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Spatial organization: three fundamentals
i. What is the organization of machinery in cells?
ii. How is organization established (mol. level)?
iii. How is organization replicated?

Our understanding in eukaryotic cells is emerging

Torsten Wittman, UCSF Nikon
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Our understanding is just beginning to emerge

Spatial organization in bacteria

Bacteria are small; tools are still not available

10 μm

Swiss 3T3 fibroblast

Cell of E. coli

~1 μm

d = 0.61 λ/N.A.

NAmax (100x)=1.49

λmin=365 nm

dmax>150 nm
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Intracellular organization in bacteria

YFP-MreB chimera 
expressed in E. coli 
(Weibel)

Cell border

500 nm

GFP-FtsZ chimera 
expressed in E. coli 
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GFP-Crescentin 
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ParM chimera 
in vitro (Mullins
and Weibel)
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YFP-MreB chimera 
expressed in E. coli 
(Weibel)

Cell border

500 nm

GFP-FtsZ chimera 
expressed in E. coli 
(Beckwith)

GFP-Crescentin 
chimera expressed 
in C. crescentus 
(Jacobs-Wagner)

Bacteria ‘share’ the major classes of cytoskeletal
proteins found in eukaryotes

ParM chimera 
in vitro (Mullins
and Weibel)

Actin homologs Tubulin homolog Intermediate
filament homolog

5 μm 1 μm
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Role of the bacterial cytoskeleton

Organization
Plays a role in cell shape

Dynamics
Function?

Evolution
Unknown?

We want to understand:
The molecular basis for cell shape
The evolution of bacterial cell shape
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Bacterial cell shape: an esoteric area?

Fundamental biological question

Improves our systems level understanding of 
bacteria/microbes (recall: microbes account for 
~50% of biomass on planet)

Applications to pathogenesis and infectious 
diseases
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cocci; bacilli; spirillium

Bacterial cell shape: some examples

crescents

flat, square plates
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Bacterial cell shape: structure of the cell wall
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Structure of peptidoglycan
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Structure of peptidoglycan

Mobashery, ND
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Peptidoglycan (PG): 
Cross-linked polysaccharide
Single molecule (~100,000 kD)
~20 nm thick (Gram-negative)
Mechanical properties of cell

Structure of peptidoglycan

Mobashery, ND
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Mechanical properties of the PG
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Measure properties of intact PG with a scanning probe 
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Mechanical properties of the PG
Isolate PG from cells (Triton X-100)
Measure properties of intact PG with a scanning probe 

T. Beveridge (1999) J. Bacteriology, 181, 6865 

Properties of the PG: 
Perfectly elastic (no hysteresis)
γpeptidoglycan: 2.5x107 N/m2

(γlatex: ~2.5x107 N/m2)
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Cell shape is controlled at the level of the PG

2. PG is synthesized in a specific orientation
    (sculpted into a specific shape during synthesis)

1. PG is reinforced with mechanical ‘struts’
    (molded and held in place)

Two plausible mechanisms:
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Penicillin binding protein (PBP)

Does the orientation of the PG control shape?
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12 known PBPs in E. coli

Penicillin binding protein (PBP)

Does the orientation of the PG control shape?

PBPs play a key role in:
Elongation of cell wall (PBP2)
Division/septation (PBP3)
Cell shape?

PG with κlow

PG with κhigh
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Are PBPs moved/localized on a filament?
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PBP2 (synthesis of cylindrical walls) interacts with MreB
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MreB: a homolog of actin that forms helical (?) filament(s) in 
rod-shaped cells

A GFP-MreB chimera
expressed in B. subtilis
(J. Errington et al.)

A mesoscale model; an elastic
spring inserted in a flexible 
plastic tube (Weibel)

PBP2 (synthesis of cylindrical walls) interacts with MreB

Are PBPs moved/localized on a filament?
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MreB: a homolog of actin that forms helical (?) filament(s) in 
rod-shaped cells

A GFP-MreB chimera
expressed in B. subtilis
(J. Errington et al.)

A mesoscale model; an elastic
spring inserted in a flexible 
plastic tube (Weibel)

PBP2 (synthesis of cylindrical walls) interacts with MreB

MreB may play a key role in controlling:
Spatial organization within the cell
Cell shape

Are PBPs moved/localized on a filament?
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Method for dissecting role of proteins in cell shape
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We are systematically studying proteins (and protein 
interactions) that play a role in controlling cell shape

Method for dissecting role of proteins in cell shape

To make this approach possible we have developed a 
technique for manipulating cell shape

We want to understand how perturbations in protein levels 
and organization influence cell shape
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hydrogel 
microchamber

cell growth release 

Materials-based approach: (for example, rod-to-crescent)
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hydrogel 
microchamber

cell growth release 

Materials-based approach: (for example, rod-to-crescent)

S
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O

Controlling cell shape

Steps:
1. ‘Customize’ microchambers
2. Seed cells
3. Grow into filaments (antibiotic or Parab-FtsZ)
4. Release by removing ‘ceiling’
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Filamentous cells of E. coli (filaments)

a cell of E. coli
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Filamentous cells of E. coli (filaments)

de Pedro et al. (1997) J. Bacteriol., 179, 2823

Distribution of peptidoglycan from original cell (dark spots)

a cell of E. coli

a filament of E. coli

(cephalexin)
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transparency photomask
1. expose (UV)

2. develop

3. cast hot agarose

4. cool 

Fabricating molds for engineering cell shape

photoreactive polymer
on Si wafer

micropatterned
agarose

polymer patterned on Si wafer

coverslip

agarose
cells

1. flip over

2. add cells

add transparent
polymer ‘ceiling’

polymer ceiling press ceiling
into contact
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Cells of E. coli in hydrogel containers are motile and 
metabolically active
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Cells of E. coli in hydrogel containers are motile and 
metabolically active

Hydrogel walls are ‘transparent’ to nutrients, ions, gas, 
metabolic waste
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3 μm (width of channel)

growth over 1.5 hr; 37 ℃

Cells retain all of the phenotypes we observe in liquid cultures

Growth of cells in microchambers

doubling timemold: 41 ± 4 min

doubling timesoln: ~40 min
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zigzags

Geometry of walls controls cell shape 

sinusoids

circles
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zigzags

Geometry of walls controls cell shape 

sinusoids

circles

Cells appear to grow in an 
orientation that minimizes
stress placed on the cell

γmold >> γcell 
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Cells retain their shape after release

circles

Grow cells of E. coli 
(rods) in chambers

spirals/helices

Cells in liquid 
(with cephalexin)

Release
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Cells retain their shape after release

circles

Grow cells of E. coli 
(rods) in chambers

spirals/helices

Cells in liquid 
(with cephalexin)

Release

Cell shape has been manipulated by the 
application of mechanical constraints
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Dimensions of circular chambers: 8 μm diameter; 2.2 μm tall

Hysteresis accompanies release of cells
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Dimensions of circular chambers: 8 μm diameter; 2.2 μm tall
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Dimensions of circular chambers: 8 μm diameter; 2.2 μm tall

Hysteresis indicates strain on the cell wall

Hysteresis accompanies release of cells

After release
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Hysteresis and calculation of γcell

Serial: measurement of γcell

26



Hysteresis and calculation of γcell

Serial: measurement of γcell

Calculate stress/strain curve 
using the ‘relaxation’ of shape 
after cell release

Parallel measurement of γcell
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t=0 after release t=30 min

20 μm

t=0 after release t=45 min

10 μm

Engineered cells retain their shape during growth in 
liquid

d=14 μm d=20 μm
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Washing out cephalexin causes cells to septate

Cells septate in the absence of cephalexin

Motile cells retain their shape
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Why do cells have defined shapes?

Evolution of bacterial shape

What is the evolutionary advantage of one shape over 

another?  cocci vs. bacilli vs. spirillium and so on...

Do we understand what bacteria really look like in their 

native habitats?

Bacterial motility is one interesting case to consider
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E. coli motility requires the bundling of flagella

Run
Tumble

   Protonic Nanomachine Project
http://www.npn.jst.go.jp/index.html

31



Bacterial motility and shape

E. coli (wild type) vtrans~10-20 μm sec-1

Turner & Berg
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Crescents vtrans~3-4 μm sec-1

Bacterial motility and shape
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Crescents vtrans~3-4 μm sec-1

Bacterial motility and shape
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Spirals vtrans~0 μm sec-1

Bacterial motility and shape
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Spirals vtrans~0 μm sec-1

Bacterial motility and shape
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Extended spirals vtrans ~5 μm sec-1

Bacterial motility and shape
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Extended spirals vtrans ~5 μm sec-1

Bacterial motility and shape
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Hydrodynamics on motility
Are we observing hydrodynamic effects on the cell body?
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Hydrodynamics on motility
Are we observing hydrodynamic effects on the cell body?

Probably not

Slender body theorum

translation

a

b

f =   4πηa
ln 2a    1

b 2
_
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translation

f =   8πηa
ln 2a    1

b 2
+
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Hydrodynamics on motility

Bundling

Are we observing hydrodynamic effects on the flagellum?
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Have motile cells evolved shapes that 
maximize the bundling of flagella?
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Have motile cells evolved shapes that 
maximize the bundling of flagella?

Vibrio have evolved into crescents. 21/24 species 
of Vibrio we have looked at have a crescent 
shape and a single, polar flagellum

E. coli and other multi-flagellated 
strains of motile bacteria are 
rod-shaped
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Conclusion

Relationship between intracellular organization and 
bacterial cell shape 

Our approach is to develop new capabilities for 
manipulating and studying bacterial cells

New techniques for intracellular imaging

Theoretical models for studying the evolution of 
shape
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