The Hadronic Vacuum Polarization Contribution to the Muon g-2 from Four-Flavor Lattice QCD

> Aida X. El-Khadra University of Illinois

Fermilab/MILC/HPQCD g-2 group

Subgroup of members of the three collaborations actively engaged in the g-2 project:

- Aida El Khadra (Illinois)
- Andreas Kronfeld (Fermilab)
- Ethan Neil (Colorado)
- Ruth Van de Water (Fermilab)

- Daniel Hatton (Glasgow)
- Christine Davies (Glasgow)
- Peter Lepage (Cornell)
- Craig McNeile (Plymouth)

MILC Collaboration

- Carleton DeTar (Utah)
- Steve Gottlieb (Indiana)
- Jack Laiho (Syracuse)
- Yuzhi Liu (Indiana)
- Doug Toussaint (Arizona)
- Se Alejandro Vaquero (Utah)
- Shuhei Yamamoto (Utah)

Outline

- Introduction
- Set-Up
- Correlator analysis
- FV and taste breaking corrections
- Θ light quark connected $a_{\mu}^{\rm HVP}$
- Θ disconnected $a_{\mu}^{\rm HVP}$
- Corrections and comparisons
- Summary and outlook

Muon anomalous magnetic moment

$$= (-ie) \,\bar{u}(p') \left[\gamma^{\mu} F_1(q^2) + \frac{i\sigma^{\mu\nu} q_{\nu}}{2m} F_2(q^2) \right] \, u(p)$$

♦ muon anomalous magnetic moment: $a_{\mu} = F_2(0)$

- is generated by quantum effects (loops).
- receives contributions from QED, EW, and QCD effects in the SM.
- is a sensitive probe of new physics.
- ◆ QED + EW correction are known precisely:

3

 μ

$$\delta a_{\mu}^{\text{QED}} \times 10^{11} = 0.08 \qquad \delta a_{\mu}^{\text{EW}} \times 10^{11} = 1$$

◆ QCD corrections are the dominant source of error in the SM prediction:

$$\delta a_{\mu}^{\rm had} \times 10^{11} \sim 50$$

(Keshawarzi et al arXiv:1802.02995; Davier at al arXiv:1706.09436, Jegerlehner arXiv:1704.07409, Davier et al. 2011, Hagiwara et al 2011, Kurz et al 2014, Prades et al 2009, Colangelo et al 2014, Jegerlehner 2015, Benayoun et al 2015,...)

Muon g-2: experiment vs theory

Muon g-2: experiment vs theory

Muon g-2: experiment vs theory

Calculate a_{μ}^{HVP} in Lattice QCD: $a_{\mu}^{\text{HVP,LO}} = \sum_{f} a_{\mu,f}^{\text{HVP,LO}} + a_{\mu,\text{disc}}^{\text{HVP,LO}}$

- Separate into connected and disconnected contributions

 calculate connected contribution for each quark flavor separately
 (gluon and sea-quark background not shown in diagrams)
 - $\int_{c} \sqrt{f} f \rightarrow (f) + \sqrt{f} \quad (f') \rightarrow (f = ud, s, c, b)$

Ruth Van de Water Peter Lepage + SIB

Dan Hatton (Glasgow student)

+ 2-pion contributions

Shaun Lahert (UIUC student)

 add QED corrections (in progress/planned)

- current uncertainties at 1-2% level
- Ghallenges:
 - ✓ needs ensembles with (light sea) quark masses at their physical values
 - include disconnected contributions
 - include QED and strong isospin breaking corrections ($m_u \neq m_d$)
 - finite volume corrections, continuum extrapolation: guided by EFT
 - growth of statistical errors at large Euclidean times
 - noise reduction methods
 - include guidance from EFT
 - include two-pion channels into analysis

Leading order HVP correction:
$$a_{\mu}^{\text{HVP,LO}} = \left(\frac{\alpha}{\pi}\right)^2 \int dq^2 \omega(q^2) \hat{\Pi}(q^2)$$

- Calculate $a_{\mu}^{\rm HVP}$ in Lattice QCD:
 - ← Time-momentum representation: reorder the integrations and compute $G(t) = \frac{1}{3} \sum_{i=1}^{\infty} \langle j_i(x,t) j_i(0,0) \rangle$

$$a_{\mu}^{\rm HVP} = \left(\frac{\alpha}{\pi}\right)^2 \int dt \,\tilde{\omega}(t) \,G(t)$$

[Bernecker & Meyer, <u>EPJ 12</u>]

Need G(t) over the entire range of t.

Leading order HVP correction:
$$a_{\mu}^{\text{HVP,LO}} = \left(\frac{\alpha}{\pi}\right)^2 \int dq^2 \omega(q^2) \hat{\Pi}(q^2)$$

- Calculate $a_{\mu}^{\rm HVP}$ in Lattice QCD:
 - ★ Time-moments: Taylor expand $\hat{\Pi}(q^2) = \sum_{k} q^{2k} \Pi_k$ and compute the Taylor coefficients from time moments $G_{2n} = a \sum_{t} t^{2n} G(t)$: $\Pi_k = (-1)^{k+1} \frac{G_{2k+2}}{(2k+2)!}$

and replace $\hat{\Pi}(q^2)$ by its [*n*,*n*] and [*n*,*n*-1] Padé approximant [HPQCD (Chakraborty et al), PRD 14]

Can apply corrections (finite volume, discretization) to the Taylor coefficients before constructing a_{μ}

 Note: The time-moments method yields results that are numerically equivalent to the time-momentum representation.

Fermilab/MILC/HPQCD project set-up

• Use MILC ensembles with physical sea pion masses at 4 lattice spacings

- connected light quark contribution
 [Davies et al, <u>arXiv:1902.04223]</u>
- disconnected contribution
 [Dan Hatton (Glasgow student) + Craig McNeile]
- also working on QED corrections using QCD+QED ensemble

 new project on a direct calculation of the two-pion contributions [Shaun Lahert, UIUC student]

Calculate $a_{\mu}^{\rm HVP}$ in Lattice QCD:

light quark connected contribution:

$$a_{\mu}^{\text{HVP,LO}} = \sum_{f} a_{\mu,f}^{\text{HVP,LO}} + a_{\mu,\text{disc}}^{\text{HVP,LO}}$$
$$G(t) = \frac{1}{3} \sum_{i,x} \langle j_i(x,t) \, j_i(0,0) \rangle$$

- Noise at large t
 bounding method
- spectral decomposition of G(t)
 perform multi-exponential fits to G(t) in range t_{min} < t < t_{max}
 + replace G(t) with fit for t > t* ~2-2.5 fm
 tests of fit method using high statistics data and EFT guidance
 add contributions from two-pion states to reconstruct G(t) at large t (in progress)

Correlator analysis

Correlator analysis

check stability under variations of:

• t_{min}

• number of states, N_{states}

Correlator analysis

check stability under variations of:

• t_{min}

• number of states, N_{states}

Correlator analysis: two-pion contributions

- Generate fake data with the chiral model used for FV and taste corrections (includes $\rho \pi \pi$ interactions)
- Add covariance matrix from real data
- Fit fake data using the same procedure (fit ranges etc...) as used for fitting the ``real data" correlators

Correlator analysis: two-pion contributions

- Generate fake data with the chiral model used for FV and taste corrections (includes $\rho \pi \pi$ interactions)
- Add covariance matrix from real data
- Fit fake data using the same procedure (fit ranges etc...) as used for fitting the ``real data" correlators

Corrections: FV and leading discretization

• a_{μ} dominated by lowest moments

- Calculate $\pi\pi$ contributions to Π_n in modified chiral theory (which includes $\rho - \gamma - \pi\pi$ interactions) [Chakraborty et al, 1601.03071]
- Corrections obtained from difference between contributions in infinite volume & continuum and FV & tastebreaking effects
- compare with Π_n obtained from fit to R-ratio data (KNT 1802.02995)
- agreement at large n good test of corrections

Light-quark connected a_{μ} : Continuum limit

- adjust for small differences between simulation M_{π} and M_{π^0} :
 - remove cont. $\pi\pi$ contribution with pion mass set to simulation values - add cont. $\pi\pi$ contributions back in with M_{π^0}

• fit
$$a^{ll}_{\mu}$$
 to:

$$a_{\mu}^{ll}(\text{latt.}) = a_{\mu}^{ll}(\text{conn.}) \left(1 + c_s \sum_{f=l,l,s,c} \frac{\delta m_f}{\Lambda} + c_{a^2} \frac{(a\Lambda)^2}{\pi^2} \right)$$

$$\Lambda = 500 \text{ MeV}$$

 $c_{a^2} = 0 (1), c_s = 0.0 (3)$

 $10^{10} a_{\mu}^{ll}(\text{conn.}) = 630.1 \pm 8.3$

Continuum limit: stability

Light-quark connected a_{μ} : Comparison

Light-quark connected Π_1, Π_2 : Comparison

Light-quark connected: error budget

Source	$a^{ll}_{\mu}(\text{conn.})$ (%)	$\Pi_1^{ll}(\text{conn.})$ (%)	$\Pi_2^{ll}(\text{conn.})$ (%)
Lattice-spacing (a^{-1}) uncertainty	0.8	0.9	1.6
Monte Carlo statistics	0.7	0.7	1.1
Continuum $(a \rightarrow 0)$ extrapolation	0.7	0.7	0.8
Finite-volume & discretization corrections	0.3	0.4	1.7
Current renormalization (Z_V)	0.1	0.1	0.1
Chiral (m_l) interpolation	0.1	0.1	0.0
Sea (m_s) adjustment	0.1	0.1	0.1
Pion mass $(M_{\pi,5})$ uncertainty	0.0	0.0	0.1
Total	1.3%	1.4%	2.7%

disconnected a_{μ}^{HVP}

- Analysis still preliminary
 [Dan Hatton (Glasgow student) + Craig McNeile]
- Two ensembles so far:
 0.15 fm, 0.12 fm
- Correlator generation for 0.09 fm ensemble is in progress

disconnected a_{μ}^{HVP}

- Similar analysis strategy as for connected $a_{\mu}^{\rm HVP}$
- fit to exponentials including ground state $\omega \rho$ + excited states for ρ, ω
- replace correlator data with fit for t > 2 fm

disconnected a_{μ}^{HVP} : comparison

Complete light-quark $a_{\mu}^{\text{HVP,LO}}$

Our calculation of the disconnected and IB contributions is not yet complete.
Herein estimate them using chiral model, phenomenology

Contribution	$10^{10} a^{ll}_{\mu}(\text{conn.})$	$\Pi_1^{ll}(\text{conn.}) \; (\text{GeV}^{-2})$	$\Pi_2^{ll}(\text{conn.}) \; (\text{GeV}^{-4})$
$M_{\pi^0} \to M_{\pi^+}$	-4.3	-0.00075	0.0057
$\pi\pi$ disconnected	-7.9	-0.00120	0.0044
Total $\pi\pi$	-12(3)	-0.0020(5)	0.010(3)
ρ, ω disconnected	-5(5)	-0.0008(8)	0.002(1)
Strong-isospin breaking	10(10)	0.0015(15)	-0.006(6)
Electromagnetism	0(5)	0.0000(6)	0.000(2)
Total correction	-7(13)	-0.0013(19)	0.006(7)

Complete $a_{\mu}^{\text{HVP,LO}}$: adding all flavors

For the contributions from the heavier flavors (s,c,b), use results from previous calculations [Chakraborty, et al arXiv:1403.1778; Donald et al arXiv: 1208.2885; Colquhoun et al, 1408.5768]

Contribution	$10^{10}a_{\mu}^{\mathrm{HVP,LO}}$	$\Pi_1^{\rm HVP,LO}({\rm GeV}^{-2})$	$\Pi_2^{\rm HVP,LO}({\rm GeV}^{-4})$
light	623.1(8.3)(13)	0.0921(13)(19)	-0.2104(56)(71)
strange	53.40(60)	0.007291(78)	-0.00587(12)
charm	14.40(40)	0.001840(49)	-0.0001240(43)
bottom	0.270(40)	0.0000342(48)	-2.28(37)e - 07
Total	691(15)	0.1000(23)	-0.2104(90)

Complete $a_{\mu}^{\text{HVP,LO}}$: Comparison

Summary and Outlook

- ★ We have calculated the light-quark connected contribution to $a_{\mu}^{\text{HVP,LO}}$ with a precision of 1.3%.
- ★ Using phenomenological estimates for missing IB corrections and disconnected contributions we obtain the light-quark $a_{\mu}^{\text{HVP,LO}}$ with 2.2% precision.
- ☆ We presented preliminary results for the disconnected contributions at two lattice spacings (Dan Hatton). Analysis on 0.09 fm ensemble is in progress.
- ☆ We will continue to improve our calculation of the light-quark connected contribution by
 - adding more statistics (more measurements, more configs)
 - adding 2-pion analysis (Shaun Lahert)
 - improving the scale setting
- ☆ Working on including QED effects

Anomalous magnetic moment:

$$a \equiv \frac{g-2}{2} = F_2(0)$$

• electron:
$$10^{14}a_e = \begin{array}{c} 115965218073\,(28) & \text{exp.}\\ 115965218161\,(23) & \text{SM} \end{array}$$

• muon: $10^{11}a_\mu = \begin{array}{c} 116592089\,(63) & \text{exp.}\\ 116591803\,(49) & \text{SM} \end{array}$

• tau lepton:
$$-0.052 < a_{\tau} < 0.013$$
 exp.
 $a_{\tau} = 1.17721(5) \, 10^{-3}$ SM

Sensitivity to heavy new physics: $a_{\ell}^{\rm NP} \sim \frac{m_{\ell}^2}{\Lambda^2}$

$$\left(m_{\mu}/m_{e}\right)^{2} \sim 4 \times 10^{4}$$

 $a \equiv \frac{g-2}{2} = F_2(0)$ Anomalous magnetic moment: $10^{14}a_e = \begin{array}{c} 115965218073 \ (28) \\ 115965218161 \ (23) \end{array}$ exp. 2.4σ tension • electron: SM $10^{11} a_{\mu} = \frac{116592089(63)}{116591803(49)}$ exp. muon: SM $-0.052 < a_{\tau} < 0.013$ exp. • tau lepton: $a_{\tau} = 1.17721(5) \, 10^{-3}$ SM Sensitivity to heavy new physics: $a_{\ell}^{\rm NP} \sim \frac{m_{\ell}^2}{\Lambda^2}$

$$\left(m_{\mu}/m_{e}\right)^{2} \sim 4 \times 10^{4}$$

Thank you!

Farah Willenbrock

Appendix

Muon g-2 Theory Initiative

Steering Committee:

- Gilberto Colangelo (Bern) gilberto@itp.unibe.ch
- Michel Davier (Orsay) <u>davier@lal.in2p3.fr</u>
- Simon Eidelman (Novosibirsk) <u>eidelman@cern.ch</u>
- Aida El-Khadra (UIUC & Fermilab) axk@illinois.edu
- Christoph Lehner (BNL) <u>clehner@bnl.gov</u>
- State Sta
- Search Andreas Nyffeler (Mainz) <u>nyffeler@uni-mainz.de</u>
- Lee Roberts (Boston) roberts@bu.edu
 Fermilab E989 experiment
- Search Charles Teubner (Liverpool) thomas.teubner@liverpool.ac.uk

Muon g-2 Theory Initiative

- Maximize the impact of the Fermilab and J-PARC experiments
 - quantify and reduce the uncertainties on the hadronic corrections
- summarize the theory status and assess reliability of uncertainty estimates
- organize workshops to bring the different communities together: <u>First plenary workshop @ Fermilab</u>: 3-6 June 2017 <u>HVP workshop @ KEK</u>: 12-14 February 2018 <u>HLbL workshop @ U Connecticut</u>: 12-14 March 2018 <u>Second plenary workshop @ HIM (Mainz</u>): 18-22 June 2018 <u>Third plenary workshop @ INT (Seattle</u>): 9-13 September 2019
- wo working groups, one for HVP and one for HLbL community participation: 53 people in HVP WG, 33 in HLbL WG
- White Paper: in progress, plan to post it before the Fermilab experiment announces its first measurement with ``Brookhaven-level" statistics target date: November 2019

First Workshop of the Muon g-2 Theory Initiative

3-6 June 2017 *Q Center*

US/Central timezone

66 registered participants, 40 talks, 15 discussion sessions (525 minutes)

A. El-Khadra

Santa Fe 2019, 26-30 Aug 2019

Search