$lpha_{ m s}$ from a tiny heavy universe

Mattia Dalla Brida

Università di Milano-Bicocca & INFN

in collaboration with:

Roman Höllwieser, Francesco Knechtli, Tomasz Korzec, Alberto Ramos, Stefan Sint, Rainer Sommer

Santa Fe Workshop on Lattice QCD, $28^{\rm th}$ of August 2019, Santa Fe, USA

Introduction

Motivation

The strong coupling $\alpha_{\rm s}\equiv \alpha_{\overline{\rm MS}}^{(5)}(m_Z)$

- ► Fundamental parameter of the SM
- Enters all pQCD processes @ LHC
- Impacts vacuum stability, unification arguments, searches of new coloured sectors, ...

What is the situation?

see e.g. (d'Enterria et al. '19)

- ▶ $\delta \alpha_{\rm s} / \alpha_{\rm s} \approx 1\%$: least-precisely known SM coupling
- Leads to relevant uncertainties in key processes

 $H \to b\bar{b}, \quad H \to c\bar{c}, \quad H \leftrightarrow gg, \quad \dots$

- Limiting factor for precision determinations at future colliders, e.g., top-quark mass
- Many current determinations are limited by systematic uncertainties

Problem

We need **accurate** measurements in order to reach **sub-percent** precision!

PDG (2016/18)

 $\alpha_{\rm s}=0.1181(11)$

Introduction

How do we determine α_s ?

Phenomenology

$$\mathcal{O}_{\exp}(q) \stackrel{q \to \infty}{\approx} \sum_{n=0}^{N} c_n \, \alpha_{\rm s}^n(q) + \mathcal{O}(\alpha_{\rm s}^{N+1}) + \mathcal{O}\left(\frac{\Lambda^p}{q^p}\right) \qquad \left[\alpha_{\mathcal{O}}(q) \equiv \frac{\mathcal{O}(q) - c_0}{c_1}\right]$$

Sources of uncertainty

- \blacktriangleright Experimental errors on $\mathcal{O}_{\rm exp}$
- Impact of the unknown c_n
- ► Size (and form) of "non-perturbative corrections"
- Uncertainties on other fundamental parameters
- Missing higher-order electroweak contributions
- ▶ ...and (why not) new physics contributions

What about lattice QCD?

Fix $g_0, m_{0,u}, m_{0,d}, \ldots$ using low-energy inputs, replace \mathcal{O}_{exp} with \mathcal{O}_{lat} , and extract $\alpha_s!$

Why is this a good idea?

- \blacktriangleright Lots of freedom in choosing $\mathcal{O}_{\mathrm{lat}};$ no need to be experimentally measurable
- $\blacktriangleright~\mathcal{O}_{\mathrm{lat}}$ is defined within QCD alone; Euclidean signature helps too
- $\blacktriangleright~\mathcal{O}_{\mathrm{lat}}(q)$ can be measured non-perturbatively up to arbitrary large q
- Does not rely on any hadronization model

see e.g. (Salam '18)

Lattice QCD determinations of $lpha_{ m s}$

Finite-volume schemes: couplings from finite-volume effects

Caveat: Typically to have systematic errors under control for $\mathcal{O}_{lat}(q)$ requires, e.g.,

$$m_{\pi}L \sim 4$$
 and $\Lambda \ll q \ll a^{-1} \sim 10 \,\text{GeV} \Rightarrow L/a > 100 \rightarrow \text{HARD}!$

Solution: Take for \mathcal{O}_{lat} a finite-volume effect

(Wilson; ...; Lüscher, Weisz, Wolff '92)

 $\mathcal{O}_{\text{lat}}(L) \propto \bar{g}_{\mathcal{O}}^2(\mu = L^{-1}) \Rightarrow \mu \ll a^{-1} \Rightarrow L/a \gg 1 \rightarrow \text{EASY!}$

Step-scaling function

$$\sigma(u) = \bar{g}_{\mathcal{O}}^{2}(\mu/2)|_{\overline{m}(\mu)=0}^{u=\bar{g}_{\mathcal{O}}^{2}(\mu)} \qquad \sigma(u) = \lim_{a/L \to 0} \Sigma(a/L, u)$$

 β -function

$$\log 2 = \int_{\sqrt{\sigma(u)}}^{\sqrt{u}} \frac{\mathrm{d}x}{\beta_{\mathcal{O}}(x)} \qquad \qquad \frac{\mathrm{d}\bar{g}_{\mathcal{O}}(\mu)}{\mathrm{d}\ln\mu} = \beta_{\mathcal{O}}(\bar{g}) \stackrel{\bar{g}\to 0}{\approx} -b_0\bar{g}^3 - b_1\bar{g}^5 - b_2^{\mathcal{O}}\bar{g}^7 + \dots$$

 Λ -parameter

$$\Lambda_{\mathcal{O}}^{(N_{\mathrm{f}})} = \mu \,\varphi_{\mathcal{O}}^{(N_{\mathrm{f}})}(\bar{g}(\mu)) \qquad \qquad \varphi_{\mathcal{O}}^{(N_{\mathrm{f}})}(\bar{g}(\mu)) = \ldots \times \exp\left\{-\int_{0}^{\bar{g}(\mu)} \frac{\mathrm{d}x}{\beta_{\mathcal{O}}^{(N_{\mathrm{f}})}(x)} + \ldots\right\}$$

- ▶ Non-perturbatively defined **RGI** $[d\Lambda_{\mathcal{O}}/d\mu = 0]$
- $\Lambda_{\rm X}/\Lambda_{\rm Y} = e^{c_{\rm XY}/2b_0}$ exactly, where $\bar{g}_{\rm X}^2(\mu) = \bar{g}_{\rm Y}^2(\mu) + c_{\rm XY} \, \bar{g}_{\rm Y}^4(\mu) + {\rm O}(\bar{g}_{\rm Y}^6)$
- Defined for a fixed number $N_{\rm f}$ of massless quarks. For $\alpha_{\rm s}$ we need $\Lambda_{\overline{\rm MS}}^{(5)}$!

Lattice QCD determinations of $lpha_{ m s}$

Finite-volume schemes: couplings from finite-volume effects

Caveat: Typically to have systematic errors under control for $\mathcal{O}_{lat}(q)$ requires, e.g.,

$$m_{\pi}L \sim 4$$
 and $\Lambda \ll q \ll a^{-1} \sim 10 \,\text{GeV} \Rightarrow L/a > 100 \rightarrow \text{HARD}!$

Solution: Take for $\mathcal{O}_{\mathrm{lat}}$ a finite-volume effect

(Wilson; ...; Lüscher, Weisz, Wolff '92)

 $\mathcal{O}_{\text{lat}}(L) \propto \bar{g}_{\mathcal{O}}^2(\mu = L^{-1}) \Rightarrow \mu \ll a^{-1} \Rightarrow L/a \gg 1 \rightarrow \text{EASY!}$

Step-scaling function

$$\sigma(u) = \bar{g}_{\mathcal{O}}^2(\mu/2)|_{\overline{m}(\mu)=0}^{u=\bar{g}_{\mathcal{O}}^2(\mu)} \qquad \sigma(u) = \lim_{a/L \to 0} \Sigma(a/L, u)$$

 β -function

$$\log 2 = \int_{\sqrt{\sigma(u)}}^{\sqrt{u}} \frac{\mathrm{d}x}{\beta_{\mathcal{O}}(x)} \qquad \qquad \frac{\mathrm{d}\bar{g}_{\mathcal{O}}(\mu)}{\mathrm{d}\ln\mu} = \beta_{\mathcal{O}}(\bar{g}) \stackrel{\bar{g}\to 0}{\approx} -b_0\bar{g}^3 - b_1\bar{g}^5 - b_2^{\mathcal{O}}\bar{g}^7 + \dots$$

 Λ -parameter

$$\Lambda_{\mathcal{O}}^{(N_{\rm f})} = \mu_{\rm had} \,\varphi_{\mathcal{O}}^{(N_{\rm f})}(\bar{g}(\mu_{\rm had})) \quad \mu_{\rm had} = \mathcal{O}(100 \,\,{\rm MeV}) \quad \beta_{\mathcal{O}}^{\rm PT}(\bar{g}) = -\bar{g}^3 \sum_{k=0}^{N-1} b_k \bar{g}^{2k}$$

The challenge is ...

$$\varphi_{\mathcal{O}}(\bar{g}(\mu_{\text{had}})) \stackrel{\mu_{\text{PT}} \to \infty}{\approx} \dots \times \exp\left\{-\int_{\bar{g}(\mu_{\text{PT}})}^{\bar{g}(\mu_{\text{had}})} \frac{\mathrm{d}x}{\beta_{\mathcal{O}}(x)} - \int_{0}^{\bar{g}(\mu_{\text{PT}})} \frac{\mathrm{d}x}{\beta_{\mathcal{O}}^{\text{PT}}(x)}\right\} + \mathcal{O}(\bar{g}^{2N-2}(\mu_{\text{PT}}))$$

$lpha_{ m s}$ from the femto universe

The QCD coupling from a non-perturbative determination of $\Lambda_{\overline{\mathrm{MS}}}^{(3)}$

Master formula

(Bruno, MDB, Fritzsch, Korzec, Ramos, Schaefer, Simma, Sint, Sommer '17)

▶ **Running:** Through the NP running from $\mu_{had} \approx 0.2 \, GeV$ to $\mu_{PT} \approx 120 \, GeV$ of two finite-volume couplings, $\bar{g}_{SF}^2(\mu)$ and $\bar{g}_{GF}^2(\mu)$, we obtain

 $\frac{\Lambda_{\overline{\rm MS}}^{(3)}}{\mu_{\rm had}} = 1.729(57) \approx 3.3\% \qquad [\bar{g}_{\rm GF}^2(\mu_{\rm had}) = 11.31]$

▶ Scale-setting: We first relate μ_{had} to $\sqrt{8t_0}$ (large volume) and express the latter in physical units through f_{π}, f_K . This yields

 $1/\sqrt{8t_0} = 478(7) \,\mathrm{MeV} \approx 1.5\% \quad \Rightarrow \quad \Lambda_{\overline{\mathrm{MS}}}^{(3)} = 341(12) \,\mathrm{MeV} \approx 3.5\%$

• Matching: Using PT to compute the ratios $\Lambda_{\overline{MS}}^{(4,5)}/\Lambda_{\overline{MS}}^{(3)}$ we find

$$\begin{split} \Lambda_{\overline{\rm MS}}^{(3)} &\to \Lambda_{\overline{\rm MS}}^{(4)} \to \Lambda_{\overline{\rm MS}}^{(5)} = 215(10)(3)_{\rm PT}\,{\rm MeV} + {\rm O}(M_c^{-2}) + {\rm O}(M_b^{-2}) \\ \alpha_{\overline{\rm MS}}^{(5)}(m_Z) &= 0.1185(8)(3)_{\rm PT} \approx 0.7\% \end{split}$$

Heavy-quark effects

Perturbative decoupling

Fundamental theory

$$\mathcal{L}_{\text{QCD}_{N_{\mathrm{f}}}} = \frac{1}{4g^2} F^a_{\mu\nu} F^a_{\mu\nu} + \sum_{f=1}^{N_{\mathrm{f}}} \overline{\psi}_f \not\!\!D \psi_f + \sum_{f=N_{\mathrm{f}}+1}^{N_{\mathrm{f}}} \overline{\psi}_f (\not\!\!D + M) \psi_f$$

Effective theory

(Weinberg '80; ...)

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{QCD}_{N_{1}}} + \frac{1}{M^{2}} \sum_{i} \omega_{i} \Phi_{i} + \dots \quad \Rightarrow \quad \mathbf{LO}: \quad \mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{QCD}_{N_{1}}}$$

Matching the couplings

(Bernreuther, Wetzel '82; ...; Chetyrkin, Kühn, Sturm '06; Schröder, Steinhauser '06)

(Na).

$$\bar{g}_{\overline{\mathrm{MS}}}^{(N_{1})}(m^{*}) = \bar{g}_{\overline{\mathrm{MS}}}^{(N_{\mathrm{f}})}(m^{*}) \, \widetilde{C}\left(\bar{g}_{\overline{\mathrm{MS}}}^{(N_{\mathrm{f}})}(m^{*})\right) \qquad \overline{m}_{\overline{\mathrm{MS}}}(m^{*}) = m^{*} \qquad \left[g_{*} \equiv \bar{g}_{\overline{\mathrm{MS}}}^{(N_{\mathrm{f}})}(m^{*}) \right]$$

In terms of RGI quantities

$$\Lambda_{\overline{\mathrm{MS}}}^{(N_{\mathrm{l}})}(M,\Lambda_{\overline{\mathrm{MS}}}^{(N_{\mathrm{f}})}) = P_{\mathrm{l,f}}(M/\Lambda_{\overline{\mathrm{MS}}}^{(N_{\mathrm{f}})}) \Lambda_{\overline{\mathrm{MS}}}^{(N_{\mathrm{f}})} \Rightarrow P_{\mathrm{l,f}}(M/\Lambda_{\overline{\mathrm{MS}}}^{(N_{\mathrm{f}})}) = \frac{\varphi_{\overline{\mathrm{MS}}}^{(N_{\mathrm{l}})}(g_{*}\tilde{C}(g_{*}))}{\varphi_{\overline{\mathrm{MS}}}^{(N_{\mathrm{f}})}(g_{*})}$$

where

$$M = \overline{m}_{\overline{\mathrm{MS}}}(\mu) \,\varepsilon_{\overline{\mathrm{MS}}}^{(N_{\mathrm{f}})}(\bar{g}(\mu)) \qquad \varepsilon_{\overline{\mathrm{MS}}}^{(N_{\mathrm{f}})}(\bar{g}(\mu)) = \dots \times \exp\left\{-\int_{0}^{\bar{g}(\mu)} \mathrm{d}x \frac{\tau_{\overline{\mathrm{MS}}}^{(N_{\mathrm{f}})}(x)}{\beta_{\overline{\mathrm{MS}}}^{(N_{\mathrm{f}})}(x)} + \dots\right\}$$

and $g_*\equiv g_*(M/\Lambda_{\overline{\mathrm{MS}}}^{(N_{\mathrm{f}})})$ is solution of

$$\frac{\Lambda_{\overline{\mathrm{MS}}}^{(N_{\mathrm{f}})}}{M} = \frac{\varphi_{\overline{\mathrm{MS}}}^{(N_{\mathrm{f}})}(g_{*})}{\varepsilon_{\overline{\mathrm{MS}}}^{(N_{\mathrm{f}})}(g_{*})} \quad \Rightarrow \quad g_{*} \stackrel{M/\Lambda \to \infty}{\longrightarrow} 0 \quad \Rightarrow \text{ We can use PT for } P_{\mathrm{l,f}}(M/\Lambda \gg 1)!$$

Heavy-quark effects

Perturbative decoupling (cont.)

(Athenodorou et al. '18)

- PT expansion shows very good "convergence" ►
- PT uncertainties are therefore quite small ►
- Q: But can perturbative decoupling really be trusted at M_c/Λ ?

A: Yes!

$\alpha_{\overline{\mathrm{MS}}}^{(5)}(m_Z)$	$\alpha_n - \alpha_{n-1}$
0.11699	
0.11827	0.00128
0.11846	0.00019
0.11852	0.00006
	$\begin{array}{c} \alpha_{\overline{\rm MS}}^{(5)}(m_Z) \\ 0.11699 \\ 0.11827 \\ 0.11846 \\ 0.11852 \end{array}$

 $\alpha_{\overline{\rm MS}}^{(5)}(m_Z) = 0.1185(8)(3)_{\rm PT}$

How perturbative are heavy sea quarks?

Charm decoupling: perturbative or non-perturbative?

Non-perturbative matching

$$\frac{\Lambda^{(N_{\rm l})}}{\mathcal{S}_{N_{\rm l}}} = P_{\rm l,f}^{\mathcal{S}} \left(M/\Lambda^{(N_{\rm f})} \right) \frac{\Lambda^{(N_{\rm f})}}{\mathcal{S}_{N_{\rm f}}(M)} \quad \Rightarrow \quad \mathcal{S}_{N_{\rm l}} = \mathcal{S}_{N_{\rm f}}(M) + \mathcal{O}\left(\frac{\Lambda^2}{M^2}\right)$$

Ratios of scales

$$\frac{\mathcal{S}_{N_{\mathrm{f}}}(M)}{\mathcal{S}'_{N_{\mathrm{f}}}(M)} = \frac{\mathcal{S}_{N_{1}}}{\mathcal{S}'_{N_{1}}} + \mathcal{O}\left(\frac{\Lambda^{2}}{M^{2}}\right) \quad \text{e.g.} \quad \mathcal{S} = \left\{(8t_{0})^{-\frac{1}{2}}, r_{0}, w_{0}, \dots\right\} \equiv \text{low-energy scale}$$

Result: Typical $O(\Lambda^2/M_c^2)$ corrections to such ratios are < 0.5% effects (Knechtli et al. 17) $\Rightarrow N_f = 3$ QCD is good enough for a **per-cent** precision scale setting!

Factorization formula

(Bruno et al. '15; Athenodorou et al. '18)

$$\begin{split} \frac{\mathcal{S}_{N_{\rm f}}(M)}{\mathcal{S}_{N_{\rm f}}(0)} &= \mathcal{Q}_{\rm l,f}^{S} \times P_{\rm l,f}^{S} \left(M/\Lambda^{(N_{\rm f})} \right) \qquad \qquad \mathcal{Q}_{\rm l,f} = \frac{\mathcal{S}_{N_{\rm l}}/\Lambda^{(N_{\rm l})}}{\mathcal{S}_{N_{\rm f}}(0)/\Lambda^{(N_{\rm f})}} \\ &= \underbrace{\mathcal{Q}_{\rm l,f}^{S}}_{\rm NP \ \& M \ \text{-indep.}} \times \underbrace{P_{\rm l,f} \left(M/\Lambda^{(N_{\rm f})} \right)}_{\rm PT \ \& universal} + O\left(\frac{\Lambda^{2}}{M^{2}}\right) \qquad P_{\rm l,f}^{S} = P_{\rm l,f}^{S'} + O\left(\frac{\Lambda^{2}}{M^{2}}\right) \sim P_{\rm l,f} \end{split}$$

 $\begin{array}{ll} \mbox{Result: Typical } O(\Lambda^2/M_c^2) \mbox{ corrections to } P_{\rm l,f}(M_c/\Lambda) \mbox{ are } < 1\% \mbox{ effects} & \mbox{ (Athenodorou et al. 18)} \\ \mbox{ } \Rightarrow \Lambda_{\rm \overline{MS}}^{(3)} \xrightarrow{\rm PT} \Lambda_{\rm \overline{MS}}^{(4,5)} \mbox{ is precise enough if } \delta\Lambda_{\rm \overline{MS}}^{(3)}/\Lambda_{\rm \overline{MS}}^{(3)} \gtrsim 2\%! \end{array}$

$\Lambda^{(3)}_{\overline{\mathrm{MS}}}$ from the decoupling of heavy quarks

Decoupling as a tool for non-perturbative renormalization

Matching (again)

$$\frac{\Lambda_{\overline{\mathrm{MS}}}^{(3)}}{\mathcal{S}_{3}(M)} = \frac{\Lambda_{\overline{\mathrm{MS}}}^{(0)}}{\mathcal{S}_{0}} P_{0,3} \left(M/\Lambda_{\overline{\mathrm{MS}}}^{(3)} \right)^{-1} \quad \text{with} \quad \mathcal{S}_{0} = \mathcal{S}_{3}(M) + \mathcal{O}\left(\frac{\Lambda^{2}}{M^{2}}\right) + \mathcal{O}\left(\frac{\mathcal{S}^{2}}{M^{2}}\right)$$

Basic ingredients

 $\mathcal{S} = \mu_{
m dec}$ with $\bar{g}_{\mathcal{O}}^{(3)}(\mu_{
m dec}, z) = g_M$ $z = M/\mu_{
m dec}$

Decoupling

$$\begin{split} \bar{g}_{\mathcal{O}}^{(3)}(\mu_{\mathrm{dec}}, z) &= g_{M} = \bar{g}_{\mathcal{O}}^{(0)}(\mu_{\mathrm{dec}}') \implies \mu_{\mathrm{dec}}' = \mu_{\mathrm{dec}} + \mathcal{O}\left(\frac{\Lambda^{2}}{M^{2}}\right) + \mathcal{O}\left(\frac{\mu_{\mathrm{dec}}^{2}}{M^{2}}\right) \\ \Lambda \text{-parameters} \left[\operatorname{using} \Lambda_{\mathrm{MS}}^{(0)} / \mu_{\mathrm{dec}} = (\Lambda_{\mathrm{MS}}^{(0)} / \Lambda_{\mathcal{O}}^{(0)}) \varphi_{\mathcal{O}}^{(0)}(g_{M}) \right] \\ \frac{\Lambda_{\mathrm{MS}}^{(3)}}{\mu_{\mathrm{dec}}} &= \frac{\Lambda_{\mathcal{O}}^{(0)}}{\Lambda_{\mathcal{O}}^{(0)}} \times \underbrace{\varphi_{\mathcal{O}}^{(0)}(g_{M})}_{\mathrm{NP}} \times \underbrace{P_{0,3}(M/\Lambda_{\mathrm{MS}}^{(3)})^{-1}}_{\mathrm{High-order PT}} + \mathcal{O}\left(\frac{\Lambda^{2}}{M^{2}}\right) + \mathcal{O}\left(\frac{\mu_{\mathrm{dec}}^{2}}{M^{2}}\right) \\ \text{How do we set the scale?} \\ g_{M} &= \Psi_{M}(g_{\emptyset}, z) \quad \text{with} \quad g_{\emptyset} = \bar{g}_{\mathcal{O}}^{(3)}(\mu_{\mathrm{dec}}, 0) \end{split}$$

Remarks

- ▶ Using a finite-volume coupling allows for larger M; better PT for $P_{l,f}(M/\Lambda)$
- $ightarrow \mu_{
 m dec}$ is set in physical units within $N_{
 m f}=3$ QCD, e.g., computing $\mu_{
 m dec}\sqrt{8t_0}$
- The running from μ_{dec} to $\mu_{PT} = O(100 \, GeV)$ is done in **pure YM**!

The gradient flow coupling

A new finite-volume coupling

Definition

- 1. Finite volume with Schrödinger functional (SF) bc.'s
- 2. $\overline{g}_{\mathrm{GF}}^2(L^{-1}) \propto t^2 \langle \mathrm{tr}\{G_{\mu\nu}(t,x)G_{\mu\nu}(t,x)\}\rangle_{\mathrm{SF}}|_{\sqrt{8t}=0.3\times L}$
- 3. For $N_{\rm f}=3$, $\overline{m}_{u,d,s}(L^{-1})$ are fixed through M (s. later)

Gradient flow (GF)

$$\partial_t B_\mu(t,x) = D_\nu G_{\nu\mu}(t,x) \qquad \qquad B_\mu(0,x) = A_\mu(x)$$

 $G_{\mu\nu} = \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu} + [B_{\mu}, B_{\nu}] \qquad D_{\mu} = \partial_{\mu} + [B_{\mu}, \cdot]$

- \checkmark Composite fields are automatically renormalized
- $\checkmark~$ Simple to evaluate in Monte Carlo simulations
- $\checkmark \ \mathrm{var}(\overline{g}_{\mathrm{GF}}^2)$ is small and finite as $a \to 0$
- $\pmb{\mathsf{X}}$ Largish lattice artefacts
- **X** PT is quite involved

(Lüscher, Weisz '11)

The scale of SU(3) Yang-Mills theory

(Fritzsch, Ramos '13)

(Ramos Sint '16)

(MDB, Lüscher '17)

The GF coupling at high-energy Every trick in the book

- ▶ Different coupling definitions Ele: $\bar{g}_{GF,ele}^2 \propto t^2 \langle G_{0k} G_{0k} \rangle$ Mag: $\bar{g}_{GF,mag}^2 \propto t^2 \langle G_{kl} G_{kl} \rangle$
- Different lattice discretizations
- Projection to Q = 0 (Fritzsch, Ramos, Stollenwerk '14)
- ► NNLO β -function
- ► NP matching to SF scheme (MDB et al. '16, '18)
- High-statistics and fine lattice resolutions

What did we learn?

- Accurate NP determination of $\varphi_{\text{GF}}^{(0)}(\bar{g})$ $\bar{g}(\mu) \approx [1, 12] \Rightarrow \mu \approx 0.2 - 200 \,\text{GeV}$
- ► Precise determination of $\sqrt{8t_0}\Lambda^{(0)}_{\overline{\mathrm{MS}}} = 0.6227(98) \approx 1.6\%$
- ► Large higher-order PT corrections for the GF couplings: we change to g²_{SF} at high-energy

 $\mu_{\rm ref} \approx 3.3 \, {\rm GeV}$

(MDB, Ramos '19)

$\Lambda^{(3)}_{\overline{\rm MS}}$ from the decoupling of heavy quarks (preliminary)

Line of constant physics and massive couplings

Decoupling scale

 $[\bar{g}_{\rm GF}^{(3)}(\mu_{\rm dec}, 0)]^2 = 3.95 \quad \Rightarrow \quad \mu_{\rm dec} = L_{\rm dec}^{-1} \approx 0.8 \,{\rm GeV}$

Using the running of $\bar{g}^{(3)}_{\rm GF}(\mu_{
m dec},0)$ we can relate $\mu_{
m dec}$ to $\sqrt{8t_0}$ and fix its physical units

(MDB et al. '16)

$L_{\rm dec}/a$	$\beta=6/g_0^2$	$[\bar{g}_{\rm GF}^{(3)}(\mu_{\rm dec},0)]^2$	$\mu_{\rm dec}({\rm GeV})$
12	4.3020	3.9533(59)	0.789(15)
16	4.4662	3.9496(77)	0.789(15)
20	4.5997	3.9648(97)	0.789(15)
24	4.7141	3.959(50)	0.789(15)
32	4.9000	3.949(11)	0.789(15)

Quark-masses

Example L/a = 20

using the results of (Campos et al. '18)

$$z = M/\mu_{\rm dec} = Z_{\rm RGI}(g_0, a\mu_{\rm dec}) \left[1 + b_{\rm m}^{1-\rm loop}(g_0)(am_0 - am_c)\right] (L_{\rm dec}/a)(am_0 - am_c)$$

Massive couplings

$$\left[\tilde{g}_{0}^{2} = g_{0}^{2} \left(1 + b_{g}^{1-\text{loop}}(g_{0})(am_{0} - am_{c})\right)\right]$$

$\tilde{\beta}=6/\tilde{g}_0^2$	$\kappa = (2m_0 + 8)^{-1}$	$z = M/\mu_{\rm dec}$	$M({\rm GeV})$	$[\bar{g}_{\rm GF}^{(3)}(\mu_{ m dec},z)]^2$
4.5997	0.135288900000	0	0	3.9648(97)
4.6083	0.133831710060	1.972(18)	1.6	4.290(15)
4.6172	0.132345249425	4.000(37)	3.2	4.458(14)
4.6266	0.130827894135	6.000(58)	4.7	4.555(14)
4.6364	0.129273827559	8.000(85)	6.3	4.717(14)

 $\Lambda^{(3)}_{\overline{\mathrm{MS}}}$ from the decoupling of heavy quarks (PRELIMINARY)

Continuum limit extrapolations of the massive couplings: $\bar{g}_z^2 \equiv [\bar{g}_{
m GF}^{(3)}(\mu_{
m dec},z)]^2$

$\Lambda^{(3)}_{\overline{\mathrm{MS}}}$ from the decoupling of heavy quarks (preliminary)

$M({\rm GeV})$	$[\bar{g}_{\rm GF}^{(3)}(\mu_{ m dec},z)]^2$	$\mu_{\rm dec} ({\rm GeV}) \times $	$\Lambda^{(0)}_{\overline{\rm MS}}/\mu_{\rm dec}$ ×	$[P_{0,3}(M/\Lambda)]^{-1} =$	$\Lambda_{\overline{\rm MS}}^{(3)}({\rm MeV})$
1.6	4.559(39)	0.789(15)	0.689(11)	0.7662(44)	416(11)
3.2	4.421(16)	0.789(15)	0.725(11)	0.6693(37)	382.7(96)
4.7	4.466(37)	0.789(15)	0.741(12)	0.6198(34)	362.0(92)
6.3	4.507(60)	0.789(15)	0.757(13)	0.5871(32)	350.3(92)

Conclusions and outlook

Conclusions

- Computing α_s precisely requires non-perturbative control over a wide range of energy scales
- LQCD in conjunction with finite-volume couplings and step-scaling is a powerful tool for this task
- Perturbative decoupling of heavy quarks works remarkably well and non-perturbative corrections are below the per-cent level in Λ
- ▶ α_s can be computed **precisely** by setting the scale in $N_f = 3$ QCD and running to infinite energy in pure YM!

Outlook

- ► With this strategy we can reach a very **competitive** precision $\delta \Lambda_{\overline{\rm MS}}^{(3)} / \Lambda_{\overline{\rm MS}}^{(3)} \approx 2\% \implies \delta \alpha_{\rm s} / \alpha_{\rm s} \approx 0.5 \,!$
- ► To further halve this error several things need to be reconsidered: non-perturbative decoupling effects, isopisn breaking effects, ...
- ► The idea is general and can be applied to other renormalization problems, e.g. quark-masses

BACKUP

Non-perturbative running couplings in $N_{\rm f} = 3$ QCD

(MDB, Fritzsch, Korzec, Ramos, Sint, Sommer 16', 17', '18; Bruno, MDB, Fritzsch, Korzec, Ramos, Schaefer, Simma, Sint, Sommer '17)

