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Introduction



Compositeness of the Higgs could provide a natural solution to the 
hierarchy problem of the Standard Model.   

• Flavor Problem 

Challenges

• Top Yukawa 

• Little Hierarchy Problem 

It is not simple to generate masses for the fermions without large 
contributions to flavor violation. Conformal dynamics? 

It is a challenge to generate a large mass for the top quark. Top 
compositeness?

Precision electroweak requires that compositeness scale ≳ 5 TeV.  
Then radiative corrections to the Higgs mass from the top loop are 
not small, leading to “little hierarchy problem”. Light top partners?

The problems are very similar to those of technicolor a decade ago. The 
“little hierarchy problem” is the new face of precision electroweak bound.   



Strong conformal dynamics above the weak scale offers a solution to flavor 
problem of composite Higgs models.  

The conformal symmetry is broken at the compositeness scale, with the 
Higgs emerging as a composite of the strong dynamics.

In theories where an exact conformal symmetry is spontaneously broken, 
the low energy effective theory contains a massless scalar, the dilaton.  

The dilaton can be thought of as the NGB asociated with the breaking of 
scale invariance. (Just 1 NGB, not 5, because conformal invariance is a 
space-time symmetry.)

The form of the dilaton couplings is fixed by the requirement that the 
symmetry be realized non-linearly. Very predictive.



However, in the class of theories of interest for electroweak symmetry 
breaking, conformal symmetry is explicitly broken. 

• Is there a light dilaton with mass below the compositeness scale, in 
addition to the Higgs?

• If so, how are its couplings modified by conformal symmetry violating 
effects?



The Mass of the Dilaton



Consider a theory where conformal symmetry is spontaneously broken.  
Then the low energy effective theory contains a dilaton field σ(x) . 

Below the breaking scale the symmetry is realized non-linearly. Under 
scale transformations,  

the dilaton transforms as

where f is the symmetry breaking scale. 



It is convenient to define the object 𝝌(x) , which transforms linearly under 
scale transformations.   

The low energy effective theory for the dilaton will in general contain all 
terms consistent with this transformation. 

Under the scale transformation



What terms does the Lagrangian contain?   

The symmetry allows derivative terms of the form  

The effect of this term is to drive f to zero, corresponding to unbroken 
conformal symmetry, if κ0 is positive. If κ0 is negative, f is driven to 
infinity, and conformal symmetry is never realized.

However, crucially, a non-derivative term is also allowed.

Only if κ0 is identically zero is the symmetry spontaneously broken. The 
potential then vanishes and there is a massless dilaton. However, in 
general setting κ0 to zero is associated with tuning, since there is no 
symmetry reason for it to vanish.      



The situation changes if conformal symmetry violating effects are present. 
Add to the theory an operator 𝑶(𝒙) of dimension Δ close to 4.     

Under scale transformations, 

Define a dimensionless coupling constant , 

The operator 𝑶(𝒙) is normalized such that 𝝀 ~ 1 corresponds to strong 
coupling. For small 𝝀 ≪ 𝟏, it satisfies the RG equation,



We can determine how 𝝀 appears in the low energy theory by promoting 
it to a spurion.  For small 𝝀 the form of the UV theory is invariant under 
the following transformation.     

To leading order in 𝝀 the form of the potential now becomes  

From this, we find the dilaton mass at the minimum,

The dilaton potential admits a minimum at

The dilaton mass is suppressed if the operator 𝑶(𝒙) that breaks 
conformal symmetry is marginal!                        (Goldberger, Grinstein & Skiba)

(Rattazzi & Zaffaroni)



Need a large hierarchy between the flavor and electroweak scales. Then 
either the deformation 𝝀 must be hierarchically small in the ultraviolet, or 
the operator O must be marginal.

Unfortunately, the analysis that led up to this conclusion is only valid at 
small 𝝀, corresponding to weak coupling. To validate this result, must 
establish it at strong coupling.  

Our approach will be to assume small (perturbative) 𝝀, but work 
to all orders in this parameter. Check if the result survives when
𝝀→ 1, its strong coupling value.

If O is indeed marginal, potentially a very important result! A new light 
scalar state below the compositeness scale!



Working to all orders in 𝝀 involves incorporating 4 distinct effects.   

• In writing down the Lagrangian, did not take into account the breaking 
of scale invariance by the regulator. Must include this.

• In determining the vacuum structure used the potential, not the 
effective potential. This needs to be accounted  for.

• Need to include terms with all powers of 𝝀 in the Lagrangian. Setting  
𝝐 = 𝟒 − 𝚫 , the potential becomes

• As 𝝀 approaches strong coupling, its RG evolution is affected. The RG for 
𝝀 now takes the more general form  

where g(𝝀) is a polynomial in 𝝀. The constant term in this  
polynomial is 𝝐 = (4 - 𝚫).



Of these 4 effects, the first 3 do not alter the conclusions of the naive small 
𝝀 analysis.  The underlying reason is that in each of these 3 cases, the 
corrections are of order 𝝀 times the leading order effect and are therefore 
at most of the same size.    

The 4th effect is qualitatively different. Consider again the RGE

The leading order term in the polynomial g(𝝀) is (4 - 𝚫) = 𝝐 ≪ 1, while 
the corrections begin at order 𝝀. Even before strong coupling is reached 
the higher order terms dominate, and their effects can alter the 
conclusions of the naïve small 𝝀 analysis. 



The dilaton mass is given by

It is the scaling behavior of the deformation 𝑶(𝒙) at the breaking scale 
that determines the dilaton mass, not scaling dimension at fixed point! 

To obtain a light dilaton, it is not sufficient that c0 = 𝝐 ≪ 1. Require g(𝝀) ≪
1 at the breaking scale. 

Although this can happen naturally in some special cases, for example in 
theories with fixed lines, this criterion is not expected to be satisfied in 
most theories of interest for EWSB.

This is equivalent to requiring that not just c0 but all the cn ≪ 1.  



Light dilatons are not a generic feature of composite Higgs models that 
address the flavor problem through strong conformal dynamics.

For a light dilaton to be present, the explicit violation of scale invariance 
at the breaking scale must be small. Either

• the deformation 𝝀 must be small at the breaking scale, or 

• the scaling behavior of the operator 𝑶 near the breaking scale must be 
close to marginal.  

If a light dilaton is present, we can construct a consistent effective theory, 
treating the violation of scale invariance at the breaking scale as the small 
expansion parameter.  



The Dilaton Couplings



If the UV theory was conformally invariant, the dilaton would couple so as 
to formally restore this symmetry to the interactions in the low energy 
effective field theory.   

The form of the dilaton interactions with the SM fields would then be
completely predicted.                                             (Goldberger, Grinstein & Skiba)    

However, in realistic composite Higgs models, the conformal symmetry is 
explicitly violated. There are 2 sources of conformal symmetry violation.    

• The light fermions of the SM, and also the SU(3) × SU(2) × U(1) gauge 
interactions, are generally not part of the strong conformal dynamics.     

• The explicit violation from the operator 𝑶 that breaks conformal 
symmetry and generates the weak scale must also be accounted for.



Consider the dilaton coupling to the W gauge bosons. To begin, neglect the 
conformal symmetry violating effects arising from the operator 𝑶.      

That leaves only one explicit source of conformal symmetry violation, a 
quantum effect from the running of the SU(2) gauge coupling. This is 
small and can be neglected.      

Then the mass of the W boson arises as a consequence of the spontaneous 
breaking  of conformal symmetry.   

In this limit the dilaton couples as a “conformal compensator”, to formally 
restore the conformal symmetry.   



Once conformal symmetry violating effects are incorporated, there are 
additional dilaton couplings that respect the spurious conformal symmetry.       

Expanding this out we get

where cW is of order 𝝀. 

Then correction to the dilaton coupling is of order 𝝐𝝀, which is the square 
of the dilaton mass over the strong coupling scale.       

Corrections to the dilaton couplings from conformal symmetry violating 
effects arising from the operator 𝑶 are suppressed by the square of the 
dilaton mass over the strong coupling scale.       



Let us see how this arises in the composite Higgs framework. 

For illustrative purposes, consider a theory in which the fields in the SM 
Higgs doublet emerge as pseudo-Nambu-Goldstone bosons from the 
breaking of SU(3) × U(1) to SU(2) × U(1). 

Normally we would parametrize the Goldstones as   

But now the non-linear sigma model condition changes from,    

.  This corresponds to the replacement,    

In this parametrization Goldstones h are invariant under scale transforms.     

where   



Then the kinetic term for the Higgs doublet arises as  

The potential for the Higgs can only arise from effects that violate the 
global symmetry, such as the gauge and Yukawa couplings.   

In realistic models, the gauge interactions and top Yukawa coupling do 
violate the conformal symmetry, but not by very much.     

The potential for the Higgs is then of the very restrictive form,

This potential does not lead to Higgs-dilaton mixing. After setting the Higgs 
to its VEV, we obtain the dilaton coupling to the W exactly as before, 



When conformal symmetry violating effects from the operator 𝑶 are 
included, the non-linear sigma model condition generalizes to,

Repeating the same steps as before, we again find for the dilaton coupling 
to the W boson, 

The dilaton couplings to the other SM fields can be determined in a 
similar fashion. 



Conclusions



In theories where the operator that breaks conformal symmetry remains 
close to marginal until the breaking scale, the dilaton mass can naturally 
lie below the scale of strong dynamics.   

However, in general, this condition need not be satisfied in realistic 
composite Higgs models. 

In this framework, if the dilaton is light, corrections to the form of dilaton
couplings to SM fields from  conformal symmetry violating effects are 
suppressed by the square of  the dilaton mass over the strong coupling 
scale, and are under good theoretical control.  


