## Light-quark connected vacuum polarization and muon g-2

# Christopher Aubin, Tom Blum, Maarten Golterman, Chulwoo Jung, Santiago Peris and Cheng Tu

Santa Fe, Aug. 27, 2019

### Motivation:

- Light-quark connected part is the "hardest" part: sub-percent precision required
- Improve statistics: try Low Mode Averaging and All Mode Averaging
- Improve/understand systematics: finite-volume effects to two loops in chiral perturbation theory (include taste-breaking to one loop)
   Provides comparison with GSLL (Mainz) and other (HPQCD) models
- Provide (staggered) result to compare with other (staggered) results (BMW, FNAL-HPQCD-MILC)
- Here: focus on finite-volume effects and continuum extrapolation

#### Definitions

Compute  $a_{\mu}^{\text{HVP}}$  in *time-momentum representation* (Bernecker & Meyer, '11):

the connected (doubly) subtracted light-quark current correlator Assume isospin symmetry; no QED corrections

### Finite volume strategy

- Finite-volume (FV) effects dominated by pions ⇒ SU(2) FV ChPT One loop (lowest order) (Aubin et al., '15) does not capture full effect (Mainz, '13; RBC/UKQCD, '18; Shintani & Kuramashi, '19)
   ⇒ calculate C(t) to two loops directly (seems easier than mom. space calculation: Bijnens & Relefors, '17) also provides estimate for convergence of ChPT
- ChPT only reliable for large t, but FV effects are a long-distance effect; can use ChPT to compute FV effects in  $a_{\mu}^{\rm HVP}$ , we will compute

$$\Delta a_{\mu}^{\rm HVP} = \lim_{L \to \infty} a_{\mu}^{\rm HVP}(L) - a_{\mu}^{\rm HVP}(L)$$

in ChPT, and use this to correct lattice results

# Finite volume strategy - 2

- Two strategies:
  - 1) Extrapolate lattice results to continuum; use continuum FV ChPT
  - 2) Correct lattice results for FV effects, then extrapolate
    advantage: different ensembles have (slightly) different volumes
    disadvantage: need staggered ChPT
- Use hybrid method: correct at one loop using SChPT, extrapolate, then apply two-loop continuum FV correction
- All lattice results at physical pion mass; use leading-order ChPT (= scalar QED) to adjust for slight pion mass mistunings (small effect)

#### A peek at ChPT results

• To NNLO (*i.e.*, two loops)

$$\begin{split} C(t) = &\frac{10}{9} \frac{1}{3} \left( \frac{1}{L^d} \sum_{\vec{p}} \frac{p^2}{E_p^2} e^{-2E_p t} \left[ 1 - \frac{1}{F^2 L^d} \sum_{\vec{k}} \frac{1}{E_k} - \frac{8(p^2 + m_\pi^2)}{F^2} \ell_6 \right] \\ &+ \frac{1}{2dF^2 L^{2d}} \sum_{\vec{p},\vec{k}} \frac{p^2 k^2}{E_p^2 E_k^2} \frac{E_k e^{-2E_p t} - E_p e^{-E_k t}}{k^2 - p^2} \right) \\ = &\frac{10}{9} \frac{1}{6\pi^2} \sum_{\vec{n}} \int_0^\infty dp \, \frac{p^3}{E_p^2} \, e^{-2E_p t} \frac{\sin(npL)}{nL} + \text{NNLO} \end{split}$$

Poisson resummation

• Contains (only) two well-known low-energy constants,  $F_{\pi} = 92.21 \text{ MeV}$ ,  $\ell_6$  from Bijnens, Colangelo & Talavera, '98

# Ensembles used

• Used HISQ ensembles from the MILC collaboration with parameters

| $m_{\pi} (\text{MeV})$ | a  (fm)     | size                | $L \ (fm)$ | $m_{\pi}L$ |
|------------------------|-------------|---------------------|------------|------------|
| 133                    | 0.12121(64) | $48^3 \times 64$    | 5.82       | 3.91       |
| 130                    | 0.08787(46) | $64^3 \times 96$    | 5.62       | 3.66       |
| 134                    | 0.05684(30) | $96^{3} \times 192$ | 5.46       | 3.73       |

• Taste breaking (courtesy Doug Toussaint)

| a (fm)      | mass range (MeV) |
|-------------|------------------|
| 0.12121(64) | 133-326          |
| 0.08787(46) | 130 - 210        |
| 0.05684(30) | 134 - 151        |

# FV corrections, numerical results from ChPT

• Compare  $10^{10}\Delta a_{\mu}^{\rm HVP}$  in NLO, NNLO in continuum ChPT, and NLO in SChPT:

| L/a | NLO (cont.) | NNLO | NLO (SChPT) |
|-----|-------------|------|-------------|
| 96  | 20.6        | 9.1  | 15.6        |
| 64  | 21.6        | 9.0  | 6.9         |
| 48  | 18.1        | 7.4  | 2.1         |

• Taste-breaking corrections in infinite volume to NLO (times  $10^{10}$  )

| $a \ (fm)$ | taste correction |
|------------|------------------|
| 0.05684    | 9.5              |
| 0.08787    | 34.2             |
| 0.12121    | 51.6             |

 Continuum extrapolation independent of this correction: varying method gives estimate of continuum extrapolation error

# Weighted correlator results (64<sup>3</sup> x 96 example)











T/a





T/a

# Results in units of 10<sup>-10</sup>

| a  (fm)     | lattice value | FV corr.    | FV + taste corr. | $FV+taste+m_{\pi}$ |
|-------------|---------------|-------------|------------------|--------------------|
| 0.12121(64) | 562.1(8.4)    | 564.2(8.4)  | 615.8(8.4)       | 613.6(8.4)         |
| 0.08787(46) | 594.8(10.4)   | 601.7(10.4) | 635.9(10.4)      | 630.2(10.4)        |
| 0.05684(30) | 623.1(27.5)   | 638.7(27.5) | 648.2(27.5)      | 647.1(27.5)        |
| 0           |               | 648.3(20.0) | 657.9(20.0)      | 651.1(20.1)        |

All corrections in table are NLO ChPT only

Continuum values in columns 3 and 4 should agree  $\Rightarrow$  4.8 cont. extr. error Last column: also correct for pion mass mistuning; take as central value Add (continuum) NNLO correction (take average): add 8 Estimate higher orders in ChPT geometrically  $\Rightarrow$  4 error for NNNLO ChPT

Scale setting error of 5 (from HPQCD)

TOTAL:  $659 \pm 20 \pm 5 \pm 5 \pm 4 = 659 \pm 22$ 



## Comparison with other work (light-quark connected)

Units: 10<sup>-10</sup>

Our value:  $659 \pm 20 \pm 5 \pm 5 \pm 4 = 659 \pm 22$ 

FNAL/HPQCD/MILC:  $630.1 \pm 8.3$ (using priors on the fit) staggered, appears to be "moved down" by a=0.15 fm points statistical error  $\pm 5$ 

(plot from FHM, arXiv:1902.04223)



# Comparison with other work (light-quark connected)



## Window method



### Window method



## **Conclusions (homework)**

- Our error is dominated by statistics room for improvement!
  Improve 96<sup>3</sup> x 192 ensemble (more low modes?), add 0.15 fm points
- Finite volume effects: correct with two-loop ChPT appears consistent with models – ChPT FV error estimated at 0.6% (depends only on two well-known Low Energy Constants)
- Add SChPT at two loops(?)
- Understand comparison of results with window method better (more statistics, 0.15 fm points?)