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INTRODUCTION TO 
MULTIGRID



WHY MULTIGRID?
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INTRODUCTION TO MULTIGRID

Stationary iterative solvers effective on high frequency errors 

Minimal effect on low frequency error 

Example 
Free Laplace operator in 2d 
Ax = 0, x0 = random 
Gauss Seidel relaxation 
Plot error ei = -xi
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INTRODUCTION TO MULTIGRID

Low frequency error modes are smooth 

Can accurately represent on coarse grid 

Low frequency on fine  
=> high frequency on coarse 

Relaxation effective again on coarse grid 

Interpolate back to fine grid

Falgout
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INTRODUCTION TO MULTIGRID

Define the Prolongator P 

Define the Restriction operator R = P† 

Operator on coarse space Ac = P †AP
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MULTIGRID V-CYCLE

Solve 
1.  Smooth 
2.  Compute residual 
3.  Restrict residual 
4.  Recurse on coarse problem 
5.  Prolongate correction 
6.  Smooth 
7.  If not converged, goto 1 

Multigrid has optimal scaling 
O(N) Linear scaling with problem size 
Convergence rate independent of condition number 

For LQCD, we do not know the null space components that need to be preserved on 
the coarse grid

V-CYCLE 

DIRECT SOLVE 

SMOOTHER 
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FAILURE OF CLASSICAL MULTIGRID

U field is not geometrically smooth for interacting case 
Low frequency modes of Dirac operator oscillatory 

e.g., 2d Wilson Dirac operator error after 200 Gauss-Seidel iterations 

Geometric multigrid completely fails 

LQCD and MG have long and painful history, e.g., 
PTMG (Lauwers et al) 
Projective MG (Brower et al) 
RG approaches (de Forcrand et al) 

Previous MG methods 
Work for smooth gauge fields (µ-1 < lσ) 
Fail as m->0 (µ-1 > lσ)
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WHY DOES MULTIGRID WORK?

In free field theory, zero mode = constant 

Exactly preserved by the projector 

Near null space approximately preserved 

Weak approximation property (cf Lüscher "Local Coherence”) 

Possible because eigenvectors are not locally orthogonal 

Need P such that low modes space is preserved 

Adaptivity required for interacting gauge fields

0 = (1� P †P )�0

0 ⇥ (1� P †P )�k

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x /L

b

Fig. 2. Approximation of a plane wave by a superposition of constant block modes.

In the free-quark theory, piecewise constant deflation modes achieve high deflation

efficiencies up to momenta p on the order of the inverse of the block size b.

A second and perhaps more important observation is that the deflation efficiency
does not depend on the lattice size. Even on very large lattices, all low modes with
momenta p of magnitude up to some fraction of 1/b are deflated with small deficits
ϵp. Figure 2 also illustrates the fact that high deflation efficiencies can be achieved
by subspaces of fields that are only piecewise smooth, i.e. fields that are far from
being approximate eigenmodes of the Dirac operator.

5. Local coherence and subspace generation

The discussion in the previous section suggests that the V 2–problem can perhaps
be solved using domain-decomposed deflation subspaces. However, no general pre-
scription was given so far of how to choose the fields ψl(x), l = 1, . . . , Ns, from
which these subspaces are built (cf. subsect. 4.2). Such a prescription will now be
developed, based on a property of the low quark modes referred to as local coherence.

5.1 Smoothness & local coherence

In the free-quark theory, the block projection method works out because the low-
momentum modes are smooth on the scale of the block size b. The intuitive picture
that goes along with this explanation is rather appealing but may be difficult to
carry over to the full theory. In particular, the notion of smoothness ceases to have

10
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ADAPTIVE GEOMETRIC MULTIGRID 

Based on “Adaptive Algebraic Smooth Aggregation Multigrid” (Brezina et al, 2003) 

Adaptively find candidate null-space vectors 

Dynamically learn the null space and use this to  
define the prolongator 

Algorithm is self learning 

Setup 

1. Set solver to be simple smoother 

2. Apply current solver to random vector  vi = P(D) ηi 

3. If convergence good enough, solver setup complete 

4. Construct prolongator using fixed coarsening  (1 - P R) vk = 0 

➡ Typically use 44 geometric blocks 

➡ Preserve chirality when coarsening R = γ5 P† γ5 = P† 

5. Construct coarse operator (Dc = R D P) 

6. Recurse on coarse problem 

7. Set solver to be augmented V-cycle, goto 2

Falgout

Babich, Branich, Brower, Clark, 
Manteuffel, McCormick, 
Osborn, Rebbi (2009)
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ADAPTIVE GEOMETRIC MULTIGRID
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ADAPTIVE GEOMETRIC MULTIGRID

• 128 × 128 lattice, β = 6, 10, m = 0.001 − 0.5  

• MG setup run at lightest mass only  

• D†D-MG algorithm 
– 4×4(×2) blocking, 3 levels, Nv = 8 – Under-relaxed MR relaxation  
– Preconditioner for CG  

• D-MG algorithm 
– 4×4 blocking, 3 levels, Nv = 4 – Under-relaxed MR relaxation  
– Preconditioner for BiCGstab  

• Results  
– Critical slowing down virtually gone – Weak dependence on β 
– D-MG superior to D†D-MG  

2-d Wilson

Brannick, Brower, Clark, Osborn, Rebbi (2007)
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REAL LQCD MULTIGRID
CG vs Eig-CG vs MG (Anisotropic Wilson)
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CLOVER MULTIGRID

Combined multigrid with even-odd preconditioning

Osborn, Babich, Brannick, Brower, 
Clark, Cohen, Rebbi (2009)
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INEXACT DEFLATION

Removal of critical slowing down through Local Coherence 

Closely related to adaptive multigrid: same building blocks, put together in a different order 

1. Deflate RHS     

2. Solve deflated system    

3. Solve little Dirac operator    

4. Solution given by   

Not scalable to multiple levels owing to subtraction of low modes 
vs MG which uses a multiplicative preconditioner 

Requires accurate solution of coarse grid operator 
Wilson MG only requires a very loose stopping condition on each level

b̂ = (1 − DPD−1
c P†)b

(1 − DPD−1
c P†)D ̂x = b̂

(P†DcP)y = b
x = ̂x + y

Lüscher (2007)
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MULTIGRID VS INEXACT DEFLATION
Frommer, Kahl, Krieg, Leder and Rottmann (2014)
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DD- AMGα

Use SAP as a smoother for multigrid for improved scalability

Frommer, Kahl, Krieg, Leder and Rottmann (2014)
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MULTIGRID ON GPUS
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WHAT IS A GPU?
• Tesla V100 - Volta architecture (2017) 

– Massively threaded - 5120 processing cores 
– 7.5 FP64 /15 FP32 / 125 FP16  Gflops peak 

• Deep memory hierarchy 
– As we move away from registers 

• Bandwidth decreases 
• Latency increases 

• Inverse memory hierarchy 
– 40 MiB register file (up to 255 registers / thread) 

– 10 MiB 128 KiB L1 / shared memory 
– 6 MiB coherent L2 cache 

• Programmed using a diversity of approaches 
– CUDA C++ / Fortran / Python 

– OpenACC / OpenMP directives 
– Future: C++17 pSTL /  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QUDA
• “QCD on CUDA” – http://lattice.github.com/quda (open source, BSD license) 
• Effort started at Boston University in 2008, now in wide use as the GPU backend for 

BQCD, Chroma, CPS, MILC, TIFR, etc. 
• Provides: 

— Various solvers for all major fermionic discretizations, with multi-GPU support 
— Additional performance-critical routines needed for gauge-field generation 

• Maximize performance 
– Exploit physical symmetries to minimize memory traffic 
– Mixed-precision methods 
– Autotuning for high performance on all CUDA-capable architectures 
– Domain-decomposed (Schwarz) preconditioners for strong scaling 
– Eigenvector and deflated solvers (Lanczos, EigCG, GMRES-DR) 
– Multi-source solvers 
– Multigrid solvers for optimal convergence 

• A research tool for how to reach the exascale
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THE CHALLENGE OF MULTIGRID ON GPU

GPU requirements very different from CPU 

Each thread is slow, but O(10,000) threads per GPU 

Fine grids run very efficiently 
High parallel throughput problem 

Coarse grids are worst possible scenario 
More cores than degrees of freedom 

Increasingly serial and latency bound 

Little’s law (bytes = bandwidth * latency) 

Amdahl’s law limiter 

Multigrid exposes many of the problems expected at the 
Exascale



INGREDIENTS FOR PARALLEL ADAPTIVE MULTIGRID

▪ Multigrid setup 
– Block orthogonalization of null space vectors 
– Batched QR decomposition 

▪ Smoothing (relaxation on a given grid) 
– Repurpose existing solvers 

▪ Prolongation 
– interpolation from coarse grid to fine grid 
– one-to-many mapping 

▪ Restriction 
– restriction from fine grid to coarse grid 
– many-to-one mapping 

▪ Coarse Operator construction (setup) 
– Evaluate R A P locally  
– Batched (small) dense matrix multiplication 

▪ Coarse grid solver 
– Need optimal coarse-grid operator
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MAPPING THE DIRAC OPERATOR TO CUDA

• Finite difference operator in LQCD is known as Dslash 

• Assign a single space-time point to each thread 
V = XYZT threads, e.g., V = 244 => 3.3x106 threads 

• Looping over direction each thread must 
– Load the neighboring spinor (24 numbers x8) 

– Load the color matrix connecting the sites (18 numbers x8) 
– Do the computation 

– Save the result (24 numbers)  

• Each thread has (Wilson Dslash) 0.92 naive arithmetic intensity 
• QUDA reduces memory traffic 

Exact SU(3) matrix compression (18 => 12 or 8 real numbers) 
Use 16-bit fixed-point representation with mixed-precision solver

review basic details of the LQCD application and of NVIDIA
GPU hardware. We then briefly consider some related work
in Section IV before turning to a general description of the
QUDA library in Section V. Our parallelization of the quark
interaction matrix is described in VI, and we present and
discuss our performance data for the parallelized solver in
Section VII. We finish with conclusions and a discussion of
future work in Section VIII.

II. LATTICE QCD
The necessity for a lattice discretized formulation of QCD

arises due to the failure of perturbative approaches commonly
used for calculations in other quantum field theories, such as
electrodynamics. Quarks, the fundamental particles that are at
the heart of QCD, are described by the Dirac operator acting
in the presence of a local SU(3) symmetry. On the lattice,
the Dirac operator becomes a large sparse matrix, M , and the
calculation of quark physics is essentially reduced to many
solutions to systems of linear equations given by

Mx = b. (1)

The form of M on which we focus in this work is the
Sheikholeslami-Wohlert [6] (colloquially known as Wilson-
clover) form, which is a central difference discretization of the
Dirac operator. When acting in a vector space that is the tensor
product of a 4-dimensional discretized Euclidean spacetime,
spin space, and color space it is given by

Mx,x0 = �1
2

4⇤

µ=1

�
P�µ ⇤ Uµ

x �x+µ̂,x0 + P+µ ⇤ Uµ†
x�µ̂ �x�µ̂,x0

⇥

+ (4 + m + Ax)�x,x0

⌅ �1
2
Dx,x0 + (4 + m + Ax)�x,x0 . (2)

Here �x,y is the Kronecker delta; P±µ are 4 ⇥ 4 matrix
projectors in spin space; U is the QCD gauge field which
is a field of special unitary 3⇥ 3 (i.e., SU(3)) matrices acting
in color space that live between the spacetime sites (and hence
are referred to as link matrices); Ax is the 12⇥12 clover matrix
field acting in both spin and color space,1 corresponding to
a first order discretization correction; and m is the quark
mass parameter. The indices x and x0 are spacetime indices
(the spin and color indices have been suppressed for brevity).
This matrix acts on a vector consisting of a complex-valued
12-component color-spinor (or just spinor) for each point in
spacetime. We refer to the complete lattice vector as a spinor
field.

Since M is a large sparse matrix, an iterative Krylov
solver is typically used to obtain solutions to (1), requiring
many repeated evaluations of the sparse matrix-vector product.
The matrix is non-Hermitian, so either Conjugate Gradients
[7] on the normal equations (CGNE or CGNR) is used, or
more commonly, the system is solved directly using a non-
symmetric method, e.g., BiCGstab [8]. Even-odd (also known

1Each clover matrix has a Hermitian block diagonal, anti-Hermitian block
off-diagonal structure, and can be fully described by 72 real numbers.

Fig. 1. The nearest neighbor stencil part of the lattice Dirac operator D,
as defined in (2), in the µ� ⇥ plane. The color-spinor fields are located on
the sites. The SU(3) color matrices Uµ

x are associated with the links. The
nearest neighbor nature of the stencil suggests a natural even-odd (red-black)
coloring for the sites.

as red-black) preconditioning is used to accelerate the solution
finding process, where the nearest neighbor property of the
Dx,x0 matrix (see Fig. 1) is exploited to solve the Schur com-
plement system [9]. This has no effect on the overall efficiency
since the fields are reordered such that all components of
a given parity are contiguous. The quark mass controls the
condition number of the matrix, and hence the convergence of
such iterative solvers. Unfortunately, physical quark masses
correspond to nearly indefinite matrices. Given that current
leading lattice volumes are 323 ⇥ 256, for > 108 degrees of
freedom in total, this represents an extremely computationally
demanding task.

III. GRAPHICS PROCESSING UNITS

In the context of general-purpose computing, a GPU is
effectively an independent parallel processor with its own
locally-attached memory, herein referred to as device memory.
The GPU relies on the host, however, to schedule blocks of
code (or kernels) for execution, as well as for I/O. Data is
exchanged between the GPU and the host via explicit memory
copies, which take place over the PCI-Express bus. The low-
level details of the data transfers, as well as management of
the execution environment, are handled by the GPU device
driver and the runtime system.

It follows that a GPU cluster embodies an inherently het-
erogeneous architecture. Each node consists of one or more
processors (the CPU) that is optimized for serial or moderately
parallel code and attached to a relatively large amount of
memory capable of tens of GB/s of sustained bandwidth. At
the same time, each node incorporates one or more processors
(the GPU) optimized for highly parallel code attached to a
relatively small amount of very fast memory, capable of 150
GB/s or more of sustained bandwidth. The challenge we face is
that these two powerful subsystems are connected by a narrow
communications channel, the PCI-E bus, which sustains at
most 6 GB/s and often less. As a consequence, it is critical
to avoid unnecessary transfers between the GPU and the host.

Dx,x0 =
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COARSE GRID OPERATOR
▪ Coarse operator looks like a Dirac operator (many more colors) 

– Link matrices have dimension 2Nv x 2Nv (e.g., 48 x 48) 

▪ Fine vs. Coarse grid parallelization 
– Fine grid operator has plenty of grid-level parallelism 

– E.g., 16x16x16x16 = 65536 lattice sites 
– Coarse grid operator has diminishing grid-level parallelism 

– first coarse grid 4x4x4x4= 256 lattice sites 
– second coarse grid 2x2x2x2 = 16 lattice sites 

▪ Current GPUs have up to >5000 processing cores 

▪ Need to consider finer-grained parallelization 
– Increase parallelism to use all GPU resources 
– Load balancing

dofs (geometry). We start by defining the fields

W±µ
ksĉ,ls�ĉ� = V †

ksc,ksĉP
±µ
s,s�U(k+µ)c,lc��k+µ,lVls�c�,lŝ�ĉ�

note that here we are defining di�erent links for forward and backwards,
they are not simply the conjugate of each other (because of the di�erent spin
projection between the two). Also note that these e�ective link matrices have
also a spin index, this is because the vectors used to define the V rotation
matrices have spin dependence now. In this form we can now write down the
coarse Dirac operator as

D̂iŝĉ,jŝ�ĉ� = �
�
�i,k/B�ŝ,s/Bs

⇥ ⇤

µ

⌅
W�µ

ksĉ,ls�ĉ��k+µ,l + W+µ†
ksĉ,ls�ĉ��k�µ,l

⇧ �
�l/B,j�s�/Bs,ŝ�

⇥

+M �iŝĉ,jŝ�ĉ� .

We now finish up by blocking the geometry and spin onto the coarse lattice,
defining the e�ective link matrices Y ±µ that connect sites on the coarse
lattice:

Y ±µ
iŝĉ,jŝ�ĉ� =

�
�i,k/B�ŝ,s/Bs

⇥
W±µ

ksĉ,ls�ĉ�

�
�l/B,j�s�/Bs,ŝ�

⇥
�i⇤µ,j (2)

Xiŝĉ,jŝ�ĉ� =
�
�i,k/B�ŝ,s/Bs

⇥ ⇤

µ

⌅
W�µ

iŝĉ,kŝ�ĉ� + W+µ†
iŝĉ,kŝ�ĉ�

⇧ �
�l/B,j�s�/Bs,ŝ�

⇥
�i,j,

where we note now that the matrix X is not Hermitian. Thus the coarse
operator is written

D̂iŝĉ,jŝ�ĉ� = �
⇤

µ

⌅
Y �µ

iŝĉ,jŝ�ĉ��i+µ,j + Y +µ†
isĉ,js�ĉ��i�µ,j

⇧
+ (M �Xiŝĉ,jŝ�ĉ�) �iŝĉ,jŝ�ĉ� . (3)

For the explicit form of these matrices we refer the reader to Appendix A.
After the first blocking, subsequent blockings require that Bs = 1, i.e., we

cannot block the spin dimension again since we cannot remove the chirality.
Apart from this observation, the next coarse operator will have a similar form
to the current one: it will be a nearest neighbour non-Hermitian operator
connecting sites with ds = 2 spin dimension (in 2d and 4d anyway).

We note here in passing that because of the definition of the matrix field V
include explicit spin dependence, this destroys the tensor product structure
of the spin and colour on the coarse operator, i.e., we have to define an
e�ective link matrix that rotates in spin and colour space. If this were not
the case, i.e., if V were to be spin independent, then this structure would be

8
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X[0]

X[1]

SOURCE OF PARALLELISM
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COARSE GRID OPERATOR PERFORMANCE
Tesla K20X (Titan), FP32, Nvec = 24
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COARSE GRID OPERATOR PERFORMANCE

▪ Autotuner finds optimum 
degree of parallelization 
▪ Larger grids favor less fine 

grained 
▪ Coarse grids favor most fine 

grained 

▪ GPU is nearly always faster than 
CPU 

▪ Expect in future that coarse 
grids will favor CPUs 

▪ For now, use GPU exclusively

8-core Haswell 2.4 GHz (solid line) vs M6000 (dashed lined), FP32
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Clark, Joó, Strelchenko, 
Cheng, Gambhir, Brower (2016)
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Wilson-clover, Strong scaling on Titan (K20X), V = 643x128, mπ = 197 MeV
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POWER EFFICIENCY PROFILE
BiCGstab average power 
~ 83 watts per GPU 

MG average power 
~ 72 watts per GPU 

MG consumes less  
power and 10x faster

12x solves
Setup

12x solves

level 1 null space level 2 null spacecoarse grid 
construction on CPU

Credit to Don Maxwell @ OLCF 
for helping with Power  
measurements on Titan  
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16-BIT FIXED-POINT FOR COARSE GRIDS 

QUDA uses 16-bit precision as a memory traffic reduction strategy 

Computation always done in FP32 

Actually uses “block float” format 

Uses 16-bit fixed point per grid point with single float to normalize 
CG / BiCGStab has 5-10% hit in iteration count for overall ~1.7x 

With multigrid, store everything in 16-bit fixed point that makes sense 

➡ null-space vectors 
➡ coarse-link matrices 

Absolutely zero effect on multigrid convergence

G
FL

O
PS

0

225

450

675

900

Lattice length

2 4 6 8 10

Kepler Maxwell Pascal Volta Pascal (16-bit)

already block orthonormal 

estimate max element to set scale, 
e.g., |U V|max ~ |U|max |V|max
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HMC AND MULTIGRID
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STARTING POINT

2+1 flavour Wilson-clover fermions with Stout improvement running on Chroma 

Physical parameters: 

V = 643x128, ml=-0.2416, ms=-0.2050, a~0.09 fm, mπ~170 MeV 

Performance measured relative to prior pre-MG optimal approach 

Essentially the algorithm that has been run on Titan 2012-2016 

3 Hasenbusch ratios, with heaviest Hasenbusch mass = strange quark 

Represented as 1 + 1 + 1 using multi-shift CG (pure double precision) 

2-flavour solves: GCR + Additive Schwarz preconditioner (mixed precision) 

All fermions on the same time scale using MN5FV 4th order integrator  

Benchmark Time: 1024 nodes of Titan = 4006 seconds

HMC-MG Team 
Clark, Joó, Wagner, Weinberg 
(+ Winter and Yoon) 
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WHY HMC + MULTIGRID?

HMC typically dominated by solving the Dirac equation 

However, much more challenging than analysis 

Few solves per linear system 
Can be bound by heavy solves  
(c.f. Hasenbusch mass preconditioning) 

Build on top of pre-existing QUDA MG (arXiv:1612.07873) 

Multigrid setup must run at speed of light since little scope for amortizing 

Reuse and evolve multigrid setup where possible



Generate null vectors (BiCGStab, CG, etc. acting on homogenous system) 

Block Orthogonalization of basis set 

Coarse-link construction (Galerkin projection                    )
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MULTIGRID SETUP

Dc = �
X

µ

h
Y �f
µ (x̂) + Y +b†

µ (x̂� µ)
i
+X�x̂,ŷ

Y +b
µ (x̂) =

X

x2x̂

V †(x)P+µUµ(x)A
�1(y)V (y)�x,y+µ�x̂,ŷ+µ

Y �f
µ (x̂) =

X

x2x̂

V †(x)A�1(x)P�µUµ(x)V (y)�x,y+µ�x̂,ŷ+µ

X(x̂) =
X

x2x̂,µ

V †(x)
�
P+µUµ(x)A

�1(y) +A�1(x)P�µUµ(x)
�
V (y)�x,y+µ�x̂,ŷ

“backward link”

“forward link”

“coarse clover”

Dc = P †DP

Bi = QiRi = V iBi
c QR decomposition over each blockB =

X

i

Bi, V =
X

i

V i

Axk = 0, k = 1 . . . N, ! B = (x1x2 . . . xn)
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BLOCK ORTHOGONALIZATION

Forms the block orthonormal basis upon 
which we construct the coarse grid 

QR on the set of null-space vectors within 
each multigrid aggregate 

Assign each multigrid aggregate to a CUDA 
thread block 

All reductions are therefore local to 
a CUDA thread block  

Do the full block orthonormalization 
in a single kernel 

Minimizes total memory traffic

Q
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D
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n 
G

PU
s

What is a GPU?
• Kepler K20X (2012) 
– 2688 processing cores 
– 3995 SP Gflops peak 

• Effective SIMD width of 32 threads (warp) 
• Deep memory hierarchy 
• As we move away from registers 
– Bandwidth decreases 
– Latency increases 

• Programmed using a thread model 
– Architecture abstraction is known as CUDA 
– Fine-grained parallelism required 

• Diversity of programming languages  
– CUDA C/C++/Fortran 
– OpenACC, OpenMP 4.0 
– Python, etc.
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COARSE-LINK CONSTRUCTION

Employ fine-grained parallelization 

• fine-grid geometry 

• coarse-grid color 

Each thread computes its assigned matrix elements 

Atomically update the relevant coarse link field depending on 
thread location 

Atomic update is done in 32-bit integers  

Finally, neighbour exchange boundary link elements  

X =
X

Y =
X



!39

RESULTS
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10%

78%

12%

Block Ortho Coarse-link Other

96%

3%

1%

Block Ortho Coarse-link Other

Null-space finding now dominates the setup process 

Coarse-link construction runs at ~1 TFLOPS (P100) 

Now dominated by null-space finding 
This is a multi-RHS problem
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HMC MULTIGRID ALGORITHM

Use the same null space for all masses (setup run on lightest mass) 

We use CG to find null-space vectors 

Evolve the null space vectors as the gauge field evolves (Lüscher 2007) 

Update the null space when the preconditioner degrades too much on lightest mass 

Parameters to tune 
Refresh threshold: at what point do we refresh the null space? 

Refresh iterations: how much work do we do when refreshing?
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OPTIMIZATION AND TUNING STEPS

Replace GCR+DD with GCR-MG
Made Hasenbusch terms cheaper so add extra Hasenbsuch term and retuned
Put heaviest fermion doublet onto the fine (gauge) time scale

Optimize mixed-precision multigrid method:
16-bit precision wherever it makes sense (null space, coarse link variables, halo exchange)

Volta 4x faster than Pascal for key setup routines: use multigrid for all 2-flavour solves

Replaced MN5FV integrator with Force Gradient integrator (Boram Yoon's Chroma implementation), tuned number of steps 

Multi-shift CG is expensive (no multigrid - yet…)
Replace pure fp64 multi-shift CG with mixed-precision multi-shift CG and refinement: 1.5x faster

(far from exclusive)
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NULL-SPACE EVOLUTION
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GLOBAL SYNCHRONIZATIONS IN LQCD MG

Non-Hermitian system 

• No guarantee of convergence 

• Use a K-cycle for solver stability 

GCR solver deployed at every level 

• N(N+1)/2 reductions required  

Use MR as a smoother 

• N reductions required  

Example: 24x24x24x64 Wilson lattice @ κcrit 

• MR(0,8) smoother with GCR coarse grid solver 

• 980 reductions to reach convergence
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COMMUNICATION-AVOIDING GCR

Similar to CA-GMRES (see Mark Hoemmen’s thesis) 

GCR(N) uses modified Gram Schmidt to 
orthonormalize the basis at every step 

• Hence N(N-1)/2 reductions 

Instead use classical Gram Schmidt and 
orthonormalize every N steps 

• One reduction every N steps 

Strong smoother than MR

source vector b, solution vector x 

while (i<N) { 

    pi+1 <- A*pi  // build basis (N mat-vecs) 

    qi = pi+1 

} 

// minimize residual solving (one “blas-3” reduction) 

ψ = (q, q)-1 (q, b) 

// update solution vector (one “blas-2” kernel) 

x = Σk ψk pk
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GLOBAL SYNCHRONIZATIONS IN LQCD MG

Example: 24x24x24x64 Wilson lattice @ κcrit 

MR(0,8) smoother with GCR coarse grid solver 

• 980 reductions to reach convergence 

MR(0,8) smoother, with pipelined GCR 

• 829 reductions to reach convergence 

CA-GCR(0,8) for smoother and coarse-grid 

• 153 reductions to reach convergence 

• >6x reduction in reductions 

• 20% faster on a single workstation 

Reference V=643x128 problem  
• Solver is 40% faster on Titan on 512 nodes
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HMC SPEEDUP PROGRESSION

Titan  
(original)

SummitDev  
(original)
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Summit 
(+=setup optimize)

Summit  
(+=CA-GCR)
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128x Volta
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LATEST RESULTS
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HMC MULTIGRID SUMMARY

2019 Chroma gauge generation close to 100x increase in throughput vs 2016  

MG solver, FG integrator, Titan -> Summit (Kepler to Volta) 

Speedup = machine x algorithm 

Ongoing work to go beyond 100x 

Inability to coarsen past 24 coarse-grid per MPI process presenting hard limit on scaling 

Use multi-rhs null-space generation, e.g., 24x CG => 1x block CG on 24 rhs 
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TWISTED-MASS 
MULTIGRID



Twisted-mass	operator	has	pathological	spectrum	on	the	coarse	grid	

For	Twisted-mass,	solu7on	is	to	add	a	fic77ous	heavy	twist	to	the	coarsest	operator	

Improves	condi7on	number	and	fast	coarse-grid	convergence	restored	

!50

TWISTED-MASS MULTIGRID
Alexandrou, Bacchio, Finkenrath, Frommer, Kahl, Rottmann (2016)

“Although the dimension of the coarse grid operator is reduced, it can develop a large number 
of small eigenvalues close to µ. This can critically slow down the convergence of a standard 
Krylov solver to be used on the coarsest grid such that the time spend in the coarsest operator 
inversions dominates…”
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TWISTED-MASS MULTIGRID
Alexandrou, Bacchio, Finkenrath, Frommer, Kahl, Rottmann (2016)
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DEFLATED MG AT THE PHYSICAL POINT

“μ-scaling”,	while	recovering	a	viable	solver,	impacts	the	quality	of	MG	convergence		

Realized	that	coarse-grid	operator	actually	becomes	indefinite	
Lowest	eigenvalues	can	driG	over	to	nega7ve	real	on	coarse	grid		
Pathological	spectrum	on	the	coarse	grid

Instead	we	deflate	the	coarse	grid	operator	
Remove	troublesome	modes	directly	
Coarse-grid	is	small,	so	cost	of	defla7on	is	negligible	

Recover	op5mal	MG	convergence	and	a	3x	speedup	over	“μ-scaling”

Clark, Howarth and Weinberg
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DEFLATED MG AT THE PHYSICAL POINT
Clark, Howarth and Weinberg
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(WILSON) FERMION SOLVERS

• Combination of algorithm (multigrid) and machine (GPUs) 

• A single GPU can solve at 1 second per Wilson solve with local volume of V=323x64 per GPU 

• A single node (DGX-2) can solve solve V=643x128 at one second per solve 

• 16 nodes of DGX-2 can solve V=1283x256 at one second per solve  

• Fermion solvers are not the challenge they used to be (caveats unbound) 
•
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MULTIGRID FOR 
STAGGERED FERMIONS
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Brower, Clark, Howarth, Strelchenko, Weinberg
WHY IS STAGGERED MG HARD?

Naïve Galerkin projection does not work 

Spurious low modes on coarse grids 

System gets worse conditioned as we 
progressively coarsen

Compare to Wilson MG which preserves low 
modes with no cascade

arXiv:1801.07823

https://arxiv.org/abs/1801.07823
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OUR SOLUTION

Staggered fermions distribute d fermions over 2d sites 

Each 2d block is a supersite 

or flavour representation or Kahler-Dirac block (arXiv:0509026 Dürr)

arXiv:1801.07823

https://arxiv.org/abs/1801.07823
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OUR SOLUTION

Transform into Kahler-Dirac form through 
unitary transformation  

“Precondition” the staggered operator by 
the Kahler-Dirac block

arXiv:1801.07823

https://arxiv.org/abs/1801.07823
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arXiv:1801.07823

Removal of critical slowing down

No spurious low modes  
as we coarsen

https://arxiv.org/abs/1801.07823
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GOING TO 4D AND HISQ FERMIONS

Block-preconditioned operator is no longer an exact circle 

Prescription is almost identical to 2-d method 

Drop Naik contribution from block preconditioner 

No longer a unitary transformation 

No longer an exact Schur complement 

Iterate between HISQ operator and block-preconditioned system 

Effectively apply MG to fat-link truncated HISQ operator 
only
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HISQ

Block-preconditioned 
system

First real coarse grid

B = 24, Nv=24 
dof preserving

HISQ MG

Second real coarse grid

Level 1: 3 dof per site.
Solver: GCR, tolerance 10-10

Smoother: CA-GCR(0,8)

Smoother: CA-GCR(0,2)

Level 3: 128 dof per site. Solver: GCR, tolerance 
0.25, max 16 iterations
Operator: Left-block Schur, 16-bit precision

Smoother: CA-GCR(0,2)

Level 4: 192 dof per site.
Solver: CA-GCR(16)
Operator: Left-block Schur, 16-bit precision

Level 2: 48 dof per site.  
Solver: GCR, tolerance 0.25, max 16 iterations
Operator: Left-block Schur, 16-bit precision

Staggered has 4-fold degeneracy 

• Need ~4x null space vectors 

• Much more memory intensive



!621

OLD SCHOOL: CG
Schur system: !" − $%&'()*$&%'()* +% = !-% − $%&'()*-& to tolerance !10012

Pure double precision solve, reconstruct-9 (long links can be encoded by 9 numbers)

72x	Summit	nodes,	random	

source,	V=963x192	la[ce,	  

β	=	6.72,	a	=	0.06,	ml	=	0.0008,	

ms	=	0.022,	||r||	=	10-10
Thanks to MILC 
for lattices
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OLD SCHOOL: CG
Schur system: !" − $%&'()*$&%'()* +% = !-% − $%&'()*-& to tolerance !10012

Use mixed precision instead: double-single

72x	Summit	nodes,	random	

source,	V=963x192	la[ce,	  

β	=	6.72,	a	=	0.06,	ml	=	0.0008,	

ms	=	0.022,	||r||	=	10-10
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OLD SCHOOL: CG
Schur system: !" − $%&'()*$&%'()* +% = !-% − $%&'()*-& to tolerance !10012

Use mixed precision instead: double-single, double-half

72x	Summit	nodes,	random	

source,	V=963x192	la[ce,	  

β	=	6.72,	a	=	0.06,	ml	=	0.0008,	

ms	=	0.022,	||r||	=	10-10
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RESULTS WITH MG
Schur system: !" − $%&'()*$&%'()* +% = !-% − $%&-& to tolerance !10012

Note: re-uses near-null vectors generated at ml for all masses

WITH MULTIGRID

72x	Summit	nodes,	random	

source,	V=963x192	la[ce,	  

β	=	6.72,	a	=	0.06,	ml	=	0.0008,	

ms	=	0.022,	||r||	=	10-10
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RESULTS WITH MG
Schur system: !" − $%&'()*$&%'()* +% = !-% − $%&-& to tolerance !10012

Note: re-uses near-null vectors generated at ml for all masses

Still critical 
slowing down!

WITH MULTIGRID

72x	Summit	nodes,	random	

source,	V=963x192	la[ce,	  

β	=	6.72,	a	=	0.06,	ml	=	0.0008,	

ms	=	0.022,	||r||	=	10-10
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WHAT’S HAPPENING?

Not doing a good job preconditioning the 
next-coarsest level 

=> Not solving the coarsest level well enough

Percolates back 
up to fine grid
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Level 2: 48 dof per site.  
Solver: GCR, tolerance 0.25, max 16 iterations
Operator: Left-block Schur, 16-bit precision

HISQ

KD preconditioned 
system 
“pseudo fine”

First real coarse grid

Second real coarse grid

Deflation

Level 1: 3 dof per site.
Solver: GCR, tolerance 10-10

Smoother: CA-GCR(0,8)

Smoother: CA-GCR(0,2)

Level 3: 128 dof per site. Solver: GCR, tolerance 
0.25, max 16 iterations
Operator: Left-block Schur, 16-bit precision

Smoother: CA-GCR(0,2)

Level 4: 192 dof per site.
Solver: CA-GCR(16)
Operator: Left-block Schur, 16-bit precision

Level 5: 1024 vector SVD Deflation

DEFLATED  
STAGGERED MG
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DEFLATED HISQ MG

4.6x speedup >7x speedup
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STAGGERED MG SUMMARY

Workable algorithm for applying multigrid to staggered fermions 

Significant speedups possible (>7x vs mixed-precision CG) 

Requires a significant number of null-space vectors 
HMC not yet workable
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MULTIPLE RIGHT-HAND SIDES
G
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ONGOING AND FUTURE 
CHALLENGES
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DOMAIN-WALL MULTIGRID
The problem is the spectrum

0 1 2 3 4 5
-2

-1

0

1

2

Ddwf(m=0)

2-d Shamir operator



Multigrid for Domain Wall (Cohen et al, 2012) 
Applied adaptive MG to normal op 
Removal of critical slowing down 
No actual speedup 

Hierarchically Deflated CG (Boyle, 2014) 
Applied Inexact Deflation to normal op 
Removes critical slowing down 
Good solver speedup 
Expensive setup makes it unsuitable for HMC 
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DOMAIN-WALL MULTIGRID

Multigrid for Overlap (Brannick et al, 2014) 
Use Wilson as the preconditioner 
Run MG on this system 
Works as we approach continuum limit
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THE PROTRACTED DEATH OF MOORE’S LAW
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MULTIGRID AT THE EXASCALE

Cannot weak scale to infinite volume 

Even LQCD could be running out of parallelism 
Multigrid is pathological 

Multi-src solvers are a solution 
More parallelism and locality 
Bigger messages 

C ∼ m−1a−6 V9/8
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> 3x speedup
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HIERARCHICAL ALGORITHMS ON HETEROGENEOUS 
ARCHITECTURES

GPU

CPU
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SUMMARY

Multigrid methods remove critical slowing down for most fermion formulations 

Multigrid methods and GPUs are a potent combination 

Ongoing challenges for chiral fermion formulations
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DOMAIN-DECOMPOSITION SMOOTHERS

Domain-decomposition smoothers are effective smoothers for QCD MG (Frommer et al)  

QUDA now has support for both additive and multiplicative Schwarz smoothing 

Enable at any level and / or combine with even/odd preconditioning at any level 

Dramatic reduction in communication important on systems with weak networks 

E.g., Piz Daint vs. Saturn V

Domain Decomposition method on GPU cluster Yusuke Osaki

Figure 1: Lattice domain-decomposition and relation to the RAS iteration.

ditioner and study the bottleneck by investigating the timing chart of the algorithm. The results are
shown in section 5 and we give a brief summary for the results in the last section.

2. The Restricted Additive Schwarz domain-decomposition iteration

The restricted additive Schwarz iteration [6] is a kind of the fixed iteration solver for elliptic
differential equations. This solver makes use of the geometrical structure of a latticized partial
difference equation. In lattice QCD the discretized space-time can be split into several domains and
we show the schematic picture of the decomposition in Fig.1. Ωi represents the lattice sites in the
i-th domain without overlapping. Ω′

i denotes the domain extended from Ωi. The extended domains
are overlapped in general and the data in overlapped region are replicated on the neighbouring
domains.

To solve Eq. (1.1) without domain overlapping, we expect that the solution φ can be approxi-
mated by combining the partial solution of ξΩi derived fromDΩiξΩi =ηΩi from each domain, where
DΩi is the restriction of D to Ωi with the Dirichlet boundary condition. The additive Schwarz (AS)
iteration simply approximates it as φ ∼ ∑i ξΩi , and the approximation is refined by the Richardson
iteration. A problem arises when we overlap the decomposition since the approximate solution
derived from the extended equation DΩ′

i
ξΩ′

i
= ηΩ′

i
becomes inconsistent in the overlapped region.

The restricted additive Schwarz (RAS) iteration gives a simple solution to this inconsistency. In
Fig.1 we denote the restriction operation as RΩi arrow which simply extracts the data on the bulk
sites (Ωi ∈ Ω′

i) to avoid the inconsistency. Thus the approximation to φ can be constructed as
φ ∼ ∑i RΩiξΩ′

i
. We show the RAS iteration in Alg. 1. The fourth line pickups the data on Ω′

i from
the whole field vector, the fifth line solves the target problem restricted in the overlapped domainΩ′

i
with the Dirichlet boundary condition, and the next line represents the restriction process described
above.

The RAS iteration itself is not sufficient for the complete solver, and is usually used as the
preconditioner for the Krylov subspace iterative solvers. We employ BiCGStab solver for the
Krylov subspace solver. The RAS preconditioner KRAS corresponds to the following operator;

KRAS = S
NRAS−1

∑
j=0

(1−DS) j, with S=
N

∑
i=1

RΩi(D
−1
Ω′
i
)PΩ′

i
. (2.1)

This is applied to the following preconditioned equation;

DKRASχ = η , φ = KRASχ , (2.2)

3

figure taken from Osaki and Ishikawa
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CHROMA + QDP-JIT/LLVM

QDP-JIT/PTX: implementation of QDP++ API for NVIDIA GPUs by Frank Winter  (arXiv:1408.5925) 

Chroma builds unaltered and offloads evaluations to the GPU automatically 

Direct device interface to QUDA to run optimized solves 

Prior publication covers earlier with direct PTX code generator 

Now use LLVM IR code generator and can target any architecture that LLVM supports 

Chroma/QDP-JIT: Clover HMC in production on Titan and newer machines 

Latest improvements: 

Caching of PTX kernels to eliminate overheads 

Faster startup times making the library more suitable for all jobs

https://github.com/JeffersonLab/qdp-jit
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DGX-2
1 node supercomputer

2 PFLOPS   |  512GB HBM2  |  10 kW  |  350 lbs
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DGX-2: FULL NON-BLOCKING BANDWIDTH
2.4 TB/s bisection bandwidth
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