The Thomson Problem

1904: J.J. Thomson's attempt (Phil. Mag. 7, 237) to explain the periodic table in terms of rigid electron shells fails....

What is the ground state of interacting particles on a sphere for $R / a \gg 1$? ($R=$ sphere radius, $a=$ particle size)
nucleation and growth on a sphere:
R/a = 10; 1314 particles
M. Rubinstein and drn ($N_{5}-N_{7}=12$)

Spherical Crystallography: Virus Buckling and Grain Boundary Scars

Particle packings on curved surfaces - "geometrical frustration"
--Thomson problem: 'theory' of the periodic table (circa 1904)
--Icosahedral packings in virus shells $\left(N_{5}-N_{7}=12\right)$
--Theory of disclination buckling in viruses
--Theory of crumpling at high "Foppl-von Karman number

Grain boundary scars and colloids on water droplets
--What happens when shells cannot buckle? grain boundaries!!
--Experiments: ‘colloidosomes’ on water droplets (A. Bausch et al.)
--Grain bounaries in ground state terminate inside curved media....
M. Rubinstein
S. Sachdev
S. Seung
L. Peliti

Liquid crystal textures on curved surfaces
--Colloids with a valence
--Baseball textures: 'sp³ hybridization' on a micron scale....
--Ordered states on bumps and torii
J. Lidmar
L. Mirny
M. Bowick
A. Travesset
V. Vitelli

$20^{\text {th }}$ century solutions of the Thomson problem....

Fullerene molecule; $(1,1)$

Geodesic house

Geodesic Dome

Biological solutions of the Thomson problem

-Flat surface: Triangular lattice tiles the plane
-Ordering on a sphere: ‘geometric frustration’ forces at least twelve 5 -fold disclinations into the ground state...
-Icosadeltahedral solutions of the Thomson problem for intermediate particle numbers are exhibited by the capsid shells of virus structures for 'magic numbers' of protein subunits indexed by pairs of integers (P,Q)
D. Caspar \& A. Klug, Cold Spring Harbor Symp. on Quant. Biology 27, 1 (1962)

$$
(P, Q)=(1,2)
$$

$$
N=\text { particle number }=10\left(P^{2}+Q^{2}+P Q\right)+2
$$

$$
(P, Q)=(1,0)
$$

$(P, Q)=(3,1)$

A gallery of viruses...

T.S. Baker et al., Microbiol. Mol. Biol. Rev. 63, 862 (1999)

- The small viruses are round and large ones are facetted...

Strain relaxation via disclination buckling in large viruses...

M. Bowick, A. Cacciuto, A. Travessett and drn, Phys. Rev. Lett. 89, 185502 (2002)

Solve for ground state via a 'tethered surface' floating mesh triangulation
S. Seung and drn, Phys.Rev. A38, 1055 (1988)

Disclination buckling transition

To solve von Karman equations must, in an Eulerian representation, minimze the nonlinear elastic energy: $\quad E=\frac{1}{2} \int d^{2} x\left[\kappa\left(\nabla^{2} f(\vec{x})\right)^{2}+2 \mu u_{i j}^{2}(\vec{x})+\lambda u_{k k}^{2}(\vec{x})\right]$ where,

$$
u_{i j}(\vec{x})=\frac{1}{2}\left[\frac{\partial u_{i}(\vec{x})}{\partial x_{j}}+\frac{\partial u_{j}(\vec{x})}{\partial x_{i}}+\frac{\partial f(\vec{x})}{\partial x_{i}} \frac{\partial f(\vec{x})}{\partial x_{j}}\right]
$$

Disclinations buckle above a critical radius R_{b} such that

$$
Y R_{b}^{2} / \kappa=154 \ldots .
$$

But what about 12 interacting disclinations on a sphere?

Solution of the Foppl-von Karman equations for viruses (arbitrary vK!)

* Shape depends only on the
'von-Karman number' $v K=Y R^{2} / \kappa$
$\kappa=$ bending rigidity of shell
$Y=$ Young's modulus of shell
$R=$ mean virus radius
* $(v K)_{c}=154$ in flat space....

J. Lidmar, L. Mirny and drn, Phys. Rev. E68, 051910 (2003)

Fits to specific viruses

The precursor, capsid, or "prohead", of HK97 is more spherical, in constrast to the larger, more facted mature form shown here.

Evidence for a buckling transition

Large vK: Computer Simulations of Crumpling

G. A. Vliegennthart and G. Gompper, Nature Materials (in press)

A flat self-avoiding disk is crushed inside a hollow sphere from initial radius R_{0} to a final radius R_{f} by application of an inward radial force F....

How does the energy of the creases depend on size?
What is the effect of self-avoidance?

Crushed triangular lattice, $N=61816$ particles...

Two interacting disclinations with separation L

 [A. Lobkovsky and T. Witten, see Physica A313, 83 (2002)]

$$
E_{\text {tot }} \approx \kappa \int d a\left(\frac{1}{r_{1}}+\frac{1}{r_{2}}{\underset{\sim}{\sim 0}}^{1}+Y \int d a(\varepsilon)^{2} ; \quad r_{2} \gg r_{1} \sim y, \quad \varepsilon \sim(y / R)^{2}, \quad \int d a=y R\right.
$$

$$
E_{\text {tot }}(y) \approx \kappa \frac{R}{y}+Y \frac{y^{5}}{R^{3}} \rightarrow y^{*} \approx\left(\frac{\kappa}{Y}\right)^{1 / 6} R^{2 / 3}, E_{\text {tot }}\left(y^{*}\right) \approx \kappa\left(\frac{Y}{\kappa}\right)^{1 / 6} R^{1 / 3}
$$ Karman number is a kind

$$
y \sim R /(v K)^{1 / 6}, \quad E_{\text {tot }}(y) \sim \kappa(v K)^{1 / 6}, \quad v K=Y R^{2} / \kappa \gg 1
$$ of "Reynolds number" for crumpling...

Osmotic Crushing of Amorphous Shells

Experiments by Andreas Bausch, Tech. Univ. of Munich
Amorphous colloidal assemblies formed on water droplets in oil. The exterior oil is replaced by water and the resulting shell crushed osmotically (bottom) to produce a crumpled object with vK $=10^{7}$

In the presence of thermal fluctuations, the bending rigidity and Young's modulus become strongly dependent on length scales

$$
\begin{array}{cc}
\kappa_{R}(l) \approx \kappa\left(l / l_{t h}\right)^{\eta}, & Y_{R}(l) \approx Y\left(l / l_{t h}\right)^{-\eta_{u}} \\
\eta \approx 0.75-0.80 & \eta_{u} \approx 0.36-0.50 \\
l_{t h}=\sqrt{4 \pi^{3} \kappa^{2} /\left(k_{B} T Y\right)} & l_{t h} \approx 40 \mathrm{~nm}
\end{array}
$$

$$
r \sim R^{\left(4+\eta_{u}\right) /(6-\eta)} \sim R^{0.76}
$$

$$
E \sim R^{\left(2+3 \eta-\eta_{u}+\eta \eta_{u}\right) /(6-\eta)} \sim \mathrm{R}^{0.74}
$$

(without thermal fluctuations, $r \sim R^{2 / 3}, E \sim R^{1 / 3}$)

Spherical crystallography of 'colloidosomes’ (see also "Pickering emulsions")

"Colloidosome" = colloids of radius a coating water droplet (radius R) -- Weitz Laboratory

Ordering on a sphere $\boldsymbol{\rightarrow}$ a minimum of 12 5 -fold disclinations, as in soccer balls and fullerenes -- what happens for $R / a \gg 1$?

Confocal image: P. Lipowsky, \& A. Bausch

Grain boundary instabilities

* If droplet surface tension enforces spherical shape, disclination buckling is replaced by an instability towards grain boundaries....

* can insert the required dislocations into the ground state by hand....
M. J. W. Dodgson and M. A. Moore, Phys. Rev. B55, 3816 (1997)

Perez-Garrido, M.J.W. Dodgson and M. A. Moore, Phys. Rev.B56, 3640 (1997).
Alar Toomre (unpublished)
A. Perez-Garrido and M. A. Moore, Phys.Rev. B60, 15628 (1998)

* or construct a continuum elastic theory of topological defects on the sphere...:

Continuum elastic theory of defects on spheres

- Finding the ground state of $\mathbf{\sim} \mathbf{2 6 , 0 0 0}$ particles on a sphere is replaced by minimizing the energy of only ~ 250 interacting disclinations, representing points of local 5- and 7-fold symmetry.

Dislocation $=$ 5-7 pair $=$
Grain boundary = 5-7 \quad 5-7 \quad 5-7 \ldots

$$
=00 \quad 00 \quad 00 \quad . .
$$

$$
E(\mathrm{Y})=\frac{\pi \mathrm{Y}}{36} R^{2} \sum_{i=1}^{N} \sum_{j=1}^{N} q_{i} q_{j} \chi\left(\theta^{i}, \phi^{i} ; \theta^{j}, \phi^{j}\right)+N E_{\text {core }}
$$

$$
\chi\left(\theta^{a}, \phi^{a} ; \theta^{b}, \phi^{b}\right)=R^{2}\left(1+\int_{0}^{(1-\cos \beta) / 2} d z \frac{\ln z}{1-z}\right)
$$

[χ Solves biharmonic eq. on a sphere]

Continuum elastic theory of defects on spheres

- Finding the ground state of $\mathbf{\sim} \mathbf{2 6 , 0 0 0}$ particles on a sphere is replaced by minimizing the energy of only ~ 250 interacting disclinations, representing points of local 5 - and 7 -fold symmetry.

Dislocation $=$ 5-7 pair $=$
Grain boundary = 5-7 $\quad 5-7 \quad 5-7 \ldots$

$$
\begin{aligned}
& E(\mathrm{Y})=\frac{\pi \mathrm{Y}}{36} R^{2} \sum_{i=1}^{N} \sum_{j=1}^{N} q_{i} q_{j} \chi\left(\theta^{i}, \phi^{i} ; \theta^{j}, \phi^{j}\right)+N E_{\text {core }} \\
& \chi\left(\theta^{a}, \phi^{a} ; \theta^{b}, \phi^{b}\right)=R^{2}\left(1+\int_{0}^{(1-\cos \beta) / 2} d z \frac{\ln z}{1-z}\right)
\end{aligned}
$$

[χ Solves biharmonic eq. on a sphere]

What happens for real colloidosomes?
(silanized silica beads)

R/a >> 1: Grain Boundaries in the Ground State!!

Defect Screening as a Function of R / a

Bausch et al. Science 299, 1716 (2003) polystrene beads on water....

$(R / a)_{c} \approx 5$, determined by dislocation core energy

R/a >> 1: Grain Boundaries in the Ground State!!

Defect Screening as a Function of R / a

Bausch et al. Science 299, 1716 (2003) polystrene beads on water....

Slope $=\frac{\pi}{3}\left[\sqrt{11}-5 \cos ^{-1}(5 / 6)\right] \approx 0.41$
$(\mathrm{R} / \mathrm{a})_{\mathrm{c}} \approx 5$, determined by dislocation core energy

Vacancies and interstitials on curved surfaces

interstitial movie, courtesy of Mark Bowick, Cris Cecka and Alan
Middleton; see also, http://www.phy.syr.edu/condensedmatter/thomson/

Point Defects

> V = vacancies
> $\mathbf{I}=$ interstitials

The Thomson Problem and Spherical Crystallography

1904: J. J. Thomson asks how particles pack on a sphere - relevant to viruses, colloid-coated droplets, and multielectron bubbles in helium

Simian virus SV40

"Colloidosome" = colloids of radius a coating water droplet (radius \boldsymbol{R}) -- Weitz Laboratory

Ordering on a sphere \rightarrow a minimum of 12 5-fold disclinations, as in soccer balls and fullerenes -- what happens for $R / a \gg 1$?

Continuum elastic theory (with M. Bowick and A. Travesset) shows that the 5 -fold disclinations become unstable to unusual finite length grain boundaries (strings of dislocations) for $R / a \gg 1$.

- Finding the ground state of $\mathbf{\sim} \mathbf{2 6 , 0 0 0}$ particles on a sphere is replaced by minimizing the energy of only ~ 250 interacting disclinations, representing points of local 5- and 7-fold symmetry.
- Grain boundaries in ground state for $R / a>5-10$ have important implications for the mechanical stability and porosity of colloidosomes, proposed as delivery vehicles for drugs, flavors and fragrances.

Dislocations (5-7 defect pairs) embedded in spherical ground states

Nematic textures on spheres: toward a tetravalent chemistry of colloids... [drn, NanoLetters, 2,1125 (2002)]

Long-range repulsion \Rightarrow
TETRAHEDRAL DEFECT ARRAY

Linking colloids with a valence

Possible nematogens include gemini lipids, (say, on an oil droplet), triblock copolymers, and CdSe nanocrystals.

- The four unique "bald spots" on a nematiccoated sphere can be functionalized with DNA linkers...
- may be possible to reproduce the quantum chemistry of $\mathbf{S p}^{\mathbf{3}}$ hybridization on the micron scale of colloids...

functionalize colloidal particles with, e.g., DNA...

Fluoresent beads on nematic droplet colloidal analogue of sulfer...
Z. Cheng, D. Link and P. Lu, Weitz group

Experiments: Alberto Fernandez-Nieves, Weitz Laboratory

Making nematic shells: double emulsions

Anchoring at inner and outer surface: PLANAR
Viscosities: $\eta_{\text {outer }}>\eta_{\text {inner }}, \eta_{\text {middle }}$

Outer liquid: Glycerol + water + PVA
Middle liquid: Chloroform + LC (5CB) $\quad \square$

Water droplet coated with a nematic shell of thickness h

LC+chloroform shell

In fact, valences $\mathrm{Z}=4,3$ and 2 are possible....

Z =4
110 micron droplet; shell ~6-8 microns

4 defect shell
(Inhomogeneous shell thickness distorts perfect tetrahedron...)
 shell ~ 6-8 microns

Z = 3
90 micron droplet; shell ~4-7 microns

3 defect shell!!

disclinations (thin films) vs. 1⁄2 - hedgehogs (thick films)

Assume a homogeneous thickness h and a single Frank constant $\mathrm{K} . . .$.

$$
\begin{gathered}
Z=4 \text { shell } \\
\text { (four } s=1 / 2 \text { disclinations) }
\end{gathered}
$$

$Z=2$ shell
(two pairs of $1 / 2$-hedgehogs...)

$E_{4}=4 \times(\pi K / 4) K h \ln (R / a)+\ldots$

$$
E_{2}=2 \times(\pi K) h \ln (R / h)+\ldots
$$

- $1 / 2$-hedgehog defects preferred for $h>h_{c}$, such that $E_{4}(h)>E_{2}(h)$
- this leads to $h_{c}=$ const. $\times \sqrt{R a}$

Colloids with nematic shells of thickness h....

Which surface texture dominates?

?
*Colloids with $Z=4$ are always energetically preferable for thin nematic coatings
But colloids with $\mathrm{Z}=2$ appear above a thickness $h^{} \approx$ const. $\sqrt{ }(\mathrm{R} a) ; \mathrm{R}=$ sphere Radius a = mi croscopic length

Curvature-induced defect unbinding on the torus

\square Consider hexatic order on a torroidal template
\square no topological necessity for defects in the ground state
\square nevertheless, Gaussian curvature causes a defectunbinding transition for $M<M_{c}$, for "fat" torii and moderate vesicle sizes....
$M=\frac{8 \pi^{2}}{\sqrt{3}} \frac{R_{1} R_{2}}{a_{0}^{2}}=$
number of microscopic degrees of freedom

$$
M_{c} \approx 4.6 r\left(\frac{r+1}{r-1}\right)^{12}, r=R_{1} / R_{2}
$$

M. Mutz and D. Bensimon, Phys. Rev. A43, 4525 (1991)

$M_{c}=10^{10}, r=\sqrt{2}$,
Clifford torus

[M. Bowick, A. Travessett and drn, Phys. Rev.E(in press)]

Defect generation and deconfinement on corrugated topographies

(Vincenzo Vitelli and drn)

Dislocations can be generated thermally $O R$ by increasing the curvature of the substrate...

Smooth ground state texture for an XY model on the bump.
Equilibrium hexatic phases formed by templating large ordered arrays of block copolymer spherical domains on silicon substrates (Segalman et al. Macromolecules, 36, 3272, 2002)

A Gaussian bump (prepare lithographically)

Experiments by Rachel Segalman, Alex Hexamer and Ed Kramer, UCSB

