz/\a - H'ul/)\o' + H,ul/)\a + Huu)\a

one-pion intermediate state



@ HLbL Tensor decomposition and Mandelstam representation

29

Dispersive representation

e write down a double-spectral (Mandelstam)
representation for the HLbL tensor

e split the HLbL tensor according to the sum over
intermediate (on-shell) states in unitarity relations

_ 1ym-pole box Lo
H,uzz/\a - H,w/)\a + H;w)\a + Hw/)\a

two-pion intermediate state in both channels




@ HLbL Tensor decomposition and Mandelstam representation

29

Dispersive representation

e write down a double-spectral (Mandelstam)
representation for the HLbL tensor

e split the HLbL tensor according to the sum over
intermediate (on-shell) states in unitarity relations

_ 1y7°-pole box T
H,uzz/\a - H,w/)\a + H,ul/)\a + H,ur/)\a

two-pion intermediate state in first channel




@ HLbL Tensor decomposition and Mandelstam representation

29

Dispersive representation

e write down a double-spectral (Mandelstam)
representation for the HLbL tensor

e split the HLbL tensor according to the sum over
intermediate (on-shell) states in unitarity relations

_ 1ym-pole box Lo
H,uzz/\a - H,w/)\a + H,ul/)\a + Huu)\a

higher intermediate states



(3) HLbL Pion pole

Pion pole

‘ @ — M?
— __0_ . .
I13 P°° via crossing symmetry

ﬁﬂo—pole _ ‘FWO’Y*’Y* (q%7 qg)Fﬂo’y*’y(%’ga 0)
1

e input: doubly-virtual and singly-virtual pion transition
form factors F.,«,«z0 and F,«, o

e dispersive analysis of transition form factor:
0-pole _ +3.0 —11
an P = 62,6730 x 10
— Hoferichter et al., PRL 121 (2018) 112002, JHEP 10 (2018) 141

30



(3) HLbL Pion box
Box contribution

e simultaneous two-pion cuts in
two channels

e Mandelstam representation
explicitly constructed

e ¢*-dependence: pion VFF
EY (¢?) for each off-shell
photon factor out

e Wick rotation: integrate over space-like momenta

e dominated by low energies < 1 GeV

e result: a7 *> = —15.9(2) x 10"

31
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HLbL

[FY (s)?

Fit result for the VFF |FY (s)|?

Pion box

total error
fit error n—
: JLab

0.7 1
0.6
0.5t
04 r
0.3t
0.2 r
0.1 F ¢ 1

O I I I

0.9 r

-1 —0.8 —0.6
s [GeV?]

—-04 —-0.2

(the JLab data are not used in the fit)



@ HLbL mr-rescattering

33

Rescattering contribution

i

e neglect left-hand cut due to multi-particle
intermediate states in crossed channel

e two-pion cut in only one channel:

1/1 [ ImIIT™ (s, ¢/, u’ 1 [ ImIIT™ (s, ¢/, u’
H,Z-Tﬂ-zf(f/ aff —— " ¢ ( )+—/ dy 2 500D (5, ¢, )
2\ 7 Jamz2 t—t 7 Janm2 u —u

+ fixed-t

+ fixed-u)



@ HLbL wr-rescattering

Rescattering contribution

expansion into partial waves

unitarity gives imaginary parts in terms of helicity
amplitudes for y*y*) — 7

Imﬂ'ﬂ'hil)\Q,)\g)q (S) X 0-71' (S)hJ)\l/\2 (S>hj;,)\3/\4 (S>

framework valid for arbitrary partial waves

resummation of PW expansion reproduces full result:
checked for pion box

34



(3) HLbL

35

The subprocess

Omneés solution of unitarity relation for v*v* — o
helicity partial waves:

h2(8> = Az(s) =+

Q(s) [, ,K;j(s,8)sind(s)A(s)
L

A;(s): inhomogeneity due to left-hand cut

Q(s): Omnés function, input is 7 phase shift §(s)

K;;(s, s"): integration kernels

S-waves: kernels emerge from a 2x2 system for
ho ++ and hg oo and two scalar functions A, »

wr-rescattering



(3) HLbL

36

Topologies in the rescattering contribution

Our S-wave solution for v*v* — n:

X, XX

recursive PWE, no LHC

Two-pion contributions to HLbL.:

pion box rescattering contribution

wr-rescattering



@ HLbL wr-rescattering

S-wave rescattering contribution

e pion-pole approximation to left-hand cut
= ¢*-dependence given by £V

e phase shifts based on modified inverse-amplitude
method (fo(500) parameters accurately reproduced)

e result for S-waves:

nm,m-pole LHC —11
a, =g = —8(1) x 10

37



@ HLbL wr-rescattering

38

Extension to D-waves

D-waves describe f>(1270) resonance in terms of 77
rescattering

inclusion of higher left-hand cuts (p, w resonances)
necessary to reproduce observed f,(1270) resonance
peak in on-shell vy — 7x

NWA for vector resonance LHC with Vz~ interaction
L = eCye M F,,0\V,

coupling Cy related to decay width T'(V' — 7)

off-shell behaviour described by resonance transition
form factors Fy . (¢?)



@ HLbL mr-rescattering

39

Topologies in the D-wave Omnés solution

Omneés solution for v*~v* — 7 with higher left-hand
cuts provides the following:

XXX

recursive PWE, no LHC



@ HLbL wr-rescattering

40

D-

wave solution

modified Omneés representation

— Garcia-Martin, Moussallam, 2010

sum rules for unsubtracted DR are nearly fulfilled
(corrections due to higher intermediate states)
complete solution of the off-shell 5 x 5 D-wave
Roy—-Steiner system

large space-like ¢?: anomalous thresholds in
resonance PW appear =- solution in terms of a path
deformation

numerics for contribution to @, in progress
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@ Conclusions and outlook

42

HVP

e precise dispersive determination of pion VFF

e comprehensive analysis of uncertainties in 7w
channel

e valuable to corroborate uncertainties of direct
integration methods

e precise prediction for low-energy region, but useful up
to 1 GeV:

a7 |<1Gev = 495.0(1.5)(2.1) x 1071

e side-products: improved determination of 7w P-wave
phase shift; pion charge radius



@ Conclusions and outlook

HLbL

e very precise evaluation of HLbL pion-box contribution:

ar®™ = —15.9(2) x 107!

e precise prediction for S-wave nr-rescattering
contribution with pion-pole left-hand cut:

mm,m-pole LHC —11
o — 8(1) x 10

e D-wave numerics work in progress

e contributions beyond == and matching to pQCD/OPE
constraints work in progress — Bijnens et al., 2019

43



@ Conclusions and outlook

Summary

e our dispersive approach to HVP and HLbL is based
on fundamental principles:

e gauge invariance, crossing symmetry (for HLbL)
e unitarity, analyticity

e we are focusing on the lightest intermediate states

¢ relation to experimentally accessible (or again with
data dispersively reconstructed) quantities

e precise numerical evaluation of two-pion contributions

» a step towards a model-independent calculation of a,,

44
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Backup



@ Backup

SM contributions to (g — 2),,

46

10" x a,, 10" x Aa,

BNL E821 116 592 089 63 — PDG 2016
QED total 116 584 718.97 0.07 — Aoyama et al. 2012, 2017
EW 153.6 1.0 — Gnendiger et al. 2013
LO HVP 6932.7 24.6 — Keshavarzi et al. 2018
NLO HVP —98.2 0.4 — Keshavarzi et al. 2018
NNLO HVP 12.4 0.1 — Kurz et al. 2014
LO HLbL 102 39 — Nyffeler 2017
NLO HLbL 3 2 — Colangelo et al. 2014
Hadronic total 6952 46

Theory total 116 591 825 46




@ Backup

SM contributions to (g — 2),,

46

10" x a,, 10" x Aa,

BNL E821 116 592 089 63 — PDG 2016
QED total 116584 718.97 0.07 — Aoyama et al. 2012, 2017
EW 153.6 1.0 — Gnendiger et al. 2013
LO HVP 6931 34 — Davier et al. 2017
NLO HVP —98.2 0.4 — Keshavarzi et al. 2018
NNLO HVP 12.4 0.1 — Kurz et al. 2014
LO HLbL 102 39 — Nyffeler 2017
NLO HLbL 3 2 — Colangelo et al. 2014
Hadronic total 6950 52

Theory total 116591 823 52
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