Machine learning
for ensemble generation
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Generate QCD gauge fields

Generate field configurations ¢(z) with probability
Plé(x)] ~ e Slo(a)]

Hamiltonian/Hybrid Monte Carlo
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burn-in (discard) sample every nth: ~p(¢)

Burn-in time and correlation length dictated by Markov chain
‘autocorrelation time’: shorter autocorrelation time implies less
computational cost



Generate QCD gauge fields

QCD gauge field configurations sampled via

Hamiltonian dynamics + Markov Chain Monte Carlo

Updates diffusive

Lattice spacing * 0

Number of
updates to change
fixed physical
length scale
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“Ceritical slowing-down”
of generation of uncorrelated samples



Generate QCD gauge fields

QCD gauge field configurations sampled via

Hamiltonian dynamics + Markov Chain Monte Carlo

“Ciritical slowing-down”

of generation of uncorrelated samples

Autocorrelation measure
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Machine learning QCD

Accelerate gauge-field generation via ML

Multi-scale algorithmes:

barallels with image recognition
Shanahan et al.,, PRD 97,094506 (2018)

Generative models to replace
Hybrid Monte-Carlo

barallels with image generation
Albergo et al., PRD 100, 034515 (2019)
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Consider only approaches which rigorously
preserve quantum field theory in applicable limits
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Sampling gauge field configs

Generate field configurations ¢(z) with probability
Po(x)] ~ e~ 5140)
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ampling gauge field configs

Generate field configurations ¢(z) with probability
Po(x)] ~ e~ 5140)

Parallels with image generation problem
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Sampling gauge field configs

Probability density can be computed for a given sample

up to normalization
P ) p(.)=e )z

Distribution of gauge fields has precise symmetries
o Lattice symmetries (translation, rotation, reflection)

© Internal symmetries (gauge symmetries mixing field components)

Data hierarchies are challenging
© 107 to 1012 variables per configuration

© O(1000), samples available (fewer than # degrees of freedom per config)

Hard to use training paradigms that rely on existing samples from
distribution



Generative flow models

Flow-based models learn a change-of-variables that transforms

a known distribution to the desired distribution
[Rezende & Mohamed 1505.05770]
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Generative flow models

Flow-based models learn a change-of-variables that transforms
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Generative flow models

Choose real non-volume preserving flows:

[Dinh et al. 1605.08803) f Application of g-

Affine transformation of half of the variables:

© scaling by exp(s)
© translation by t

© sand t arbitrary neural networks depending on
untransformed variables only

Simple inverse and Jacobian
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Generative flow models

Choose real non-volume preserving flows:
[Dinh et al. 1605.08803]

Density can be
squished/stretched by

Affine transformation of half of the variables: change-of-variables

© scaling by exp(s) split \z;/ izlb_
© translation by t t,
© sand t arbrtrary neural networks depending on Ai

untransformed variables only - )
Can use physically-motivated
choices of variable splits
e.g. checkerboard building
correlations between nearest

Simple inverse and Jacobian
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Training the model

Target distribution 1s known up to normalisation

p(¢) =e>9)Z

Train to minimise shifted KL divergence: izang, g wang 1809.10188]

shift removes unknown

L(py) := Dgr(psllp) normalisation /

_ / [[d6;57(6) (08 ps(6) + 5(0))

\

allows self-training: sampling with respect to

model distribution p¢(¢)to estimate loss




Exactness via Markov chain

Guarantee exactness of generated distribution by forming a
Markov chain: accept/reject with Metropolis-Hastings step

Acceptance
probability
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proposal independent
of previous sample

Markov
Chain

model
proposals




Exactness via Markov chain

Guarantee exactness of generated distribution by forming a
Markov chain: accept/reject with Metropolis-Hastings step

Acceptance
probability

p(0=1)|p(9) > True dist
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Fields via flow models
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generating samples is
"embarrassingly parallel”

Parameterize flow using Real
NVP coupling layers

Each layer contains

!

Training step

‘ Draw samples from model ‘
|

‘ Compute loss function ‘
|

‘ Gradient descent ‘
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arbitrary neural nets
sandt

Desired accuracy?

Markov chain using
samples from model
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Save trained
model
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Summary chart: Tej Kanwar



Application: scalar field theory

First application: scalar lattice field theory

One real number ¢(x) € (—o0, 00) per lattice site x (2D lattice)

Action: kinetic terms and quartic coupling

> |
xZr

S(é) =3 (X 6(@)0(z, y)é(y) + smH(x)* + A¢<x>4>

> lattice sizes: L2 = {62, 82, 104, 122, |44} with parameters tuned for
analysis of critical slowing down

E1l E2 E3 E4 E5
B 6 8 10 12 14
m? —4 —4 —4 Y | —4
A 6.975 6.008 5.550 5.276 5.113
mpyL| 3.96(3)  3.97(5)  4.00(4) 3.96(5)  4.03(6)




Application: scalar field theory

First application: scalar lattice field theory

Prior distribution chosen to be uncorrelated

Gaussian: qb(:l:) N N(O, 1)

Real non-volume-preserving (NVP) couplings

* 8-12 Real NVP coupling layers

* Alternating checkerboard pattern for variable split

* NNs with 2-6 fully connected layers with [00-1024

hidden units
Train using shifted KL loss with Adam optimizer R L
i
* Stopping criterion: fixed acceptance rate in Metropolis- L5 -':h

Hastings MCMC L



Application: scalar field theory

First application: scalar lattice field theory

Compare with standard updating algorithms:‘local’, " HMC
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Application: scalar field theory

First application: scalar lattice field theory

Compare with standard updating algorithms:‘local’, " HMC

Count
104+ | B 62 ML
1(1)88 w B 62 HMC
107 _I_l—._l—'—-
1 L
104+ | B 102 ML
o0 B 102 HMC
19 —
104} I 142 ML
1000 B 142 HMC
100 ¢ —1_
10+
1 L I
0 20 40 60 30

Run length

Rejectance runs in the
Metropolis-Hastings
accept/reject step are
comparable to those in
Hamiltonian Monte-Carlo
tuned to same acceptance



Application: scalar field theory

First application: scalar lattice field theory
Compare with standard updating algorithms:‘local’, " HMC

Physical observables match
computed on ensembles
generated from ML model
and from standard methods

62 82 102 192 12 V

Two-point susceptibility Yo = Z Galz)
T

e 1 R
Ising limit energy E:E Z G.(f1)

0.05E. \ | | |
62 82 102 192 142 V



Application: scalar field theory

First application: scalar lattice field theory

Compare with standard updating algorithms:‘local’, " HMC
v/ Var(x2)

0.06: &
0.00f #
0.04¢

Uncertainties in physical
observables follow
statistical scaling as the
number of samples Is
Increased
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Application: scalar field theory

First application: scalar lattice field theory

Success: Critical slowing down Is eliminated

Cost:
51 O X2
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(a) HMC ensembles
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(b) Local Metropolis ensembles

Up-front training of the model

Tint | OFE o G.0)
5: o xe A Acc
| i 50% ML models
A Q @.___ﬁ__.g
9! 7,-0.06(5)
'''''''''''''''' L_—E).T)I(T)'
L I T
I 70% ML models
0.51

6 s 10 12 u L
(c) Flow-based MCMC ensembles
Dynamical critical exponents
consistent with zero



Next steps

Target application: LQCD

|.) Scale number of dimensions

2. Scale number of degrees of freedom

3. Methods for gauge theories




Outlook

IF a generative flow model can be trained for QCD

After the up-front cost of training the model, it Is
Cheap to generate an arbitrarily large ensemble
No need to store configurations, only the trained model

Volume scaling is ~free via hierarchical flow and transfer learning
approach

Cheap to re-train the model to move to nearby parameter values
(quark masses, beta)

i.e., if possible, this approach would have significant advantages, even if
initial training is expensive



