Introduction	Phenomenology	Quark EDM	Gluonic CPV	Quark cEDM	Conclusions
00000	0000000	000000	000000000000	000	0

Neutron Electric Dipole Moments

Tanmoy Bhattacharya

Los Alamos National Laboratory

Workshop on Lattice QCD Santa Fe, NM, USA

August 29, 2019

LA-UR-19-28747

イロト イボト イヨト イヨ

Los Alamos National Laboratory

Tanmoy Bhattacharya nEDM

Introduction	Phenomenology	Quark EDM	Gluonic CPV	Quark cEDM	Conclusions
●○○○○	0000000	000000	000000000000	000	0
Standard model					

Standard model of particle physics with neutrino mass

- Explains all laboratory experiments.
- Is in violent contradiction with cosmology.

The universe:

- Can't be big, empty and homogeneous ("inflation")
- Can't have much matter ("baryogenesis")
- Can't clump into clusters of galaxies ("dark matter")
- Can't be accelerating ("dark energy")

Introduction	Phenomenology	Quark EDM	Gluonic CPV	Quark cEDM	Conclusions		
○●○○○	0000000	000000	000000000000	000	0		
Motivation of studying CP Violation							

Observed baryon asymmetry: $n_B/n_{\gamma} = 6.1^{+0.3}_{-0.2} \times 10^{-10}$.

Without CP violation, freezeout ratio: $n_B/n_\gamma \approx 10^{-20}$.

WMAP + COBE 2003

Kolb and Turner, Front. Phys. 69 (1990) 1.

イロト イボト イヨト イヨト

Either asymmetric initial conditions or baryogenesis! Sufficiently asymmetric initial conditions kills inflation.

Sakharov Conditions

- Baryon Number violation
- C and CP (\Rightarrow T) violation
- Out of equilibrium evolution

Sakharov, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32.

-

Introduction	Phenomenology	Quark EDM	Gluonic CPV	Quark cEDM	Conclusions		
	0000000	000000	000000000000	000	0		
Standard model CP Violation							

Sakharov conditions fullfilled in the standard model weak interactions.

- Baryon number anomaly (But B L conserved; could be Leptogenesis)
- CKM phase violates C and CP
- Higgs vev generation may go out-of-equilibrium.

Quantitatively insufficient, but BSM could have more CPV.

Introduction	Phenomenology	Quark EDM	Gluonic CPV	Quark cEDM	Conclusions
	0000000	000000	000000000000	000	0
EDMs					

- Elementary particles are non-degenerate: spin is the only direction.
- Electric dipole moments violate P and T
- CPT implies they violate CP

CKM contribution small $d_n < 10^{-31} e cm$

Seng, PRC 91 (2015) 025502.

$$d_n \sim \frac{m_*}{\Lambda_{\text{had}}^2} e \bar{\theta} \sim 10^{-17} \bar{\theta} e \text{cm} \rightarrow |\bar{\theta}| < 10^{-9}$$

Possibly large strong CPV. Assume suppressed

Los Alamos National Laboratory

ъ

イロン イヨン イヨン イヨン

Introduction	Phenomenology	Quark EDM	Gluonic CPV	Quark cEDM	Conclusions
00000	●○○○○○○	000000	000000000000	000	0
Effective Field Theory					

Pospelov and Ritz, Ann. Phys. 318 (2005) 119.

・ロト ・回 ト ・ヨト ・ヨト

Э

Introduction	Phenomenology	Quark EDM	Gluonic CPV	Quark cEDM	Conclusions
00000	○●○○○○○	000000	000000000000	000	0
Experimental Status					

	Current Limit	CKM prediction
е	10 ⁻²⁹	10 ⁻³⁸
μ	10 ⁻¹⁹	10 ⁻³⁵
τ	10 ⁻¹⁶	10 ⁻³⁴
n	10 ⁻²⁶	10 ⁻³¹
р	10 ⁻²³	10 ⁻³¹
¹⁹⁹ Hg	10 ⁻²⁹	10 ⁻³³
¹²⁹ Xe	10-27	10 ⁻³³
²²⁵ Ra	10 ⁻²³	10 ⁻³³

・ロ・・日・・日・・日・ つくぐ

Introduction	Phenomenology	Quark EDM	Gluonic CPV	Quark cEDM	Conclusions
00000	○○●○○○○	000000	000000000000	000	0
Theoretical Summary					

$$d_n = -(0.20 \pm 0.01)d_u + (0.78 \pm 0.03)d_d + (0.0027 \pm 0.016)d_s$$

- (0.55 \pm 0.28)e\tilde{d}_u - (1.1 \pm 0.55)e\tilde{d}_d \pm (50 \pm 40) MeVed_W
$$\bar{g}_0 = (5 \pm 10)(\tilde{d}_u + \tilde{d}_d) \text{fm}^{-1}$$

$$\bar{g}_1 = (20^{+40}_{-10})(\tilde{d}_u - \tilde{d}_d) \text{fm}^{-1}$$

Pospelov and Ritz, Ann. Phys. 318 (2005) 119.

Gupta et al., PRD 88 (2018) 091501(R).

5 DQC

Introduction	Phenomenology	Quark EDM	Gluonic CPV	Quark cEDM	Conclusions
00000	○○○●○○○	000000	000000000000	000	0
BSM Higgs					

EDMs competitive or better than LHC for constraining CPV Higgs/top. Will dominate if

- \blacksquare experiment at $5\times 10^{-27} e~cm$ and
- light matrix elements at 25%
- strange and gluonic matrix elements at 50%

Cirigliano *et al., PRD* **94** (2016) 016002 Chien *et al., JHEP* **1602** (2016) 011 Brod *et al., JHEP* **1311** (2013) 180

Pseudo-scalar Yukawas in units of SM Yukawa mq/v

$c = \frac{m_q}{\tilde{c}}$ along b	$\tilde{\kappa}_u$	$\tilde{\kappa}_d$	$\tilde{\kappa}_s$	$\tilde{\kappa}_c$	$\tilde{\kappa}_b$	$\tilde{\kappa}_t$
$\mathcal{L} = -\frac{1}{v} \kappa_{q} q_{i} \gamma_{5} q h$	0.45	0.11	58	2.3	3.6	0.01

Tanmoy Bhattacharya nEDM

Introduction 00000	Phenomenology ○○○○●○○	Quark EDM 000000	Gluonic CPV 000000000000	Quark cEDM 000	Conclusions 0
SUSY					

nEDM can constrain some SUSY models

Altmannshofer et al., JHEP 1311 (2013) 202

Introduction	Phenomenology	Quark EDM	Gluonic CPV	Quark cEDM	Conclusions
00000	○○○○○●○	000000	000000000000	000	0
Baryogenesis					

Especially constraining for some theories of Baryogenesis.

Li et al., PLB 673 (2009) 95

Cirigliano et al., JHEP 1001 (2010) 002

 $A \equiv A$

- A - E Los Alamos National Laboratory

Tanmoy Bhattacharya nEDM

Introduction 00000	Phenomenology ○○○○○●	Quark EDM 000000	Gluonic CPV 000000000000	Quark cEDM 000	Conclusions 0
Other models					

Abel et al., PRX 7 (2017) 041034

Cirigliano et al., PLB 767 (2017) 1

Ę

イロン イヨン イヨン イヨン

Introduction	Phenomenology	Quark EDM	Gluonic CPV	Quark cEDM	Conclusions
00000	0000000	●00000	000000000000	000	0
Tensor Charge					

$$\mathcal{L} \supset d_q \bar{q} \sigma^{\mu\nu} \tilde{F}_{\mu\nu} q \langle n | \bar{q} \sigma^{\mu\nu} q | n \rangle = g_T^q \bar{u}_n \sigma^{\mu\nu} u_n$$

At leading order in electromagnetic interactions, the nEDM due to quark EDM is given by the tensor charge.

Los Alamos National Laboratory

Introduction	Phenomenology	Quark EDM	Gluonic CPV	Quark cEDM	Conclusions
00000	0000000	○●0000	000000000000	000	0
Isovector					

FLAG report:

Collaboration	N_{f}	pub.	cont.	chiral	vol.	ren.	states	g_T^{u-d}	_	\mathcal{B}_T^{u-d}
PNDME 18	$^{2+1+1}$	А	*	*	*	*	*	0.989(32)(10)	7	FLAG average for Nr = 2 + 1 +
PNDME 16	$_{2+1+1}$	Α	O ‡	*	*	*	*	0.987(51)(20)	2+1	PNDME 18
PNDME 15	$^{2+1+1}$	Α	O ‡	*	*	*	*	1.020(76)	Nc =	
PNDME 13	2+1+1	А	= ‡		*	*	*	1.047(61)		PNDME 13
Mainz 18	2+1	С	*	0	*	*	*	0.979(60)	- Ŧ	+ Mainz 18
JLQCD 18	2+1	A		0	0	*	*	1.08(3)(3)(9)	1	LHPC 12
LHPC 12	$^{2+1}$	Α	= ‡	*	*	*	*	1.038(11)(12)	~	
RBC/UKQCD 10D	2+1	A			0	*		0.9(2)	=2	N ETM 17
ETM 17	2	A		0	0	*	*	1.004(21)(2)(19)	ž	Ž +O+ RQCD 14 +O+ RBC 08
ETM 15D	2	A		0	0	*	*	1.027(62)	ö	o Dedici 15
RQCD 14	2	A	0	*	*	*		1.005(17)(29)	len	Kang 15
RBC 08	2	A				*		0.93(6)	- 2	Goldstein 14 Pitschmann 14
[‡] Not fully O(a) imp	oved								-	0.4 0.6 0.8 1.0 1.2

[‡]Not fully O(a) improved.

Introduction	Phenomenology	Quark EDM	Gluonic CPV	Quark cEDM	Conclusions
00000	000000	○○●○○○	000000000000	000	0
lsovector					

$$g_T^{u-d} = 0.929(14)$$

 $N_f = 2 + 1 + 1$, physical mass, $64^3 \times 128$ ETMC

イロン イヨン イヨン イヨン

Introduction	Phenomenology	Quark EDM	Gluonic CPV	Quark cEDM
00000	0000000	○00●○○	000000000000	000
Isovector				

(二)

æ

Introduction	Phenomenology	Quark EDM	Gluonic CPV	Quark cEDM	Conclusions
00000	0000000	○○○○●○	000000000000	000	0
Flavor Diagonal					

FLAG review:

										PRO2013	\$i
											FLMG american for N =2+
											PS046 338
										2	PhONE 26
											P8044E15
Collaboration	N_f	pub.	cont.	chiral	vol.	ren.	states	g_T^u	g_T^d	0	A000 18
PNDME 18E	32+1+1	P	*	*	*	*	*	$0.784(28)(10)^{\#}$	$-0.204(11)(10)^{\#}$	3 🔶	EM 17
PNDME 16	$^{2+1+1}$	A	0	*	*	*	*	0.792(42) ^{#&}	$-0.194(14)^{\#\&}$	0.7 0.8 0.	·
PNDME 15	2 + 1 + 1	A	0‡	*	*	*	*	0.774(66) [#]	$-0.233(28)^{\#}$	PR-200	
JLQCD 18	2+1	A		0	0	*	*	0.85(3)(2)(7)	-0.24(2)(0)(2)	3	FLAG evenage for HL+2+1+
ETM 17	2	A		0	0	*	*	0.782(16)(2)(13)	-0.219(10)(2)(13)	3	PROVE 288
								g_T^s			PACAGE 31
PNDME 18E	32+1+1	Р	**	*	*	*	*	$-0.0027(16)^{\#}$,490 H
PNDME 15	2+1+1	A	0‡	*	*	*	*	0.008(9)#		·	101.13
JLQCD 18	2+1	A		0	0	*	*	-0.012(16)(8)		-6.15 -6.20	-6.33
ETM 17	2	A		0	0	*	*	-0.00319(69)(2)(22)		25.310	ar .
# 7n.s 7	8	ad &	Only 'en	an ested?	‡ Not	6.11	2(a) ima	round		-	PLAS average for the 2 +
$Z_T = Z$	T assum	eu.	Only co	mecced	. NOL	Tuny (o(a) imp	roved.		-	PNDHE LBS
											Contrast 15

0 000 M

Tanmoy Bhattacharya nEDM

Tanmoy Bhattacharya nEDM

Introduction	Phenomenology	Quark EDM	Gluonic CPV	Quark cEDM	Conclusions
00000	0000000	000000	●00000000000	000	0
Axial symmetry					

Consider a general mass term

$$m^s + m^s_5 \gamma_5 + m^v \tau + m^v_5 \tau$$

where τ are diagonal flavor matrices.

Unbroken non-singlet axial symmetry can be used to set all $m_5^v\equiv 0.$ We will always choose to do that.

The singlet axial symmetry acts on the remaining $N_f + 1$ masses (m^s , m^v , and m_5^s) and Θ .

Can always eliminate Θ .

When all quark masses nonzero, can eliminate m_5^s instead.

Singular coordinates when some quark-masses zero: $(m_5^s)^{-1} \propto \Theta \sum m_q^{-1}$.

Introduction	Phenomenology	Quark EDM	Gluonic CPV	Quark cEDM	Conclusions
00000	0000000	000000	○●○○○○○○○○○○	000	0
Lattice Methods					

 $\mathsf{Method}\ 1:$

- Include constant electromagnetic field
- Measure energy difference between when spin aligned versus antialigned
- Take limit of zero electromagnetic field. (Difficult because quantized by box size) Method 2:
 - Calculate Vector Current Matrix Element at finite momentum:

$$\overline{u}_{N}\left[\gamma_{\mu}\ F_{1}(q^{2})+i\frac{[\gamma_{\mu},\gamma_{\nu}]}{2}q_{\nu}\ \frac{F_{2}(q^{2})}{2m_{N}}+(2i\ m_{N}\gamma_{5}q_{\mu}-\gamma_{\mu}\gamma_{5}q^{2})\ \frac{F_{A}(q^{2})}{m_{N}^{2}}+\frac{[\gamma_{\mu},\gamma_{\nu}]}{2}q_{\nu}\gamma_{5}\ \frac{F_{3}(q^{2})}{2m_{N}}\right]u_{N}$$

- Take zero momentum limit.
- \blacksquare Definition of CP violation for composite field N tricky.

Introduction	Phenomenology	Quark EDM	Gluonic CPV	Quark cEDM	Conclusions
00000	0000000	000000	○○●○○○○○○○○○	000	0
Nucleon Operator					

With no parity in the theory, the propagator is

$$\sum \rho(\mu^2) Z_N(\mu^2) \frac{e^{-\beta(\mu^2)\gamma_5'} \not p + e^{-i\alpha(\mu^2)\gamma_5} Z_m(\mu^2)\mu}{p^2 - (Z_m(\mu^2)\mu)^2}$$

 $\alpha(\mu^2)=0$ when CP conserved, $\beta(\mu^2)=0$ when PT is conserved. Asymptotic state has non-standard Dirac equation and parity generator: a tranformation of γ -matrices needed to put in standard basis. $\bar{u}_N \tilde{F}_{\mu\nu} \sigma^{\mu\nu} u_N$ may not break CP!

Abramczyk, PRD 96 (2017) 014501.

 $N_{\rm st}=\exp\{(-\beta(m_N^2)+i\alpha(m_N^2))/2\}N$ is a more convenient operator. (Excited states still non-standard.)

Most previous calculations show no signal.

Dragos et al., arXiv:1902.03254 [hep-lat]

Introduction 00000	Phenomen 0000000	ology G	Quark EDM	Gluonic CPV		Quark cl 000	DM	Conclusions 0
Lattices and Si	nulation Setup							
• Clover fermions on MILC HISQ lattices; $N_F = 2 + 1 + 1$								
	Ensemble	a (fm)	M_π (MeV)	$L^3 \times T$	$M_{\pi}L$	N_{conf}	$N_{\rm meas}$	
	a12m220L	0.1189(09)	227.6(1.7)	$40^3 \times 64$	5.49	1000	128k	
	a09m310	0.0888(08)	313.0(2.8)	$32^3 \times 96$	4.51	2196	140k	
	a09m220	0.0872(07)	225.9(1.8)	$48^3 \times 96$	4.79	961	123k	
	a09m130	0.0871(06)	138.1(1.0)	$64^3 \times 96$	3.90	1289	165k	

- Chroma QCD software suite
- Nucleon two- and three-point correlators
 - Truncated solver method (AMA) with 4HP + 128 or 64 LP per configuration
 - Current is renormalized by isovector vector charge g_V
- Topological charge and Weinberg's three-gluon operator
 - $\mathcal{O}(a^4)\text{-}\mathrm{improved}$ gluon field strength tensor
 - Gradient flow for cooling/renormalization

ъ

Ensemble	a09m130	a09m220	a09m310	a12m220L
$\langle Q_{top} \rangle$	-0.30(31)	-0.30(27)	-0.01(13)	0.24(46)
$\langle W_{ggg} \rangle$	8(21)	-13(16)	-0.07(6.91)	-25(43)
F_3 anly. binsize	11	8	18	10

Los Alamos National Laboratory

э

イロン イヨン イヨン イヨン

Introduction 00000	Phenomenology 0000000	Quark EDM 000000	Gluonic CPV	Quark cEDM 000	Conclusions 0
Gradient Flow T	Time Dependence				
	0.6 0.4 0.3 0.2 0.1 1 0.0 0.2 0.2 0.1 1 0.0 0 0 0	e (0.00 GeV ²) ↔ b (0.36 GeV ²) ↔ 50.4W (0.00 GeV ²) ↔ 50.5W (0.36 GeV ²) ↔ 50.5W (0.36 GeV ²) ↔ 10.00 GeV ² 10.2 0.4 0.6 0.8 [8t _{WF}] ^{1/2} (fm)	1.0 0.8 0.6 0.4 0.2 0.0 0.0 0.2 0.2 0.2 0.2 0.2	0.00 GeV2) 0.000 GeV2) 0.000 GeV2 • • • • • • • • • • • • • • • • • • 0.6 0.8 fm)	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathbf{z}_{\mathrm{LL}}^{(2)} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	28, 1-4 28, 1-4 28, 1-4 	

• Topological charge observables are saturating at $\sqrt{8t_{WF}} = 0.34 \text{ fm}$

€ 990

ヘロン 人間 とくほとく ほとう

Introduction	Phenomenology	Quark EDM	Gluonic CPV	Quark cEDM	Conclusions
00000	0000000	000000		000	0
CPV Phase α					

• CPV Phase α is extracted from γ_5 -projected C_{2pt}

$$\frac{\mathrm{Im}C_{2\mathrm{pt}}^{P}(t)}{\mathrm{Re}C_{2\mathrm{pt}}(t)} \equiv \frac{\mathrm{Im}\left[\gamma_{5}\frac{1}{2}(1+\gamma_{4})\langle N(t)\overline{N}(0)\rangle\right]}{\mathrm{Re}\left[\frac{1}{2}(1+\gamma_{4})\langle N(t)\overline{N}(0)\rangle\right]} = \frac{M_{N}\sin\left(2\alpha(t)\right)}{E_{N}+M_{N}\cos\left(2\alpha(t)\right)}$$

Final α is obtained from plateau average over $\alpha(t \gg 1)$ where ESC is small

- Topological charge summed only within $|t_Q t_{\rm src}| \leq R_T$
- CPV phase α forms plateau at $R_T \approx 25a$ for a09m310 and a09m220, but no saturation in a09m130; we use $R_T = \infty$ for α in this study

• Neutron F_3^N at small Q^2 is insensitive to α because of the $G_E^N(Q^2)$ suppression

- Saturation depends on the distance from the current insertion t rather than $t_{\rm src}$ \rightarrow Topological charge locally summed in $|t_Q - t| \leq R_T$
- For most of the momenta, τ and t,

 $R_T/a = 14$ (a09m310), 20 (a09m220), 36 (a09m130) and 12 (a12m220L)

produce reasonable results

< A

Introduction	Phenomenology	Quark EDM	Gluonic CPV	Quark cEDM	Conclusions
00000	0000000	000000	○○○○○○○○●○○	000	O
Excited State Contamination	on				

Two-state fit to the F_3/g_V obtained at each τ and t

Introduction	Phenomenology	Quark EDM	Gluonic CPV	Quark cEDM	Co
00000	0000000	000000	○○○○○○○○○●○	000	o
Results					

Introduction 00000	Phenomenology 000000	Quark EDM 000000	Gluonic CPV ○○○○○○○○○○●	Quark cEDM 000	Conclu 0
Comparison					

Introduction 00000	Phenomenology 0000000	Quark EDM 000000	Gluonic CPV 000000000000	Quark cEDM ●○○	Conclusions 0
Lattice Detail					

• Clover fermions on MILC HISQ lattices; $N_F = 2 + 1 + 1$

Ensemble	a (fm)	M_{π} (MeV)	$L^3 \times T$	$M_{\pi}L$	N_{conf}	$N_{\rm meas}$
a12m310	0.1207(11)	310.2(2.8)	$32^3 \times 64$	4.55	1012	130k
a12m220L	0.1189(09)	227.6(1.7)	$40^3 \times 64$	5.49	475	61k
a09m310	0.0888(08)	313.0(2.8)	$32^3 \times 96$	4.51	447	57k

- Chroma QCD software suite
- Truncated solver method (AMA) with 4HP + 128LP per configuration
- Variance reduction using correlated zeros
- Results without renormalization
- Two CPV operators that mix under renormalization: $\frac{i}{2}\overline{q}(\sigma \cdot G)\gamma_5 q$ and $-i\overline{q}\gamma_5 q$

ъ

Introduction 00000	Phenomenology 0000000	Quark EDM 000000	Gluonic CPV 000000000000	Quark cEDM ○●○	Conclusions 0
Linearity					

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

- Syritsyn 2019 (a11m139) results are scaled by $\frac{1}{4}$ to make it fit within range
- No renormalization, no mixing, no continuum extrapolation!

Introduction	Phenomenology	Quark EDM	Gluonic CPV	Quark cEDM	Conclusions
00000	0000000	000000	000000000000	000	•
Future					

- Quark edm contribution to nEDM has already had impact.
- Theta-term contribution is likely to be under control soon.
- CP-violating pion couplings are at the same level.
- Techniques for the gluon and quark chromo-EDM contributions are being developed.
- Four-quark operators need more study.