#### **RECENT RESULTS ON DOUBLY HEAVY TETRAQUARKS**

#### Santa Fe Workshop, August 29, 2019

#### with A. Francis, J. Hudspith, R. Lewis and B. Colquhoun

FHLM16: Francis, Hudspith, Lewis, KM PRL 118 (2017) 142001 [1607.05214]
FHLM18: Francis, Hudspith, Lewis, KM PRD 99 (2019) 054505 [1810.10550]
CFHLM19: Colquhoun, Francis, Hudspith, Lewis, KM, in progress

HadSpec17: Cheung, Thomas, Dudek, Edwards, JHEP 1711 (2017) 033 [1709.01417] JMP18: Junnarkar, Mathur, Padmanath, PRD 99 (2019) 034507 [1810.12285] LMPW19: Leskovec, Meinel, Pflaumer, Wagner, PRD 100 (2019) 014503 [1904.04197]

# Attractive interactions for a localized doubly heavy $qq'\bar{Q}\bar{Q}'$ system absent for the corresponding well-separated heavy meson pair

 $\succ$  Color Coulomb attraction for  $\overline{Q}\overline{Q}'$  in 3<sub>c</sub>

♦ binding proportional to  $\overline{Q}\overline{Q}'$  reduced mass  $\mu_h$ , dominant as  $\mu_h \to ∞$ 

♦  $J_h=0, 1 (Q \neq Q'), J_h=1 (Q=Q')$  for s-wave  $\overline{Q}\overline{Q}'$ 

#### > Attraction for *qq*' in Jaffe's "good" light diquark configuration

★ constraints on "good" (J = 0, F =  $\overline{3}$ , C =  $\overline{3}$ ) vs "bad" (J = 1, F = 6, C =  $\overline{3}$ ) light diquark (brown muck) configuration from heavy baryon splittings

| $\Sigma_{\rm b} - \Lambda_{\rm b} = 194  {\rm MeV}$ | $\Sigma_{c} - \Lambda_{c} = 167 \text{ MeV}$ |
|-----------------------------------------------------|----------------------------------------------|
| $\Xi_{\rm b}' - \Xi_{\rm b} = 142  {\rm MeV}$       | $\Xi_{c}' - \Xi_{c} = 109 \text{ MeV}$       |

- ✤ good ud, &s diquark attraction relative to corresponding spin averages: ~145, 105 MeV
  ⇒ increasing attraction with decreasing m<sub>q</sub>
- h=c < h=b splittings: residual light-heavy repulsion increasing with decreasing m<sub>h</sub>

 $ightarrow J^{P}=1^{+} ud\overline{b}\overline{b}, \& s\overline{b}\overline{b}$  channels best bound doubly heavy tetraquark candidates

## **RECENT** $qq'\overline{b}\overline{b}$ **RESULTS**, n<sub>f</sub>=2+1, 2+1+1, NRQCD FOR $\overline{b}$



**JMP18** 



# $\succ$ $ud\bar{c}\bar{b}$ studies

FHLM18 + preliminary updates (CFHLM19); Mathur et al. in progress

#### FHLM18

- $n_f = 2+1$  PACS-CS as for FHLM16  $qq'\overline{b}\overline{b}$
- Charm: Tsukuba RHQ; bottom: NRQCD
- As in FHLM16: gauge-fixed wall sources, local sinks, local "meson-meson" ("DB\*", "D\*B"), "diquark-antidiquark" operators
- I(J<sup>P</sup>) = O(1<sup>+</sup>) only
- CFHLM19 (B. Colquhoun + FHLM)
  - Expanded local operator set
  - Extended (box) sinks
  - Supplement PACS-CS with new Wilson-clover, Iwasaki gauge ensembles
  - I(J<sup>P</sup>) = O(O<sup>+</sup>) in addition to O(1<sup>+</sup>)

#### FMLM18, 32<sup>3</sup>x64, $\kappa_l$ =0.13781, 195 configs, WL, GEVP



#### CFHLM19, 48<sup>3</sup>x64, $\kappa_l$ =0.13781, 94 configs, WL, GEVP



# ➤ udc̄b̄ studies

FHLM18 + preliminary updates (CFHLM19); Mathur et al. in progress

FHLM18

- $n_f = 2+1$  PACS-CS as for FHLM16  $qq'\overline{b}\overline{b}$
- Charm: Tsukuba RHQ; bottom: NRQCD
- As in FHLM16: gauge-fixed wall sources, local sinks, local "meson-meson" ("DB\*", "D\*B"), "diquark-antidiquark" operators
- I(J<sup>P</sup>) = O(1<sup>+</sup>) only

#### CFHLM19 (B. Colquhoun + FHLM)

- Expanded local operator set
- Extended (~0.5 fm) "box" sinks
- Supplement PACS-CS with new Wilson-clover, Iwasaki gauge ensembles
- I(J<sup>P</sup>) = O(O<sup>+</sup>) in addition to O(1<sup>+</sup>)

#### CFMLM19, 48<sup>3</sup>x64, $\kappa_l$ =0.13781, 94 configs, WL, GEVP



#### CFHLM19, 48<sup>3</sup>x64, $\kappa_l$ =0.13781, 94 configs, WB, GEVP



3'/5

# $\succ$ $ud\bar{c}\bar{b}$ studies

FHLM18 + preliminary updates (CFHLM19); Mathur et al. in progress

FHLM18

- $n_f = 2+1$  PACS-CS as for FHLM16  $qq'\overline{b}\overline{b}$
- Charm: Tsukuba RHQ; bottom: NRQCD
- As in FHLM16: gauge-fixed wall sources, local sinks, local "meson-meson" ("DB\*", "D\*B"), "diquark-antidiquark" operators
- I(J<sup>P</sup>) = O(1<sup>+</sup>) only

## CFHLM19 (B. Colquhoun + FHLM)

- Expanded local operator set
- Extended (~0.5 fm) "box" sinks
- Supplement PACS-CS with new Wilson-clover, Iwasaki gauge ensembles
- $I(J^{P}) = O(O^{+})$  in addition to  $O(1^{+})$  $O(O^{+})$  below DB,  $O(1^{+}) \Rightarrow O(1^{+}) \rightarrow O(O^{+})+\gamma$

#### CFMLM19, 48<sup>3</sup>x64, $\kappa_l$ =0.13781, 94 configs, WB, GEVP



# > For completeness: the $I(J^P) = O(1^+) u d\overline{c} \overline{c}$ channel

#### HadSpec17

- n<sub>f</sub>=2+1, anisotropic clover + improved Symanzik gauge,  $m_{\pi} = 391 \text{ MeV}$
- large "meson-meson" + tetraquark basis
- No evidence for  $ud\bar{c}\bar{c}$  or  $\ell s\bar{c}\bar{c}$  tetraquark binding

## JMP18

- Overlap on MILC n<sub>f</sub>=2+1+1,  $m_{\pi} = 257 \rightarrow 688$  MeV (PQ), 3 lattice spacings
- Continuum, physical  $m_{\pi}$  extrapolation:  $ud\bar{c}\bar{c}$  bound by 23(11) MeV,  $\ell s\bar{c}\bar{c}$  not bound

## For future investigation

- differing HadSpec17, JMP18  $ud\bar{c}\bar{c}$  conclusions due to larger HadSpec17 m<sub> $\pi$ </sub> (reduced good light diquark attraction)?
- FV effects on small JMP18 *udcc* binding?

#### **UPCOMING/FUTURE WORK**

> Mathur *et al.:*  $ud\bar{c}\bar{b}$  runs in progress,  $I(J^{P}) = O(O^{+})$ ,  $O(1^{+})$  results expected this fall

 $\blacktriangleright$  udcc: FV, additional near-physical m<sub> $\pi$ </sub> desirable to test shallow JMP18 binding, clarify relation of JMP18 and HadSpec17 results

#### CFHLM near-term/in progress

- ★  $ud\bar{b}\bar{b}$ ,  $ud\bar{c}\bar{b}$  updates with *a*=0.09 fm,  $\kappa_l = 0.13777$ , 0.13779, 0.13781, 32<sup>3</sup>x64 and 48<sup>3</sup>x64 ensembles
- ★ 200-300 configurations per ensemble,  $\kappa_l \leftrightarrow m_\pi \leq 200 \text{ MeV}$
- Wall-box setup (expect significant improvements of FHLM16  $ud\bar{b}\bar{b}$ ,  $\ell s\bar{b}\bar{b}$  plateaus)
- ☆ c.f. CFHLM19 results: so far, 94 configs, a=0.09 fm,  $\kappa_1 = 0.13781$ , 48<sup>3</sup>x64 only (c.f. 195 for near-physical-point a=0.09 fm,  $\kappa_1 = 0.13781$ , 32<sup>3</sup>x64 PACS-CS in FHLM16, FHLM18)

# **BACKUP SLIDES**

# **Recent** $qq'\overline{b}\overline{b}$ channel study specifics

Earlier work with Born-Oppenheimer, static b quark potential
 recent e.g.: Bicudo, Scheunert, Wagner [1612.02758]

```
Studies with non-static (NRQCD) b
    ✤ FHLM16: qq' = ud, ℓs
              n_f = 2+1, PACS-CS Wilson-clover; Iwasaki gauge
              a= 0.091 fm, m_{\pi} = 164 \rightarrow 415 \text{ MeV}
    ❖ JMP18: qq′ = ud, ℓs
              overlap on n_f = 2+1+1 MILC HISQ, one-loop, tadpole-improved Symanzik gauge
              a = 0.058, 0.089, 0.121 fm, m_{\pi} = 257/189 \rightarrow 688 \text{ MeV} (all m_l = m_s/5, PQ)
    * LMPW19: qq' = ud
              n_f = 2+1 RBC/UKQCD DWF; Iwasaki gauge
              a = 0.083, 0.111, 0.114 fm, m_{\pi} = 139 \rightarrow 431 \text{ MeV}
```





# LMPW19 $m_{\pi}$ = 340 MeV FIT RESULTS



FIG. 4. Results for the lowest two *bbud* energy levels relative to the  $BB^*$  threshold,  $\Delta E_n = E_n - E_B - E_{B^*}$ , as determined on ensemble C005 from several different fits. The five bars below each column indicate the interpolators used, as explained in the main text. Above each column, we give the number of exponentials, the fit range, and the value of  $\chi^2$ /d.o.f.. The shaded horizontal bands correspond to our final estimates of  $\Delta E_0$  and  $\Delta E_1$ , obtained from a bootstrap average of the subset of fits that are shown with filled symbols.

# LMPW19 $m_{\pi}$ = 340 MeV FIT RESULTS



FIG. 4. Results for the lowest two *bbud* energy levels relative to the  $BB^*$  threshold,  $\Delta E_n = E_n - E_B - E_{B^*}$ , as determined on ensemble C005 from several different fits. The five bars below each column indicate the interpolators used, as explained in the main text. Above each column, we give the number of exponentials, the fit range, and the value of  $\chi^2$ /d.o.f.. The shaded horizontal bands correspond to our final estimates of  $\Delta E_0$  and  $\Delta E_1$ , obtained from a bootstrap average of the subset of fits that are shown with filled symbols.

#### Preliminary udbb 32^3x64, kappa=0.13781 update (WB improvement, 63 configurations only)



# > Summary of current status for $ud\overline{b}\overline{b}$ , $ls\overline{b}\overline{b}$

# \* $ud\overline{b}\overline{b}$ : FHLM16, JMP18, LMPW19 all see sub-BB<sup>\*</sup>-threshold I(J<sup>P</sup>) = O(1<sup>+</sup>) state

- Binding in all cases below EM decay threshold ⇒ weak decays only
- All see increased binding with decreasing m<sub>q</sub>, as per good-light-diquark expectation
- LMPW19 Lüscher analysis confirms bound state interpretation
- FHLM16 updates (FHLM+Colquhoun) in progress: larger volumes, more light m<sub>q</sub>, extended sinks for improved plateaus (preliminary results: no volume dependence)

## ♦ $\$ \overline{b} \overline{b}$ : FHLM16, JMP18 both see bound J<sup>P</sup> = 1<sup>+</sup> isodoublet

- Also below EM decay threshold, weak decays only
- Less bound than I(J<sup>P</sup>)= 0(1<sup>+</sup>), as per expected light-quark mass dependence of good diquark attraction
- FHML16 updates as for  $ud\overline{b}\overline{b}$  I(J<sup>P</sup>)= O(1<sup>+</sup>) in progress

#### Fest of color-Coulomb + good-light-diquark binding picture

- **♦** FHLM18 [1810.10550] study,  $m_{\pi}$  = 299 MeV ensemble
- Fit to model with expected color Coulomb + good light diquark m<sub>q</sub>, m<sub>Q</sub> dependence
- Suggests udcb as next best channel for study



# Current status CFHLM 32<sup>3</sup>x64 and 48<sup>3</sup>x64 configurations

| Size                | $\kappa_{l}$ | Current # configs | Target # configs |
|---------------------|--------------|-------------------|------------------|
| 32 <sup>3</sup> x64 | 0.13781      | 145               | ~200             |
|                     | 0.13779      | 278               | completed        |
|                     | 0.13777      | 306               | completed        |
| 48 <sup>3</sup> x64 | 0.13781      | 175               | ~200             |
|                     | 0.13779      | 48                | ~200             |
|                     | 0.13777      | 200               | completed        |