EDMs of nucleons and nuclei: EFT and the lattice

Jordy de Vries

University of Massachusetts, Amherst Amherst Center for Fundamental Interactions RIKEN BNL Research Center

Standard Model suppression

Sets θ upper bound: $\theta < 10^{-10}$

Forseeable future: EDMs are **'background-free'** searches for new physics

Forseeable future: EDMs are **'background-free'** searches for new physics

- 1. How can we parametrize BSM CP violation at low energy?
- 2. What lattice-QCD input do we need to interpret EDMs ?
- 3. What is the interplay between lattice + chiral EFT ?

Very active experimental field

System	Group	Limit	C.L.	Value	Year
²⁰⁵ Tl	Berkeley	1.6×10^{-27}	90%	6.9(7.4) × 10 ⁻²⁸	2002
YbF	Imperial	10.5×10^{-28}	90	$-2.4(5.7)(1.5) \times 10^{-28}$	2011
ThO	ACME	1.1×10^{-29}	90	4.3(3.1)(2.6) × 10 ⁻³⁰	2018
HfF+	Boulder	1.3×10^{-28}	90	$0.9(7.7)(1.7) \times 10^{-29}$	2017
n	Sussex-RAL-ILL	3.0×10^{-26}	90	0.2(1.5)(0.7) × 10 ⁻²⁶	2006
¹²⁹ Xe	UMich	4.8×10^{-27}	95	$0.26(2.3)(0.7) \times 10^{-27}$	2019
¹⁹⁹ Hg	UWash	7.4 × 10 ⁻³⁰	95	-2.2(2.8)(1.5) × 10 ⁻³⁰	2016
²²⁵ Ra	Argonne	1.4×10^{-23}	95	4(6.0)(0.2) × 10 ⁻²⁴	2016
muon	E821 BNL g-2	1.8×10^{-19}	95	$0.0(0.2)(0.9) \times 10^{-19}$	2009

+ new electron, muon, neutron, proton, Xe, Ra, Rn experiments

$$d_e \sim \left(\frac{\alpha_{em}}{\pi}\right)^n \frac{m_e}{\Lambda^2} \sin \phi$$
 If phase = O(1): $\Lambda > 60 \text{ TeV} (n=1)$

The EDM metromap

Preliminaries

- To separate theta from 'whatever' we need a 'whatever' description
 - Consider specific (class of) Beyond-the-SM models:
 - Minimal supersymetric model (MSSM, cMSSM, pMSSM, ...)
 - Multi-Higgs or composite Higgs models
 - > Left-right symmetric models

- EDMs are low-energy experiments \rightarrow insensitive to many UV details
- EDMs unlikely to arise from 'light BSM' fields

Le Dall, Pospelov, Ritz '15

• Suggests an EFT approach can be useful

$$M_{CP} > v >> m_N > m_{\pi} >> m_e$$

- Require (semi-)-precise EDM predictions to separate theta from BSM sources, and to interpret limits.
 - Not easy since EDM experiments involve horrible objects

Separation of scales

Separation of scales

Heavy BSM physics and the SM EFT

• Assume BSM fields exists but are heavy → Integrate them out

• The SM might just be the dim-4 part of an effective field theory

$$L_{new} = L_{SM} + \frac{1}{\Lambda}L_5 + \frac{1}{\Lambda^2}L_6 + \cdots$$

- Buchmuller & Wyler '86 Gradzkowski et al '10 Many others
- Lorentz- and gauge-invariant operators from all SM fields
- For a given BSM model, we can calculate $L_{5,6,7...}$ Explicitly
- EFT approximation good at scales $<< \Lambda$

Examples of EFT operators: dipoles

EDMs and MDMs appear in the SMEFT Lagrangian at dimension-six

? TeV

1 GeV

 M_{CP}

Gluon chromo-EDM

Weinberg PRL '89 Braaten et al PRL '90

Third-generation CP violation

- What if the BSM physics couples mainly to third generation ?
- Top **CEDM** generate Weinberg operator
- What about top EDM ?
- 1-loop suppressed by $|V_{td}|^2 \sim 10^{-5}$

Concero-Cid et al '08

• Two-loop path to electron EDM

JdV et al '16, Fuyuto, Ramsey-Musolf '17

- Despite loop suppression still very stringent
- Strong interplay with LHC and flavor physics

Top electromagnetic dipoles

- EDM experiments indirectly set strong limits on 'heavy' CP violation
- Limit on top EDM 100x stronger than limit on magnetic dipole moment

Four-quark operators Fermion-Scalar interactions (appears in left-right models) Energy $\Xi \bar{u}_R \gamma^{\mu} d_R \left(\tilde{\varphi}^{\dagger} i D_{\mu} \varphi \right) + \text{h.c.} \longrightarrow \Xi v^2 g \left(\bar{u}_R \gamma^{\mu} d_R W_{\mu}^{\pm} + \text{h.c.} \right)$ M_{CP} A right-handed quark-W coupling \mathcal{U}_L $< M_W$ $L = i\Xi(\bar{u}_R\gamma_\mu d_R)(\bar{u}_L\gamma_\mu d_L) + \text{h.c.}$ d_{P} \mathcal{U}_{P} Two four-quarks terms (FQLR operators)

Ng & Tulin '12 Mereghetti et al '12

Plus others... But when the dust settles....

Intermediate summary

- Parametrized BSM CP violation in terms of **dim6** operators
- 1 GeV ~O(10) operators left: theta, (C)EDMs, Weinberg, Four-fermion
- Important: different BSM models \rightarrow different EFT operators
- 1. Standard Model: only theta has a chance to be measured
- 2. 2-Higgs doublet model: quark+electron EDM, CEDMs, Weinberg (exact hierarchy depends on detail of models)
- 3. Split SUSY: only electron + quark EDMs (ratio fixed)
- 4. Left-right symmetric models: FQ operators, way smaller (C)EDMs
- 5. Leptoquark: FQ + semi-leptonic operators

Can't say which CP-odd operator will be the most important

Onwards to hadronic CPV

An ultrashort intro to Chiral EFT

• Use the symmetries of QCD to obtain chiral Lagrangian

$$L_{QCD} \rightarrow L_{chiPT} = L_{\pi\pi} + L_{\pi N} + L_{NN} + \cdots$$

- Quark masses = $0 \rightarrow SU(2)_L xSU(2)_R$ symmetry
 - Spontaneously broken to SU(2)-isospin (pions = Goldstone)
 - Explicit breaking (quark mass) \rightarrow pion mass
- ChPT has systematic expansion in $Q/\Lambda_{\chi} \sim m_{\pi}/\Lambda_{\chi}$ $\Lambda_{\chi} \simeq 1 \, GeV$
 - Form of interactions fixed by symmetries
 - Each interactions comes with an unknown constant (LEC)
- Extended to include CP violation

Mereghetti et al' 10, JdV et al '12, Bsaisou et al '14

Weinberg, Gasser, Leutwyler, and many many others

Nucleon and nuclear EDMs up to NLO

Lowest-order CP-odd interactions

$$L = g_0 \,\overline{N}\pi \cdot \tau N + g_1 \,\overline{N}\pi^0 N$$

The CPV NN force and nuclear EDMs

- Tree-level: no loop suppression \rightarrow EDM predictions
- Orthogonal to nucleon EDMs, sensitive to different CPV structures

$$\begin{aligned} d_A &= \langle \Psi_A \parallel \vec{J}_{CP} \parallel \Psi_A \rangle + 2 \langle \Psi_A \parallel \vec{J}_{CP} \parallel \tilde{\Psi}_A \rangle \\ (E - H_{PT}) \mid \Psi_A \rangle &= 0 \qquad (E - H_{PT}) \mid \tilde{\Psi}_A \rangle = V_{CP} \mid \Psi_A \rangle \end{aligned}$$

- Pion-exchange contribution can be larger than nucleon EDMs !
- Goal : calculate nuclear EDMs in terms of LECs
- Note I only consider subset of CP-odd LECs

EDMs of light nuclei

Anomalous magnetic moment Electric dipole momen

$$\frac{d\vec{S}}{dt} = \vec{S} \times \vec{\Omega} \qquad \vec{\Omega} = \frac{q}{m} \left[a\vec{B} + \left(\frac{1}{v^2} - a\right)\vec{v} \times \vec{E} \right] + 2d\left(\vec{E} + \vec{v} \times \vec{B}\right)$$

All-purpose ring (¹H, ²H, ³He, ...) ~ $10^{-28,29}$ e cm

100-1000 x current neutron EDM sensitivity! (takes a while tough....)

Already used for muon EDM $d_{\mu} \leq 1.8 \cdot 10^{-19} \ e \ cm$ (95% C.L.) Bennett *et al* (BNL g-2) PRL '09

Major progress in: JEDI collaboration, '15, '16 Test d_D measurement in 2019

The CPV NN force and nuclear EDMs

 $d_D = 0.9(d_n + d_p) + \left[(0.18 \pm 0.02) \,\overline{g}_1 + (0.0028 \pm 0.0003) \,\overline{g}_0 \,\right] e \, fm$

 $d_{3He} = 0.9 d_n - 0.05 d_p + \left[(0.14 \pm 0.04) \overline{g}_1 + (0.10 \pm 0.03) \overline{g}_0 \right] e fm + \dots$

Stetcu et al '08, JdV et al '11 '12, Bsaisou et al '14, Viviani et al '19

- Calculations from chiral EFT potentials (CP-even + CP-odd)
- Most CP-odd sources: pion exchange ~5-10x bigger then nucleon EDMs
- d_D/d_n ratio would point towards underlying CPV source JdV et al '11 '14
- But need nonperturbative calculations for the LECs to be sure

Strongest bound on atomic EDM:

$$d_{199}_{Hg} < 8.7 \cdot 10^{-30} \ e \ cm$$

- Similar for diamagnetic atoms, but no first-principle calculations
- Plus a well-known atomic screening factor (Schiff screening)
- Large nuclear uncertainty but pions dominate over nucleon EDMs

$$d_{199Hg} \propto 1.9 \ d_n + 0.2 \ d_p + \left[(0.25^{+0.9}_{-0.6}) \ \overline{g}_1 + (0.13^{+0.5}_{-0.07}) \ \overline{g}_0 \right] e \ fm + \dots$$

$$d_{225Rg} \propto \left[(76^{+227}_{-25}) \ \overline{g}_1 - (19^{+7}_{-55}) \ \overline{g}_0 \right] e \ fm + \dots$$

Engel et al '13 '18

• Still: need LECs to interpret limits in terms of particle physics

Goals

- Goal: get $g_{0,1}$ + nucleon EDMs from quark-gluon CP-odd source
- Even 25-50% uncertainty would be very welcome
- Let's start with QCD theta term

Theta and chiral perturbation theory

After axial U(1) and SU(2) rotations, complex CP-odd quark mass:

$$\mathcal{L}_{\text{QCD}} = \mathcal{L}_{\text{kin}} - \bar{m}\bar{q}q + \varepsilon\bar{m}\bar{q}\tau^{3}q + m_{\star}\bar{\theta}\bar{q}i\gamma^{5}q$$

$$\varepsilon = \frac{m_{u} - m_{d}}{m_{u} + m_{d}}$$

$$\mathcal{L}_{\chi}' = \mathcal{L}_{\chi} - \frac{m_{\pi}^{2}}{2}\pi^{2} - \delta m_{N}\bar{N}\tau^{3}N + \bar{g}_{0}\bar{N}\tau\cdot\pi N$$
Strong proton-neutron

Crewther et al' 79 Baluni '79

Strong proton-neutron mass splitting

Theta and chiral perturbation theory

After axial U(1) and SU(2) rotations, complex CP-odd quark mass:

Theta and chiral perturbation theory

After axial U(1) and SU(2) rotations, complex CP-odd quark mass:

Walker-Loud et al '16, Borsanyi et al '14

JdV, Mereghetti, Walker-Loud '15

Pion-nucleon couplings

• θ -term conserves isospin! So g_1 is **suppressed**.

Pospelov et al '01,'04 Mereghetti et al '10, '12, Bsaisou et al '12

$$g_0 = (15.5 \pm 2.5) \cdot 10^{-3} \,\overline{\theta}$$
$$g_1 = -(3 \pm 2) \cdot 10^{-3} \,\overline{\theta}$$

 $\frac{\overline{g}_1}{\overline{g}_0} = -\left(0.2 \pm 0.1\right)$

- Large uncertainty for g_1 due to pion mass splitting and unknown LEC
- g₀ relation **protected** from higher-order SU(2) and SU(3) corrections JdV, Mereghetti, Walker-Loud '15

Chromo-EDM and lattice spectroscopy

• Quark chromo-EDM in many BSM scenarios (SUSY, 2HDM, leptoquarks..)

 $\tilde{d}_{CE} \ \bar{q} \sigma^{\mu\nu} i \gamma^5 \lambda^a q \ G^a_{\mu\nu}$

• Induces both g_0 and g_1 at leading order. ChPT gives **no info** about sizes...

$$L = g_0 \,\overline{N}\pi \cdot \tau N + g_1 \,\overline{N}\pi^0 N$$

• QCD sum rules estimate uncertain

Pospelov '02

$$\bar{g}_0 = (5 \pm 10)(\tilde{d}_u + \tilde{d}_d) \,\mathrm{fm}^{-1} \qquad \bar{g}_1 = (20^{+20}_{-10})(\tilde{d}_u - \tilde{d}_d) \,\mathrm{fm}^{-1}$$

 $|\bar{g}_1| \ge |\bar{g}_0|$

Chromo-EDM and lattice spectroscopy

• Repeat the same trick as for theta term

JdV, Mereghetti, Seng, Walker-Loud '16

$$\tilde{d}_{CE} \ \bar{q} \sigma^{\mu\nu} i\gamma^5 \lambda^a q \ G^a_{\mu\nu} \qquad \longleftrightarrow \qquad \tilde{d}_{CM} \ \bar{q} \sigma^{\mu\nu} \lambda^a \tau^3 q \ G^a_{\mu\nu}$$
$$SU_A(2) \qquad \tilde{d}_{CM} \ \bar{q} \sigma^{\mu\nu} \lambda^a \tau^3 q \ G^a_{\mu\nu}$$

- Add **CP-even** quark chromo-magnetic dipole moments
- Relations between $g_{0,1}$ and the shift in nucleon and pion masses

$$\bar{g}_0 = \tilde{d}_0 \left(\frac{d}{d\tilde{c}_3} + r \frac{d}{d(\bar{m}\varepsilon)} \right) \delta m_N$$

$$\bar{g}_1 = -2\tilde{d}_3 \left(\frac{d}{d\tilde{c}_0} - r \frac{d}{d\bar{m}} \right) \Delta m_N + 4 \frac{\phi}{\sqrt{3}} \left[\tilde{d}_s \left(\frac{d}{d\tilde{c}_s} - r \frac{d}{dm_s} \right) \right] \Delta m_N$$

- All relations stable under higher-order and SU(3) corrections
- No NNpi calculation or CPV on the lattice needed
- CalLat is attempting a calculation with this strategy

Back to pion-nucleon couplings

• 2 CP-odd structures

$$L = g_0 \, \bar{N}\pi \cdot \tau N + g_1 \, \bar{N}\pi^0 N$$

	Theta term	Quark CEDMs	Four-quark operators	Weinberg	Quark EDM
g_0		\bigcirc			Don't matter
g_1	\bigcirc	\bigcirc	\bigcirc	•	Don't matter

- <25% uncertainty
- Some estimate (~100% uncertainty) and/or lattice-QCD in progress
- A long way to go

- Loop enhanced by chiral logarithm (long-range physics)
- But divergent and depends on renormalization-scale **µ**
- Counter terms absorb µ: no direct link between EDMs and CPV potential at the hadronic level

• Typical approach: set $\mu = m_N$

 $\bar{g}_0 = -(15.5 \pm 2.5) \cdot 10^{-3} \bar{\theta} \longrightarrow d_n \simeq -2.5 \cdot 10^{-16} \bar{\theta} e \text{ cm}$ • Experimental constraint: $\bar{\theta} < 10^{-10}$

- But this is not really consistent nor precise: need lattice
- Also affects axion experiments (e.g. Casper)

ChPT is of some use Nucleon EDM

The EDM is a divergent quantity, but the Q^2 dependence is not •

$$F(Q^2) = d + Q^2 S + Q^4 H + \dots$$
$$S_n = -S_p = -\frac{eg_A \overline{g}_0}{48\pi^2 F_\pi} \frac{1}{m_\pi^2} \left(1 - \frac{5\pi}{4} \frac{m_\pi}{m_N} \right) \cong 7 \cdot 10^{-5} \,\overline{\theta} \, e \, fm^3$$

H are complicated but known functions •

 π

 $\pi \setminus$

$$H_{1}(Q^{2}) = \frac{4eg_{A}\bar{g}_{0}}{15(2\pi F_{\pi})^{2}} \left[h_{1}^{(0)} \left(\frac{Q^{2}}{4m_{\pi}^{2}} \right) - \frac{7\pi}{8} \frac{m_{\pi}}{m_{N}} h_{1}^{(1)} \left(\frac{Q^{2}}{4m_{\pi}^{2}} \right) - \frac{2\delta m_{\pi}^{2}}{m_{\pi}^{2}} \check{h}_{1}^{(1)} \left(\frac{Q^{2}}{4m_{\pi}^{2}} \right) \right].$$

$$h_{1}^{(0)}(x) = -\frac{15}{4} \left[\sqrt{1 + \frac{1}{x}} \ln \left(\frac{\sqrt{1 + 1/x} + 1}{\sqrt{1 + 1/x} - 1} \right) - 2\left(1 + \frac{x}{3} \right) \right]$$

Thomas '93, Hocking/van Kolck '06, JdV et al '10 '11, Guo et al '10

The strong CP problem π^{\pm}

Abramczyk et al '17

- Many calculations of nEDM have been attempted
- Results contaminated by spurious signal ~ nucleon phase α_N

$$F_3(Q^2) = \cos(2\alpha_N)\widetilde{F}_3(Q^2) + \sin(2\alpha_N)\widetilde{F}_2(Q^2)$$

• Corrected EDM signal consistent with zero within errors ...

A new attempt

- Andrea Shindler suggested Gradient Flow for EDM calculations
- Attempt in '15 a , quenched and spurious....
- 2+1+1 flavor calculation with GF, also spurious

Shindler et al '15 Alexandrou et al '15

Shindler et al '14

• Assume theta is small: weigh operators by topological charge

Shintani et al '05 Aoki et al '15

$$\langle O \rangle_{\bar{\theta}} = \langle O \rangle + i\bar{\theta} \, \langle OQ \rangle + \mathcal{O}(\bar{\theta}^2)$$

$$Q = \int d^4 x \, q$$

 $q = \frac{1}{32\pi^2} GG$

• Make use of total-derivative-nature of theta term

 $\partial_{t_f} Q(t_f) = 0$ Luscher '10, Giusti '15

- Take a $\rightarrow 0$ limit at finite flow time.
- Signal-to-noise is a big issue. In particular for small pion masses

$$+\theta \frac{g_s^2}{32\pi^2} \varepsilon^{\alpha\beta\mu\nu} G_{\alpha\beta} G^{\mu\nu} \qquad \longleftrightarrow \qquad -\left(\frac{m_u m_d}{m_u + m_d}\right) \theta \, \overline{q} i \gamma^5 q$$

• Theta-induced EDMs scale as m_π^2

Numerical details Dragos, Luu, A.S., de Vries, Yousif: 2019

q(x)

NP improved Wilson + Iwasaki gauge

a=0.1–0.068 fm mpi=400–700 MeV

O(L/2a) Stochastic source locations

3 Gaussian smearings

Slide stolen from A. Shindler

	β	κ_l	κ_s	L/a	T/a	c_{sw}	N_G	$N_{\rm corr}$
M_1	1.90	0.13700	0.1364	32	64	1.715	322	30094
M_2	1.90	0.13727	0.1364	32	64	1.715	400	20000
M_3	1.90	0.13754	0.1364	32	64	1.715	444	17834
A_1	1.83	0.13825	0.1371	16	32	1.761	800	15220
A_2	1.90	0.13700	0.1364	20	40	1.715	789	15407
A ₃	2.05	0.13560	0.1351	$\overline{28}$	$\overline{56}$	1.628	650	12867

PACS-CS: 2009

Improving signal to noise

- Insertion of topological charge is integrated over whole space-time box
- Liu et al '18 : signal dominated by space-time regions close to the source-sink
- Also found for CP-odd three-point function (N-N-photon) for just Euclidean time slices Shintani et al '15

• We tried to improve S/N by not summing over the whole time-dimension of the box

Improving signal to noise

- Example: two-point function used to extract the phase α_N
 - $G_2^{(Q)}(\boldsymbol{p}', t, \Pi, t_f) = a^3 \sum_{\boldsymbol{x}} e^{-i\boldsymbol{p}' \cdot \boldsymbol{x}} \operatorname{Tr} \left\{ \Pi \left\langle \mathcal{N}(\boldsymbol{x}, t) \overline{\mathcal{N}}(\boldsymbol{0}, 0) Q(t_f) \right\rangle \right\}$
- Instead: partially summed Q

Normally:

$$Q(t_s, t_f) = \frac{1}{32\pi^2} \sum_{x} \sum_{\tau_{Q=0}}^{t_s} q(x, \tau_Q, t_f)$$

- Signal saturates at $t_s = t$ is sourcesink separation
- Confirmed by spectral decomposition of correlator

$$G_2^{(Q)}(t_s \ge t, t, t_f) = G_2^{(Q)}(t, t_f) + O(e^{-Et_s})$$

Improving signal to noise

- Example: two-point function used to extract the phase α_N
- Normally: $G_2^{(Q)}(\boldsymbol{p}', t, \Pi, t_f) = a^3 \sum_{\boldsymbol{x}} e^{-i\boldsymbol{p}' \cdot \boldsymbol{x}} \operatorname{Tr} \left\{ \Pi \left\langle \mathcal{N}(\boldsymbol{x}, t) \overline{\mathcal{N}}(\boldsymbol{0}, 0) Q(t_f) \right\rangle \right\}$
- Similar but more complicated analysis for three-point function (NN-gamma)

Form factor improvement + tf dependence Shindler et al '19

- Then: extrapolate to zero momentum transfer using ChPT predictions
- Significantly improved results for partially summed topological charge
- Confirm flow-time independence

'A less than convincing fit ...'

- End up with EDMs at 3 pion masses and 3 lattice spacings
- Pion masses are large ... We nevertheless try a chiral fit ...
- Note: we know in continuum+chiral limit that EDM should be zero :

$$d_{n,p} = C_1 m_\pi^2 + C_2 \ m_\pi^2 \log m_\pi^2 + C_3 a^2$$

'A less than convincing fit ...'

- End up with EDMs at 3 pion masses and 3 lattice spacings
- Pion masses are large ... We nevertheless try a chiral fit ...
- Note: we know in continuum+chiral limit that EDM should be zero :

$$d_{n,p} = C_1 m_{\pi}^2 + C_2 \ m_{\pi}^2 \log m_{\pi}^2 + C_3 a^2$$

	$C_1 \left[ar{ heta} e \mathrm{fm}^3 ight]$	$C_2 \left[\bar{ heta} e \mathrm{fm}^3 ight]$	$C_3 \left[\frac{\bar{\theta} e \mathrm{fm}}{\mathrm{fm}^2} \right]$
proton	$-3.6(5.3) \times 10^{-4}$	$-6.8(6.6) \times 10^{-4}$	0.20(31)
neutron	$3.1(3.2) \times 10^{-4}$	$8.8(4.4) \times 10^{-4}$	-0.16(23)

•
$$C_2$$
 is related to g_0
 $\bar{g}_0 = -\frac{8\pi^2 f_\pi}{g_A} \frac{C_2 m_\pi^2}{e} = -12.8(6.2) \cdot 10^{-3} \bar{\theta}$

 Agrees with prediction from ChPT + np mass splitting

$$\bar{g}_0 = -15.5(2.5) \cdot 10^{-3} \bar{\theta}$$

• EDMs of 'expected' size

'A less than convincing fit ...'

- End up with EDMs at 3 pion masses and 3 lattice spacings
- Pion masses are large ... We nevertheless try a chiral fit ...
- Note: we know in continuum+chiral limit that EDM should be zero :

$$d_{n,p} = C_1 m_{\pi}^2 + C_2 \ m_{\pi}^2 \log m_{\pi}^2 + C_3 a^2$$

	$C_1 \left[ar{ heta} e \mathrm{fm}^3 ight]$	$C_2 \left[\bar{ heta} e \mathrm{fm}^3 ight]$	$C_3 \left[\frac{\bar{\theta} e \mathrm{fm}}{\mathrm{fm}^2} \right]$
proton	$-3.6(5.3) \times 10^{-4}$	$-6.8(6.6) \times 10^{-4}$	0.20(31)
neutron	$3.1(3.2) \times 10^{-4}$	$8.8(4.4) \times 10^{-4}$	-0.16(23)

• Despite all efforts, the signal at the physical point only at 2 sigma

$$d_n = -(1.5 \pm 0.7) \cdot 10^{-3} e \,\bar{\theta} \, fm$$

- And even less for proton EDM
- We need more data and at smaller pion masses

Schiff moments

- LO ChPT: slope of form factor at small Q² to be pion-mass independent $F(Q^2) = d + Q^2S + Q^4H + \dots$ $S_{n,p} = C_4 + C_5a^2$
- Size prediction $S_{n,p} \sim \overline{g}_0$, $S_{n,p} \cong$
- $S_{n,p} \sim \overline{g}_0$, $S_{n,p} \cong \overline{+} 7 \cdot 10^{-5} \ \overline{\theta} \ e \ fm^3$
 - Attempt to extract from lattice data

 $S_n = -(1 \pm 5) \cdot 10^{-5} e \,\bar{\theta} \, fm$

$$S_p = +(5 \pm 6) \cdot 10^{-5} e \,\bar{\theta} \, fm$$

• Numbers not crazy but clearly much more work is needed

Status

	Theta term	Quark CEDMs	Four-quark operators	Weinberg	Quark EDM
g_0		\bigcirc	•		Don't matter
g_1	\bigcirc	\bigcirc	\bigcirc	•	Don't matter
$d_{n,p}$	● ●	●			

Some estimate (~100% uncertainty) and/or lattice-QCD in progress

- A long way to go
- Modest improvements would help a lot in interpreting EDM experiments !
- Gradient flow in progress for qCEDMs and Weinberg, but flow-time dependence must be understood.

Conclusion/Summary/Outlook

EDMs

- ✓ Very powerful search for BSM physics (probe the highest scales)
- \checkmark Heroic experimental effort and great outlook
- \checkmark Theory needed to interpret measurements and constraints

EFT framework

- ✓ Framework exists for CP-violation (EDMs) from 1st principles
- ✓ Keep track of **symmetries** (gauge/CP/chiral) from multi-Tev to atomic scales
- ✓ Need lattice input for LECs: in particular pion-nucleon and nucleon EDMs

Nucleon EDM from strong CP violation

- ✓ Gradient flow useful tool
- ✓ Improved S/N by only summing over relevant regions
- ✓ Reasonable neutron EDM and g_0 but large uncertainties → more data needed
- ✓ Have to go beyond theta term !!

Backup

Trust issues

• The relations are no longer unique if we use SU(3) chPT

$$g_0 = \delta m_N \frac{m_*}{\overline{m}\varepsilon}\overline{\theta}$$
 $g_0 = (m_{\Xi} - m_{\Sigma}) \frac{2m_*}{(m_s - \overline{m})}\overline{\theta}$

• Numerically: LO relations differ by more than 100% (sometimes sign...)

 $g_0 = (15.5 \pm 2.5) \cdot 10^{-3} \bar{\theta}$ Can this be trusted ??

• Investigate higher-order corrections to left- right-sides of relations

Protected relations

 $g_0 @ NLO$

Mass terms @ NLO

- Relation 1: All corrections obey the relation
- Relation 2: Explicit violation already at NLO

$$\frac{g_0}{(m_{\Xi} - m_{\Sigma})} = \left[1 + \frac{(D^2 - 6DF - 3F^2)}{6(4\pi f_{\pi})^2} \frac{(m_K - m_{\pi})^2 (m_K + m_{\pi})}{(m_{\Xi} - m_{\Sigma})} \right] \frac{2m_*}{(m_s - \bar{m})} \bar{\theta}$$
$$\approx \left[1 - 0.7 \right] \frac{2m_*}{(m_s - \bar{m})} \bar{\theta}$$

JdV, Mereghetti, Walker-Loud '15

Wrap-up

• Identify protected relations (including N2LO) for various couplings

	Values obtained here $(\times 10^{-3} \bar{\theta})$
$\overline{g}_0/(2F_\pi)$	15.5 ± 2.5
$\bar{g}_{0n}/(2F_n)$	115 ± 37
$\bar{g}_{0N\Sigma K}/(2F_K)$	-36 ± 11
$\bar{g}_{0N\Lambda K}/(2F_K)$	-44 ± 13

- Values recommended for **lattice extrapolations** of neutron EDM
- Used to estimate short-range CPV NN forces
- Similar couplings appear in axion phenomenology Stadnik et al '14
- Isospin-violating coupling g_1 has **no** protected relation.

 $g_1 = -(3 \pm 2) \cdot 10^{-3} \overline{\theta}$

Partially based on resonance saturation Bsaisou et al '12

$$\frac{\overline{g}_1}{\overline{g}_0} = -(0.2 \pm 0.1)$$

JdV et al '15

Chromo-EDM and lattice spectroscopy

• Quark chromo-EDM in many BSM scenarios (SUSY, 2HDM, leptoquarks..)

 $\tilde{d}_{CE} \ \bar{q} \sigma^{\mu\nu} i \gamma^5 \lambda^a q \ G^a_{\mu\nu}$

• Induces both g_0 and g_1 at leading order. ChPT gives **no info** about sizes...

$$L = g_0 \,\overline{N}\pi \cdot \tau N + g_1 \,\overline{N}\pi^0 N$$

• QCD sum rules estimate uncertain

Pospelov '02

$$\bar{g}_0 = (5 \pm 10)(\tilde{d}_u + \tilde{d}_d) \,\mathrm{fm}^{-1} \qquad \bar{g}_1 = (20^{+20}_{-10})(\tilde{d}_u - \tilde{d}_d) \,\mathrm{fm}^{-1}$$

 $|\bar{g}_1| \ge |\bar{g}_0|$

Chromo-EDM and lattice spectroscopy

• Repeat the same trick as for theta term

- Add **CP-even** quark chromo-magnetic dipole moments
- Isospin + CP violation leads to vacuum instability (pion tadpoles)
- Align vacuum via $SU_A(2)$ rotations

$$L_{\dim 6} = r \ \overline{q} \ \tilde{d}_{CE}(i\gamma^5)q - \overline{q}\sigma^{\mu\nu}\lambda^a(\tilde{d}_{CM} + \tilde{d}_{CE}i\gamma^5)q \ G^a_{\mu\nu}$$

Pospelov/Ritz '00, JdV et al '12, Bsaisou et al '14

- r is ratio of condensates $r \propto \frac{\left\langle 0 \,|\, \overline{q} \sigma^{\mu\nu} \lambda^a q G^a_{\mu\nu} \,|\, 0 \right\rangle}{\left\langle 0 \,|\, \overline{q} q \,|\, 0 \right\rangle} \propto \frac{\tilde{m}_{\pi}^2}{m_{\pi}^2}$
- Now build chiral Lagrangian in usual way but with 2 chiral spurion fields

$$\chi = 2BM \rightarrow 2B(M + ir\tilde{d}_{CE}) \qquad \qquad \tilde{\chi} = 2B(\tilde{d}_{CM} + i\tilde{d}_{CE})$$

