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Outline 
• Quick review of standard model CP 
• Overview of 2015 calculation 
• Overview of 2019 calculation 
• Multi-operator results for π π scattering 
• K  π π decay amplitudes (no new 

result yet for ε ′) 
• Improved statistical methods: 

– Control auto-correlations  
– Determine goodness of fit 

• Conclusion 
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Cabibbo-Kobayashi-Maskawa mixing 

• W 
± emission scrambles the quark flavors 

 

 

 

CP 
violation! 
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K0 – K0 mixing 
•  ∆ S=1 weak decays allow K0 and K0 to decay to 

the same π π  state. 
• Resulting mixing described by Wigner-Weisskopf 

 
 
 

• Decaying states are mixtures of K0 and K0  

Indirect CP 
violation 

(5) 



Santa Fe -  08/26/2019 

CP violation 
• CP violating, experimental 

amplitudes: 
 
 
 

 
 

• Where: 
Indirect:   |ε | = (2.228 ± 0.011) x 10−3 

 Direct:     Re(ε ′/ε ) = (1.66 ± 0.23) x 10−3 
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K  π π  and CP violation 

• Final ππ states can have I = 0 or 2. 
 

 

 

• CP symmetry requires A0 and A2 be real. 

• Direct CP violation in this decay is 
characterized by: 
 

∆I = 3/2 

∆I = 1/2 

Direct CP 
violation 
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Low Energy Effective Theory 

• Represent weak interactions 
by local four-quark 
Lagrangian 

•   

• Vqq′ – CKM matrix elements 

• zi and yi – Wilson Coefficients 

• Qi – four-quark operators 
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Lattice calculation of  <ππ |HW |K > 

• The operator product d(x)s(x) easily 
creates a kaon. 

• Use finite-volume energy quantization 
(Lellouch-Luscher) and adjust L so 
that nth excited state obeys: Eππ

(n)= MK 
. 

• Use boundary conditions on the quarks: Eππ
(gnd) = MK  

• For (ππ )I=2 make d anti-periodic 

• For (ππ )I=0 use G-parity boundary conditions 
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Calculation 
of A2 
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 ∆ I = 3/2 – Continuum Results 
(M. Lightman, E. Goode T. Janowski) 

• Use two large ensembles to 
remove a2 error (mp=135 MeV, 
L=5.4 fm) 
• 483 x 96, 1/a=1.73 GeV 
• 643 x 128, 1/a=2.28 GeV 

 
 

 

 

• Continuum results: 
• Re(A2) =  1.50(0.04stat) (0.14)syst×10−8 GeV 
• Im(A2) = - 6.99(0.20)stat (0.84)syst×10-13 GeV 

• Experiment: Re(A2) = 1.479(4) 10-8 GeV 
• Eππ   δ2  = −11.6(2.5)(1.2)o  
• [Phys.Rev. D91, 074502 (2015)] 
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Calculation of 
A0 and ε ′ 
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Overview of 2015 calculation 
(Chris Kelly and Daiqian Zhang) 

• Use 323 x 64 ensemble 
– 1/a = 1.3784(68) GeV, L = 4.53 fm. 
– G-parity boundary condition in 3 directions 
– 216 configurations separated by 4 time units 

• Achieve essentially physical kinematics: 
– Mπ  =  143.1(2.0) 
– MK  = 490.6(2.2) MeV 
– Eππ =  498(11) MeV 
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I = 0, ππ – ππ correlator 

• Determine normalization of 
ππ interpolating operator 

• Determine energy of finite 
volume, I = 0, ππ state:       
Eππ =  498(11) MeV 

• Obtained consistent results 
from a one-state fit with 
tmin=6 or a two-state fit with 
tmin=4.  

(14) 

K mass 

ππ  energy 



Santa Fe -  08/26/2019 

I = 0 K  π π matrix elements 
• Vary time separation between HW and ππ operator. 
• Show data for all K – HW separations tQ - tK ≥ 6 and   

tππ  - tK  = 10, 12, 14, 16 and 18. 
• Fit correlators with tππ  - tQ ≥ 4 
• Obtain consistent results for tππ  - tQ ≥ 3 or 5 

 
Q2 

Oππ HW 

Q6 
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Systematic errors 

Description Error 
Operator 
renormalization 

15% 

Wilson coefficients 12% 
Finite lattice spacing 12% 
Lellouch-Luscher factor 11% 
Finite volume 7% 
Parametric errors 5% 
Excited states 5% 
Unphysical kinematics 3% 
Total 27% 
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2015 Results 
 [Phys. Rev. Lett. 115 (2015) 212001] 

• Eππ(499 MeV) determines δ0 : 
• I = 0 ππ phase shift:        δ0 = 23.8(4.9)(2.2)o 

• Dispersion theory result: δ0 = 34o [G. Colangelo, et al.] 

• Re(ε ′/ε) = (1.38 ± 5.15stat ± 4.59sys ) x 10-4  

• Expt.:  (16.6 ± 2.3) x 10-4  

• 2.1 σ  difference 

• Unanswered questions: 
• Is this 2.1 σ  difference real?   Reduce errors 

• Why is δ0 so different from                                                  
the dispersive result? 
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Introduce more ππ operators 
to distinguish excited states 



• Increase statistics: 216  1438 configs. 
– Reduce statistical errors 
– Allow in depth study of systematic errors 

• Study operators neglected in our NPR 
implementation 

• Use step-scaling to allow perturbative 
matching at a higher energy 

• Use an expanded set of ππ  operators 
• Use X-space NPR to cross charm 

threshold (Masaaki Tomii). 
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Extend and improve calculation  
(Chris Kelly and Tianle Wang) 

(18) 



• Increasing statistics: 216  1438 configs. 
–  ππ – ππ correlator well-described by a single 

ππ  state 
–  δ0 = 23.8(4.9)(2.2)o  19.1(2.5)(1.2)o          

χ2 / DoF = 1.6 

Santa Fe -  08/26/2019 

Adding more statistics 

(19) 



• Adding a second σ-like (uu+dd) operator 
reveals a second state! 

• If only one state, 2 x 2 correlator matrix will 
have determinant = 0.  For tf - ti = 5: 
 
 

• Add a third operator giving each pion a larger 
momentum: p = ± (3,1,1) π /L 

• Label operators as ππ (111), σ,  ππ (311) 
• Only 741 configurations with new operators 
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Adding more ππ operators 

(20) 

=   0.439(50) 



• Third ππ (311) operator not important.  
•  δ0 = 31.7(6)° vs 34° prediction (5-15 fit, 

statistical errs only). 
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I = 0 ππ  scattering with three operators 

(21) 

ππ (111) 

ππ (111) & 

ππ (311) 

ππ (111) & σ 

ππ (111) & 
σ & ππ (111)  
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I = 0 ππ  scattering with Pcm ≥ 0 

(22) 

Colangelo et al, Nuc Phys 
B603 (2001) 125-179 

Pcm = (0, 0, 0) 

Pcm = (2, 0, 0) 

Pcm = (2, 2, 0) 
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I = 0 ππ  scattering with Pcm ≥ 0 

(23) 

• Expect increased difficulty separating excited 
states for Pcm ≥ 0. 
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I = 0 ππ  scattering with Pcm ≥ 0 

(24) 

• Failure of 3-operator fit easy to recognize: 
 
 
 
 
 
 
 

• Plateau does not extend to smaller t when 
extra operators are added. 
 

Pcm = (222)π /L 
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I = 0 ππ  scattering with Pcm ≥ 0 

(25) 

• Plateau does not extend to smaller t when 
extra operators are added. 

• The matrix of amplitudes A|a>,Ob is largely 
diagonal. 

• The fit to each operator is effectively a 
single-state fit with the same problems as 
those in 2015. 

• Perhaps the result having no moving σ 
operator implemented? 
 



Santa Fe -  08/26/2019 

K  ππ  from 3-operator fits (case I) 

(26) 

• Fit using up to 3 operators and 3 states with 
energies and amplitudes from ππ scattering: 

  one operator 
one state 

tππ - top 

  2&3 operators,   
2&3 states 

<ππ|Q|K> 



<ππ|Q|K> 
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K  ππ  from 3-operator fits (case II) 

(27) 

• Fit using up to 3 operators and 3 states with 
energies and amplitudes from ππ scattering: 

  one operator, 
one state 

tππ - top 

  2&3 operators,  
2&3 states 



• Auto-correlations – we must be careful 
that our errors are accurate 

• We need estimates of goodness of fit    
(p-values) 
– Demonstrate that our fits describe the data. 
– Decide if alternative fits used to estimate 

systematic errors are plausible. 
– However, our lattice QCD p-values are 

traditionally unreasonably small!  
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Two data analysis challenges 

(28) 



• Our measurements are made every 4 MD 
time units and are mildly correlated.   

• While we have N=741 configurations, the 
covariance matrix for three operators and    
t = 5-15 time slices is 66 x 66! 

• Noise grows as we bin the data and have 
fewer samples to measure the fluctuations. 

• Solved by the blocked jackknife method: 
– Identify N/B blocks of size B. 
– Sequentially remove each block and analyze the 

remaining N-B (not N/B-1) samples 
Santa Fe -  08/26/2019 

Auto-correlations 

(29) 
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I=0 π π  two-point function errors 

(30) 

bin size bin size 

re
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e 
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r 
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Binned data errors Binned scrambled data errors 

Blocked jackknife errors 

block size 



• After obtaining p-values of 0.1– 0.2 for most 
“best fits” consider a different line of work? 

• Last spring, Tanmoy pointed out that this is 
often caused by ignoring fluctuations in the 
covariance matrix. 

• This broadens the χ 2 distribution into the 
Hotelling T 2 distribution. 

• Hotelling’s is an analytically known distribution 
depending on the number of points being fit, 
the number of fit parameters (like χ 2) and on N. 
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Poor p-values 

(31) 



• Hotelling assumes that the data (not its 
averages) are Gaussian and uncorrelated. 

• This is not true for our case. 
• Abandon analytic methods and use a 

bootstrap analysis to determine the correct 
generalized χ 2 distribution from the data. 

• Recall how the “sample with replacement” 
bootstrap method works. 
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Hotelling T 2 is insufficient 

(32) 
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(Blocked) Bootstrap method 

N variables, NN samples 

(33) 

1 variable, N samples 

 

2 variables, N 2 samples 

 

Choose Nboot samples from 
these N 

N points in N dimensions 



• Define   
        
    where 

 
• Find P(q2) where   
                                    

 
• Here pint(q2) is the usual p-value 
• Obtain p(q2) from our Monte Carlo data as 

follows: 
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q 2 distribution 

(34) 

  and 



• Start with the original ensemble {vit }1 ≤ i ≤ Ν   
• Draw N values from this set (allowing the 

same value to be drawn multiple times).   
• Create Nboot such ensembles of N values:     

{bit
α }1 ≤ i ≤ Ν  where 1 ≤ α ≤ Nboot  

• Recenter these ensembles so f(t,p) will fit the 
average over boot strap ensembles perfectly:  
 

• Here the parameters p fit the average data vt 
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Find q 2 distribution from the data 
(Chris Kelly) 

(35) 



• bi,t   has the fluctuation of the population but is 
fit perfectly by f(t,p) 
 

• Thus 
 
 

     will obey (and give) the correct q2 distribution. 
• p(q2) ≈ N(q2)/Nboot  where N(q2) is the number 

of bootstrap ensembles with (q2)α > q2. 
• Now p-values can be computed for any 

definition of q2 including for uncorrelated fits! 
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q 2 distribution 

(36) 
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Conclusions 
• Calculation of K  π π 

 decay substantially 
improved over 2015 result. 

• 216  741 configurations. 
• Three π π  interpolating operators allow a 

careful discrimination between ground and 
excited states. 

• Errors reduced by using correlated fits. 
• Auto-correlations are taken into account 
• Bootstrap q2 distribution gives correct      

p-values. 
• Final results available very soon. 
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Backup 
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I = 0  K  π π  with Eππ = MK      
(Chris Kelly & Daiqian Zhang) 

• Use G-parity BC to obtain pπ = 205 MeV 
(Changhoan Kim, hep-lat/0210003) 

– G = C e iπ Iy 

– Non-trivial: 

– Gauge fields obey C BC 

– Extra I = 1/2, s′ quark adds e – mKL error 

– Must take non-local square root of s-s′ 
determinant – non-locality also ~ e – mKL  

– Tests:  fK and BK correct within errors.  

(39) 



Local four quark operators 
• Current-current 

operators 

• QCD Penguins 

• Electro-Weak 
Penguins 
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I = 0 ππ  scattering with Pcm ≥ 0 

(41) 

Failure  
of fitting 
analysis 
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K  ππ  from 3-operator fits (case I) 

(42) 

• Fit using up to 3 operators and 3 states with 
energies and amplitudes from ππ scattering: 

  fewer 
operators 

tππ - top 

  2015 result 
with errors 
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K  ππ  from 3-operator fits (case II) 

(43) 

• Fit using up to 3 operators and 3 states with 
energies and amplitudes from ππ scattering: 

  fewer 
operators 

tππ - top 

  2015 result 
with errors 
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