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What is a Quantum computer?
JQI@Univ; ‘of MD

Google Righetti

Classical Bit Qubit

o N bits: an integer number < 2V
o N qubits: a vector [¢) in 2V-dim Hilbert-space

— exponentially more information available

@ Microsoft?

Alessandro Roggero Santa Fe - 30 Aug 2019 1/14



Quantum Simulations with qubits

“Nature isn't classical, dammit, and if you want to make a simula-
tion of nature, you'd better make it quantum mechanical.”

— R.Feynman (1982)

@ in 1996 S.Lloyd shows this intuition is correct for local interactions
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Quantum Simulations with qubits

“Nature isn't classical, dammit, and if you want to make a simula-
tion of nature, you'd better make it quantum mechanical.”

— R.Feynman (1982)

@ in 1996 S.Lloyd shows this intuition is correct for local interactions

@ physical states can be mapped in states of ~ loga(2) qubits

o choose a finite basis to discretize system — dim(H) = Q oc e J

— u()

(W) = U(t)|¥(0))
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Exclusive cross sections in neutrino oscillation experiments

Goals for v oscillation exp.

@ neutrino masses

@ accurate mixing angles
candidate Pzt o -
@ CP violating phase
Run 5390, Event 1100
. . Am?2L
P(vg — vg) = 1 — sin?(20)sin® | ——
4F,

@ need to use measured reaction products to constrain E,, of the event

DUNE, MiniBooNE, T2K, Minerva, NOVA,. ..

Sanford Underground
Research Facility
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Quantum algorithms for the nuclear response

R(w) = / dte'C(t) with C(t) = (Wo|O(t)O(0)]Wo)

Blueprint of quantum algorithms
state preparation — unitary evolution — measurement

10) Was O —U(t)
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Quantum algorithms for the nuclear response

R(w) = / dte'C(t) with C(t) = (Wo|O(t)O(0)]Wo)

Blueprint of quantum algorithms
state preparation — unitary evolution — measurement

10) Was HOHU® HoHUT ) H Wl HA

@ strategy A [Ortiz, Somma et al (2001-2003)]

o compute C(t) on quantum computer for different times
e perform Fourier transform classically

o strategy B [Roggero & Carlson (2018)]
e sample directly final states from approximate response function

®5) = 3 VEaA®) ) ® V)
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Quantum algorithms for the nuclear response

R(w) = / dte'C(t) with C(t) = (Wo|O(t)O(0)]Wo)

Blueprint of quantum algorithms
state preparation — unitary evolution — measurement

10) Was HOHU® HoHUT ) H Wl HA

@ strategy A [Ortiz, Somma et al (2001-2003)]

o compute C(t) on quantum computer for different times
e perform Fourier transform classically

o strategy B [Roggero & Carlson (2018)]
e sample directly final states from approximate response function

®5) = 3 VEaA®) ) ® V)

o both algorithms are poly in A and target energy resolution !
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Part |: baby steps on current machines

uBooNE

Run 3493 Event 41075, October 23%,

figure credit: p1BooNE collab. figure credit: IBM
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Part |: baby steps on current machines
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A (very) simplified nuclear model
@ A =40 is too challenging for now = try with A =3
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A (very) simplified nuclear model
@ A =40 is too challenging for now = try with A =3
@ we want a lattice model but need small basis = take 2 sites per dim
e after all A = 3 is still too much = fix one particle on a lattice site

@ having 3 spatial dimensions is too difficult = use just D = 2

e for every nucleon map 4 states
|00) |01) into 2 qubits = 4 qubits total
(0 ()
AN
3) ()
10) T 1)
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A (very) simplified nuclear model
@ A =40 is too challenging for now = try with A =3
@ we want a lattice model but need small basis = take 2 sites per dim
e after all A = 3 is still too much = fix one particle on a lattice site

@ having 3 spatial dimensions is too difficult = use just D = 2

@ for every nucleon map 4 states
|01) into 2 qubits = 4 qubits total

@ interaction Hamiltonian from
pion-less EFT becomes

H = _tZXk+UIZZk
k k

+ Z UijZiZj + Z ViijiZjZk

)

A A

B

i3 1,5,k
10 11
110) = + > WinZiZi 2k 2
1,5,k
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Preparation of an approximate ground state

Variational Quantum Eigensolver Perruzzo(2014), McClean(2015), .. .

Use Rayleigh-Ritz variational principle to find the lowest energy state

min (6(p)|H|4(p)) with |¢(p)) = U(p) |0)
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Preparation of an approximate ground state

Variational Quantum Eigensolver Perruzzo(2014), McClean(2015), .. .

Use Rayleigh-Ritz variational principle to find the lowest energy state

min (¢(p)|H|p(p)) with [6(p)) = U(p)[0)

Us(¢1,61,01) Usz(¢s,05,05) Ua (g, 0y, d9)
Uz(¢2, 62, 92) Usz(¢6, 66, 6) Uz(¢10, 010, 010)
Us(¢3,03,63) Us(¢r,07,07) Us(é11,011,611)

Uz (¢4, 04,04) Usz(¢s, 03, d8)

N
V

D
IV

D
WV

D
IV

Us (12,012, 612)

@ up to 36 parameters — could be reduced using symmetries

Alessandro Roggero Santa Fe - 30 Aug 2019 7/14



Preparation of an approximate ground state ||

Variational Quantum Eigensolver

Use Rayleigh-Ritz variational principle to find the lowest energy state

Perruzzo(2014), McClean(2015), ...

min ($(p)|H|p(p)) with [¢(p)) = U(p) |0)
o first problem: latency
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Preparation of an approximate ground state ||

Variational Quantum Eigensolver

Use Rayleigh-Ritz variational principle to find the lowest energy state

min (¢(p)|H|p(p)) with [6(p)) =

U(p)0)

Perruzzo(2014), McClean(2015), ...

o first problem: latency—> more compact trial states, better optimizers
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Preparation of an approximate ground state |lI

Variational Quantum Eigensolver Perruzzo(2014), McClean(2015), ...

Use Rayleigh-Ritz variational principle to find the lowest energy state

min (¢(p)|H|p(p)) with [6(p)) = U(p)[0)

@ second problem: persistence
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Preparation of an approximate ground state |lI

Variational Quantum Eigensolver

Perruzzo(2014), McClean(2015), ...

Use Rayleigh-Ritz variational principle to find the lowest energy state

min (¢(p)|H|(p))

with

|6()) = U(P) |0)

@ second problem: persistence — track changes and reoptimize

70
@ . i
@ Optimization Final Track energy drift 7~ r2
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g o, 0
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Preliminary results for real time dynamics

For now just (¥|O(t)|¥) — move to 2pt functions in the future |

— expected result

I o 1N
=) v =

Probability all nucleons on the same lattice site
(=3

=)

o b by by by by by Ly
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Scaled time
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Preliminary results for real time dynamics

For now just (¥|O(t)|¥) — move to 2pt functions in the future ]

— expected result
©—@ QPU results

I o 1N
) i =
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PROBLEM: large systematic errors from machine noise
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©—@ QPU results
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Preliminary results for real time dynamics

For now just (¥|O(t)|¥) — move to 2pt functions in the future ]

— expected result
©—@ QPU results
@@ Ist order extrap
@—@® 2nd order extrap
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Preliminary results for real time dynamics

For now just (¥|O(t)|¥) — move to 2pt functions in the future ]

— expected result
©—@ QPU results
@@ Ist order extrap
@—@® 2nd order extrap

I
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)

I
o

0.1

Probability all nucleons on the same lattice site

L s b b by by by 1 09
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Scaled time

PROBLEM: large systematic errors from machine noise
for perturbative noise: R(¢) = Ry + Ry + 2Ry + - - -

o currently we are working hard on different mitigation techniques
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Part II: back to neutrino scattering off 49Ar

Alessandro Roggero Santa Fe - 30 Aug 2019 11/14



Part II: back to neutrino scattering off 49Ar

0) Was HO —U(2)

0

Ut(t)

Ws

@ we can use variational ansatz to prepare initial state Wgg

Alessandro Roggero

Santa Fe - 30 Aug 2019 11/14



Part II: back to neutrino scattering off 49Ar

0) Was HO —U(2)

0

Ut(t)

Ws

@ we can use variational ansatz to prepare initial state Wgg

@ bottleneck of both calculations is time-evolution (~ O(1) difference)
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Part II: back to neutrino scattering off 49Ar

10) Was HoHU®) Hout ) A Wi A

@ we can use variational ansatz to prepare initial state Wgg
@ bottleneck of both calculations is time-evolution (~ O(1) difference)

@ need to repeat for many values of momentum transfer O = O(q)
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Where are we I’Ight nOW? figure adapted from Google Al

Need Both Quality and Quantity

10
(<]
-
©
S
2 e e e e e e e e e e e e e e Em Ee E e e e = = o= o
3 10 Error correction threshold
=
Q
g
= 103
£ ; Useful error
=) Classically Near-term edioE
104 simulatable applications CaUBES

I | | T | T T T
100 10! 102 108 104 105 108 107 108
Number of Qubits

@ inverse error rate gives the total coherence time 7.,

Thresho|d Theorem(s) Ben-Or, Aharonov, Kitaev, Knill, Gottesman,. . .

When rate below threshold can extend Tghf — 00 with polylog(N) effort
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Where are we right now?

Need Both Quality and Quantity

101
Part |
2
© »
§ 102 == ~——==-=-=-= Error correction threshold ]
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g
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E Patp
=) Classically Near-term Useful e;rorC
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Number of Qubits

figure adapted from Google Al

@ inverse error rate gives the total coherence time 7.,

Threshold Theorem(s)

When rate below threshold can extend Tghf

Ben-Or, Aharonov, Kitaev, Knill, Gottesman,. ..

— 00 with polylog(N) effort
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How practical is all this? Can we do it in time for DUNE?

e pionless EFT on a 10? lattice of size 20 fm [a = 2.0 fm]
o 10x faster gates and negligible error correction cost (very optimistic)
e want R(q,w) with 20 MeV energy resolution
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How practical is all this? Can we do it in time for DUNE?

e pionless EFT on a 10? lattice of size 20 fm [a = 2.0 fm]
o 10x faster gates and negligible error correction cost (very optimistic)

e want R(q,w) with 20 MeV energy resolution

we need a quantum device with ~ 4000 qubits (current record is 72) J
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@ algorithm efficiency is critical

QPU hours
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@ there is still a long way to go

QPU hours

— naive implementation
— faster fermions
=+ better rotations
— + faster kinetic energy
— + parallelization
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o find new algorithms and/or
approximations for near term
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Summary

@ understanding low-energy dynamics of nuclear many-body systems is
important for current and planned neutrino oscillation experiments

@ QC is an emerging technology with the potential of revolutionarize the
way theory calculations are done

@ we already know how to simulate efficiently the time-evolution of non
relativistic systems and how to study exclusive scattering

@ more work has to be done to make all this viable in the near term
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@ QC is an emerging technology with the potential of revolutionarize the
way theory calculations are done

@ we already know how to simulate efficiently the time-evolution of non
relativistic systems and how to study exclusive scattering

@ more work has to be done to make all this viable in the near term

o J. Carlson & R. Gupta (LANL) A~
- Los Alamos m
o Andy Li & G. Perdue (FNAL)

%OAK RIDGE

National Laboratory

o QPU access thanks to ORNL
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Quantum Phase Estimation

Kitaev (1996), Brassard et al. (2002), Svore et. al (2013), Weibe & Granade (2016),. ..

QPE is a general algorithm to estimate eigenvalues of a unitary operator

Ulés) = Mel&) , A = €29 &= U=

Ovrumé&Hiorth-Jensen (2007)

e starting vector ) = >, cx|ék)
@ store time evolution [¢/(%)) in
auxiliary register of M qubits
e perform (Quantum) Fourier -
transform on the auxiliary register oo
@ measures will return A\, with -
probability P(\,,) ~ |c,|? T T e e

BONUS: final state after measurement is [t 4;,) = > (A — Ap)cklér) J
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