
LA-UR-25-29374
Approved for public release; distribution is unlimited.

Title: GPU-Accelerated Nonlinear Optimization with Neural Network Constraints

Author(s): Parker, Robert Brunato
Dowson, Oscar Macleod
LoGiudice, Nicole C
Garcia, Manuel Joseph
Bent, Russell Whitford

Intended for: ScaleOpt: GPU-Accelerated and Scalable Optimization (NeurIPS 2025 workshop),
2025-12-06/2025-12-07 (San Diego, California, UNITED STATES)

Issued: 2025-09-18 (Draft)

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security
Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher recognizes that the U.S. Government
retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government
purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of
Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does
not endorse the viewpoint of a publication or guarantee its technical correctness.

GPU-Accelerated Nonlinear Optimization with Neural
Network Constraints

Robert B. Parker
Los Alamos National Laboratory

Los Alamos, NM 87545, USA

Oscar Dowson
Dowson Farms
New Zealand

Nicole LoGiudice
Texas A&M University

College Station, TX 77843, USA

Manuel Garcia
Los Alamos National Laboratory

Los Alamos, NM 87545, USA

Russell Bent
Los Alamos National Laboratory

Los Alamos, NM 87545, USA

Abstract

We propose a reduced-space formulation for optimizing over trained neural net-
works where the network’s outputs and derivatives are evaluated on a GPU. To
do this, we treat the neural network as a “gray box” where intermediate variables
and constraints are not exposed to the optimization solver. Compared to the full-
space formulation, in which intermediate variables and constraints are exposed
to the optimization solver, the reduced-space formulation leads to faster solves
and fewer iterations in an interior point method. We demonstrate the benefits of
this method on two optimization problems: Adversarial generation for a classi-
fier trained on MNIST images and security-constrained optimal power flow with
transient feasibility enforced using a neural network surrogate.

1 Introduction

Optimization over trained machine learning (ML) models can be used to verify ML models [1, 2],
generate adversarial examples, and use these ML models for optimization-based design and control
[3, 4]. For smooth, nonlinear ML models (e.g., neural networks with non-ReLU activation functions)
or design or control tasks involving nonconvex constraints, the resulting optimization problem must
be solved with a nonconvex optimization solver (as opposed to a mixed-integer, linear solver). Global
optimization of nonconvex functions is well-known to be NP-hard, but local optimization of these
functions can be done efficiently with interior point methods [5].

Despite favorable scalability of interior point methods in other domains (e.g., power grid operation
[6]), we are unaware of recent work investigating the scalability of interior point methods with large
neural networks (NNs) embedded. Recent work using interior point methods to optimize over trained
NNs [7, 3, 8] has been limited to small NN models (fewer than 1M trained parameters). In this
work, we examine the scalability of interior point methods with large NN models (over 100M trained
parameters) embedded. We propose a reduced-space formulation with GPU acceleration as a scalable
method of solving these optimization problems.

GPU-accelerated optimization has received much recent attention. First-order methods for linear
programming [9] have led to implementations that offload matrix-vector multiplications to a GPU
[10]. Simultaneously, the development of GPU-accelerated sparse matrix factorization algortihms,
e.g., cuDSS [11], have enabled GPU-acceleration for a wider class of optimization problem [12,
13]. In contrast to these general-purpose methods, our method is tailored to optimization problems
with neural networks embedded. Instead of developing a new solver to exploit the neural network
structure, we exploit this structure only in function and derivative evaluations, allowing us to interface
with existing nonlinear optimization solvers while still gaining the benefits of GPU acceleration.

Preprint. Under review.

2 Nonlinear optimization

We study nonlinear optimization problems in the form given by Problem (1):

min
x

f(x)

subject to g(x) = 0
x ≥ 0

(1)

This formulation does not preclude general inequality constrains, which may be reformulated with
a slack variable. We consider interior point methods, such as IPOPT [14], for solving (1), which
require that functions f and g are twice continuously differentiable [5]. These methods iteratively
compute search directions d by solving the linear system (2):[

(∇2L(x) + α) ∇g(x)T

∇g(x) 0

]
d = −

[
∇f(x) +∇g(x)Tλ+ β

g(x)

]
, (2)

where α and β are additional terms that are not shown for simplicity. The matrix on the left-hand
side is referred to as the Karush-Kuhn Tucker, or KKT, matrix. To construct this system, solvers rely
on callbacks (oracles) that provide the Jacobian, ∇g, and the Hessian of the Lagrangian function,
∇2L. These are typically provided by the automatic differentiation system of an algebraic modeling
environment.

3 Representing neural networks as constraints

We consider neural network predictors, y = NN(x), defined by repeated application of an affine
transformation and a nonlinear activation function σ over L layers:

yl = σl(Wlyl−1 + bl) l ∈ {1, . . . , L}, (3)

where y0 = x and y = yL. In this context, training weights Wl and bl are considered constant.
Pre-trained neural network predictors may be embedded into the constraints of an optimization
problem using either full-space or reduced-space formulations [15, 16].

3.1 Full-space

In the full-space formulation, we add an intermediate vector-valued decision variable zl to represent
the output of the affine transformation in each layer l, and we add a vector-valued decision variable yl
to represent the output of each nonlinear activation function. We then add a linear equality constraint
to enforce the relationship between yl−1 and zl and a nonlinear equality constraint to enforce the
relationship between zl and yl. Thus, the neural network in (3) is encoded by the constraints:

zl = Wlyl−1 + bl l ∈ {1, . . . , L}
yl = σl(zl) l ∈ {1, . . . , L}. (4)

The full-space approach prioritizes small, sparse nonlinear constraints at the cost of introducing
additional variables and constraints for each layer of the neural network.

3.2 Reduced-space

In the reduced-space formulation, we add a single vector-valued decision variable y to represent the
output of the final activation function and a single vector-valued nonlinear equality constraint that
encodes the complete neural network:

y = NN(x) = σL(WL(. . . σl(Wl(. . . σ1(W1x+ b1) . . .) + bl) . . .) + bL) (5)

The benefit of this formulation is that we only add a single decision variable and a single nonlinear
equality constraint (each of dimension of the neural network’s output). The drawback is that this
nonlinear equality constraint contains a large, complicated algebraic expression that can be expensive
to evaluate and differentiate. However, this can be alleviated by using dedicated neural network
modeling software (e.g., PyTorch [17]) to represent the neural network constraint rather than general-
purpose algebraic modeling software (e.g., JuMP [18]). Doing so also allows us to exploit GPU
acceleration via PyTorch’s CUDA interface. We note that this approach limits the information that

2

Table 1: Structure of NN models

Model N. inputs N. outputs N. neurons N. param. Activation

MNIST 784 10 1k 167k Tanh+SoftMax
MNIST 784 10 3k 1M Tanh+SoftMax
MNIST 784 10 5k 5M Tanh+SoftMax
MNIST 784 10 11k 18M Tanh+SoftMax
MNIST 784 10 21k 70M Tanh+SoftMax
MNIST 784 10 41k 274M Sigmoid+SoftMax

SCOPF 117 37 254 15k Tanh
SCOPF 117 37 1k 578k Tanh
SCOPF 117 37 5k 4M Tanh
SCOPF 117 37 36k 68M Tanh
SCOPF 117 37 152k 592M Tanh

can be communicated between the neural network and the optimization solver. Oracles (which
PyTorch provides for function, Jacobian, and Hessian evaluation) can be queried, but the internal
structure of the neural network cannot be exploited directly. This is suitable for nonlinear local
optimization, where only oracles are required, but not for global optimization, where the algebraic
form of constraints is exploited to construct relaxations.

3.2.1 The Hessian of the Lagrangian

Interior point methods require oracles to evaluate the Hessian of the Lagrangian, ∇2L:

∇2L(x, λ) = ∇2f(x) +
∑
i

λi∇2gi(x), (6)

where λ is the vector of Lagrange multipliers of the equality constraints in Equation 1. Naively
constructing

∑
i λi∇2gi for constraints involving a reduced-space neural network, g(x) = y−NN(x),

would require (1) evaluating the Hessian of the neural network, ∇2NN(x), and (2) computing a
sum-product with λ along the first rank of this third-order Hessian tensor. This sum-product is
potentially expensive for a dense Hessian (O(mn2), where m is the output dimension and n is the
input dimension of the neural network). For this reason, we encode the Lagrangian of the neural
network, λTNN(x), directly as a linear layer in PyTorch and differentiate through this scalar-valued
function to directly compute the n× n Hessian matrix,

∑
i λi∇2NNi(x).

4 Test problems

We test the full and reduced-space formulations on two nonlinear optimization problems with NNs
embedded: (1) Adversarial image generation using a neural network MNIST classifier (denoted
“MNIST”) and (2) security-constrained optimal power flow with a neural network constraint enforcing
transient feasibility (denoted “SCOPF”).

4.1 Adversarial image generation for an MNIST classifier

We have trained a set of neural networks using smooth activation functions (hyperbolic tangent,
sigmoid, and softmax) to serve as classifiers for images from the MNIST set of handwritten digits
[19]. Inputs are the 28×28 grayscale pixel colors, flattened into a 784-dimensional vector, and outputs
are scores for each digit, 0-9, that may be interpreted as the probability that the image represents the
corresponding digit. The neural networks each have seven layers total and have between 128 and
8192 neurons per hidden layer. The networks are trained to have accuracies of at least 95% on the
test set of 10,000 images from the dataset. The number of neurons, trained parameters, and activation
functions for each network are shown in Table 1. Our optimization problem is to find a minimal
perturbation to a reference image that results in a misclassification:

min
x

∥x− xref∥1
subject to y = NN(x)

yt ≥ 0.6
(7)

3

Here, x contains the grayscale values of the generated image, xref contains those of the reference
image, and t is the coordinate of the neural network’s output, y, corresponding to a target label
(misclassification). The neural network constraint, y = NN(x), may be written in full-space or
reduced-space formulations. We enforce that the image is misclassified as the target with at least 60%
confidence.

4.2 Transient-constrained optimal power flow

Security-constrained optimal power flow (SCOPF) is a well-established problem for dispatching
generators in an electric power network in which feasibility of the network (i.e., the ability to meet
demand) is enforced for a set of contingencies [6]. Each contingency k represents the loss of a set of
generators and/or power lines. We consider a variant of this problem where, in addition to enforcing
steady-state feasibility, we enforce feasibility of the transient response resulting from the contingency.
In particular, we enforce that the transient frequency at each bus is at least η = 59.4 Hz for the 30
second interval following each contingency. This problem is given by Equation 8:

min
Sg,V

c(R(Sg)) subject to
{

Fk(S
g, V,Sd) ≤ 0 k ∈ {0, . . . ,K}

Gk(S
g,Sd) ≥ η1 k ∈ {1, . . . ,K}. (8)

Here, Sg is a vector of complex AC power generations for each generator in the network, V is a vector
of complex bus voltages, c is a quadratic cost function, and Sd is a constant vector of complex power
demands. Here Fk ≤ 0 represents the set of constraints enforcing feasibility of the power network
for contingency k (see [20]), where k = 0 refers to the base network, and Gk maps generations and
demands to the minimum frequency at each bus over the interval considered.

In this work, we consider an instance of Problem 8 defined on a 37-bus synthetic test grid
[21, 22]. In this case, Gk has 117 inputs and 37 outputs. We consider a single contingency
that outages generator 5 on bus 23. We choose a small grid model with a single contingency
because our goal is to test the different neural network formulations, not the SCOPF formulation itself.

Stability surrogate model Instead of considering the differential equations describing transient
behavior of the power network directly in the optimization problem, we approximate Gk with a
neural network surrogate, as proposed by Garcia et al. [23]. Our surrogate is trained on data from
110 high-fidelity simulations using PowerWorld [24] with generations and loads uniformly sampled
from within a ±20% interval of each nominal value. We use sequential neural networks with tanh
activation functions with between two and 20 layers and between 50 and 4,000 neurons per layer.
As shown in Table 1, these networks have between 7,000 and 592 million trained parameters. The
networks are trained to minimize mean squared error using the Adam optimizer [25] until training
loss (mean squared prediction error) is below 0.01 for 1,000 consecutive epochs. We use a simple
training procedure and small amount of data because our goal is to test optimization formulations
with embedded neural networks, rather than the neural networks themselves.

5 Results

5.1 Computational setting

We model the SCOPF problem using PowerModels [26], PowerModelsSecurityConstrained [27], and
JuMP [18]. Neural networks are modeled using PyTorch [17] and embedded into the optimization
problem using MathOptAI.jl [28]. Optimization problems are solved using the IPOPT interior point
method [14] with MA57 [29] as the linear solver to a tolerance of 10−6. We note that IPOPT runs
exclusively on CPU. Interfacing our function evaluation methods with a GPU-enabled nonlinear
optimization solver, e.g., MadNLP [12], would be valuable future work. The full-space models
support evaluation on a CPU but not on a GPU. Because our reduced-space models use PyTorch, they
can be evaluated on a CPU or GPU. The CPU used in these experiments is an AMD EPYC with 128
cores and 500 GB of RAM and the GPU is an NVIDIA A100 with 40 GB of on-device memory.

5.2 Structural results

Table 2 shows the numbers of variables, constraints, and nonzero entries of the derivative matrices for
the two optimization problems with different neural networks and formulations. With the reduced-

4

Table 2: Structure of optimization problems with embedded neural networks

Model Formulation NN param. N. var. N. con. Jac. NNZ Hess. NNZ

MNIST Full-space 167k 3k 2k 171k 661
MNIST Full-space 1M 7k 5k 1M 2k
MNIST Full-space 5M 12k 11k 5M 5k
MNIST Full-space 18M 22k 21k 18M 10k
MNIST Full-space 70M 43k 41k 70M 20k
MNIST Full-space 274M 84k 82k 275M 40k

MNIST Reduced-space All NNs 2k 805 10k 307k

SCOPF Full-space 15k 1k 1k 17k 1k
SCOPF Full-space 578k 4k 4k 567k 2k
SCOPF Full-space 4M 11k 11k 4M 6k
SCOPF Full-space 68M 73k 73k 68M 37k
SCOPF Full-space 592M 305k 305k 592M 153k

SCOPF Reduced-space All NNs 1k 1k 10k 8k

space formulations, the structure of the optimization problem does not change as the neural network
surrogate adds more interior layers. By contrast, the full-space formulation grows in numbers of
variables, constraints, and nonzeros as the neural network gets larger. In this case, the number of
nonzeros in the Jacobian matrix is approximately the number of trained parameters in the embedded
neural network model. These problem structures suggest that the full-space formulation will lead to
expensive KKT matrix factorizations, while this will not be an issue for the reduced-space formulation.

Table 3: Solve times with different neural networks and formulations

Model Formulation Platform NN param. Solve time (s) N. iter. Time/iter. (s) Objective

MNIST Full-space CPU 167k 19 290 0.07 3.3
MNIST Full-space CPU 1M 348 1157 0.3 3.3
MNIST Full-space CPU 5M 11536 2110 5 6.1
MNIST Full-space CPU 18M∗ – – – –

MNIST Reduced-space CPU 167k 3 28 0.1 3.3
MNIST Reduced-space CPU 1M 4 43 0.1 3.3
MNIST Reduced-space CPU 5M 10 77 0.1 5.9
MNIST Reduced-space CPU 18M 63 147 0.4 4.7
MNIST Reduced-space CPU 70M 58 80 0.7 2.0
MNIST Reduced-space CPU 274M 45 31 1 5.3

MNIST Reduced-space CPU+GPU 167k 2 28 0.07 3.3
MNIST Reduced-space CPU+GPU 1M 4 43 0.08 3.3
MNIST Reduced-space CPU+GPU 5M 5 67 0.08 5.9
MNIST Reduced-space CPU+GPU 18M 12 149 0.08 4.8
MNIST Reduced-space CPU+GPU 70M 8 82 0.1 2.0
MNIST Reduced-space CPU+GPU 274M 3 28 0.1 5.3

SCOPF Full-space CPU 15k 4 675 0.01 82379
SCOPF Full-space CPU 578k 399 1243 0.3 82379
SCOPF Full-space CPU 4M 8858 2505 4 82379
SCOPF Full-space CPU 68M∗ – – – –

SCOPF Reduced-space CPU 15k 7 358 0.02 82379
SCOPF Reduced-space CPU 578k 5 147 0.03 82379
SCOPF Reduced-space CPU 4M 3 53 0.06 82379
SCOPF Reduced-space CPU 68M 37 40 1 82379
SCOPF Reduced-space CPU 592M 144 42 3 82379

SCOPF Reduced-space CPU+GPU 15k 5 298 0.02 82379
SCOPF Reduced-space CPU+GPU 578k 3 162 0.02 82379
SCOPF Reduced-space CPU+GPU 4M 1 53 0.03 82379
SCOPF Reduced-space CPU+GPU 68M 2 40 0.04 82379
SCOPF Reduced-space CPU+GPU 592M 3 42 0.08 82379
∗ Fails to solve within 5 hour time limit

5

5.3 Runtime results

Runtimes for the different formulations with neural network surrogates of increasing size are given
in Table 3. For the reduced-space formulation, we also compare CPU-only solves with solves that
leverage a GPU for neural network evaluation (and differentiation). The results immediately show
that the full-space formulation is not scalable to neural networks with more than a few million trained
parameters. The full-space formulation exceeds the 5-hour time limit on networks above this size.
A breakdown of solve times, given in Table 4, confirms the bottleneck in this formulation. The
full-space formulation spends almost all of its solve time in the IPOPT algorithm, which we assume
is dominated by KKT matrix factorization. 1

By contrast, the reduced-space formulation is capable of solving the optimization problem with the
largest neural network surrogates tested. While a CPU-only solve takes a relatively long 144 s for
the SCOPF problem with a 592M-parameter neural network embedded, a GPU-accelerated solve of
the same problem solves in only three seconds. In all cases, the solve time with the reduced-space
formulation is dominated by Hessian evaluation, which explains the large speed-ups obtained with the
GPU (9× for the MNIST problem with a 274M-parameter neural network and 48× for the SCOPF
problem with a 592M-parameter neural network).

Finally, we observe that the interior point method requires many more iterations with the full-space
formulation than with the reduced-space formulation. While the theory of interior point methods’
convergence behavior with full and reduced-space formulations is not well-understood, this behavior
is consistent with lower iteration counts and improved convergence reliability that have been observed
for reduced-space formulations in other contexts [30, 31, 32]. In addition to iteration counts, the times-
per-iteration are significantly higher for the full-space formulation, suggesting that its bottlenecks
would not be remedied by using a different algorithm that is able to converge in fewer iterations.

Table 4: Solve time breakdowns for selected neural networks and formulations

Model Formulation NN. param. Platform Solve time (s) Percent of solve time (%)

Function Jacobian Hessian Solver
MNIST Full-space 5M CPU 11536 0.05 0.05 0.07 99+
MNIST Reduced-space 274M CPU 45 5 13 81 1
MNIST Reduced-space 274M CPU+GPU 3 3 5 72 19

SCOPF Full-space 4M CPU 8858 0.1 0.1 0.2 99+
SCOPF Reduced-space 592M CPU 144 6 14 80 0.2
SCOPF Reduced-space 592M CPU+GPU 3 6 19 68 8

6 Conclusion

This work demonstrates that nonlinear local optimization problems may incorporate neural networks
with hundreds of millions of trained parameters, with minimal overhead, using a reduced-space
formulation that exploits efficient automatic differentiation and GPU acceleration. Further research
should test this formulation on neural networks with larger input and output dimensions to measure
the point at which CPU-GPU data transfer becomes a bottleneck; our experiments indicate that, for
our test problems, this overhead is small compared to the effort of evaluating and differentiating
the neural network itself. A disadvantage of our formulation is that it is not suitable for global
optimization as the non-convex neural network constraints are not represented in a format that can
be communicated to any global optimization solver we are aware of. Interfacing convex under and
over-estimators of neural networks (e.g., CROWN [33]) with global optimization solvers is another
interesting area for future work. Additionally, relative performance of the full and reduced-space
formulations may change in different applications. This motivates future research and development
to improve the performance of the full-space formulation, which may be achieved by linear algebra
decompositions that exploit the structure of the neural network’s Jacobian in the KKT matrix.

1This is difficult to confirm directly, but by parsing IPOPT’s logs, we see that, for the SCOPF model
with the 4M-parameter neural network, IPOPT reports spending 96% of its solve time in a category called
“LinearSystemFactorization”.

6

References
[1] Vincent Tjeng, Kai Y. Xiao, and Russ Tedrake. “Evaluating Robustness of Neural Networks

with Mixed Integer Programming”. In: International Conference on Learning Representations.
2019. URL: https://openreview.net/forum?id=HyGIdiRqtm.

[2] Rudy Bunel, Ilker Turkaslan, Philip H.S. Torr, Pushmeet Kohli, and M. Pawan Kumar. “A
unified view of piecewise linear neural network verification”. In: Proceedings of the 32nd
International Conference on Neural Information Processing Systems. NIPS’18. Montréal,
Canada: Curran Associates Inc., 2018, 4795–4804.

[3] Sergio I. Bugosen, Carl D. Laird, and Robert B. Parker. “Process flowsheet optimization with
surrogate and implicit formulations of a Gibbs reactor”. In: Systems and Control Transactions
3 (2024), pp. 113–120. DOI: https://doi.org/10.69997/sct.148498.

[4] Francisco Javier López-Flores, César Ramírez-Márquez, and José María Ponce-Ortega. “Pro-
cess Systems Engineering Tools for Optimization of Trained Machine Learning Models:
Comparative and Perspective”. In: Industrial & Engineering Chemistry Research 63.32 (2024),
pp. 13966–13979. DOI: 10.1021/acs.iecr.4c00632.

[5] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, 2006.
[6] Ignacio Aravena, Daniel K. Molzahn, Shixuan Zhang, Cosmin G. Petra, Frank E. Curtis,

Shenyinying Tu, Andreas Wächter, Ermin Wei, Elizabeth Wong, Amin Gholami, Kaizhao Sun,
Xu Andy Sun, Stephen T. Elbert, Jesse T. Holzer, and Arun Veeramany. “Recent Developments
in Security-Constrained AC Optimal Power Flow: Overview of Challenge 1 in the ARPA-E
Grid Optimization Competition”. In: Operations Research 71.6 (2023), pp. 1997–2014. DOI:
10.1287/opre.2022.0315.

[7] Zachary Kilwein, Jordan Jalving, Michael Eydenberg, Logan Blakely, Kyle Skolfield, Carl
Laird, and Fani Boukouvala. “Optimization with Neural Network Feasibility Surrogates:
Formulations and Application to Security-Constrained Optimal Power Flow”. In: Energies
16.16 (2023). ISSN: 1996-1073. DOI: 10.3390/en16165913. URL: https://www.mdpi.com/1996-
1073/16/16/5913.

[8] Carlos Andrés Elorza Casas, Luis A. Ricardez-Sandoval, and Joshua L. Pulsipher. “A compari-
son of strategies to embed physics-informed neural networks in nonlinear model predictive
control formulations solved via direct transcription”. In: Computers & Chemical Engineering
198 (2025), p. 109105. ISSN: 0098-1354. DOI: https://doi.org/10.1016/j.compchemeng.2025.
109105.

[9] David Applegate, Mateo Diaz, Oliver Hinder, Haihao Lu, Miles Lubin, Brendan O' Donoghue,
and Warren Schudy. “Practical Large-Scale Linear Programming using Primal-Dual Hybrid
Gradient”. In: Advances in Neural Information Processing Systems. Ed. by M. Ranzato, A.
Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan. Vol. 34. Curran Associates,
Inc., 2021, pp. 20243–20257. URL: https://proceedings.neurips.cc/paper_files/paper/2021/file/
a8fbbd3b11424ce032ba813493d95ad7-Paper.pdf.

[10] Haihao Lu and Jinwen Yang. cuPDLP.jl: A GPU Implementation of Restarted Primal-Dual
Hybrid Gradient for Linear Programming in Julia. 2024. arXiv: 2311.12180 [math.OC]. URL:
https://arxiv.org/abs/2311.12180.

[11] NVIDIA cuDSS (preview): A high-performance CUDA Library for Direct Sparse Solvers.
NVIDIA. 2025. URL: https://docs.nvidia.com/cuda/cudss/.

[12] Sungho Shin, Mihai Anitescu, and François Pacaud. “Accelerating optimal power flow with
GPUs: SIMD abstraction of nonlinear programs and condensed-space interior-point methods”.
In: Electric Power Systems Research 236 (2024), p. 110651. ISSN: 0378-7796. DOI: https:
//doi.org/10.1016/j.epsr.2024.110651.

[13] François Pacaud and Sungho Shin. “GPU-accelerated dynamic nonlinear optimization with
ExaModels and MadNLP”. In: 2024 IEEE 63rd Conference on Decision and Control (CDC).
2024, pp. 5963–5968. DOI: 10.1109/CDC56724.2024.10886720.

[14] Andreas Wächter and Lorenz T Biegler. “On the implementation of an interior-point filter
line-search algorithm for large-scale nonlinear programming”. In: Mathematical programming
106.1 (2006), pp. 25–57.

[15] Francesco Ceccon, Jordan Jalving, Joshua Haddad, Alexander Thebelt, Calvin Tsay, Carl D
Laird, and Ruth Misener. “OMLT: Optimization & Machine Learning Toolkit”. In: Journal
of Machine Learning Research 23.349 (2022), pp. 1–8. URL: http://jmlr.org/papers/v23/22-
0277.html.

7

https://openreview.net/forum?id=HyGIdiRqtm
https://doi.org/https://doi.org/10.69997/sct.148498
https://doi.org/10.1021/acs.iecr.4c00632
https://doi.org/10.1287/opre.2022.0315
https://doi.org/10.3390/en16165913
https://www.mdpi.com/1996-1073/16/16/5913
https://www.mdpi.com/1996-1073/16/16/5913
https://doi.org/https://doi.org/10.1016/j.compchemeng.2025.109105
https://doi.org/https://doi.org/10.1016/j.compchemeng.2025.109105
https://proceedings.neurips.cc/paper_files/paper/2021/file/a8fbbd3b11424ce032ba813493d95ad7-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/a8fbbd3b11424ce032ba813493d95ad7-Paper.pdf
https://arxiv.org/abs/2311.12180
https://arxiv.org/abs/2311.12180
https://docs.nvidia.com/cuda/cudss/
https://doi.org/https://doi.org/10.1016/j.epsr.2024.110651
https://doi.org/https://doi.org/10.1016/j.epsr.2024.110651
https://doi.org/10.1109/CDC56724.2024.10886720
http://jmlr.org/papers/v23/22-0277.html
http://jmlr.org/papers/v23/22-0277.html

[16] Artur M Schweidtmann and Alexander Mitsos. “Deterministic global optimization with artifi-
cial neural networks embedded”. In: Journal of Optimization Theory and Applications 180.3
(2019), pp. 925–948.

[17] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. “Pytorch: An imperative
style, high-performance deep learning library”. In: Advances in neural information processing
systems 32 (2019).

[18] Miles Lubin, Oscar Dowson, Joaquim Dias Garcia, Joey Huchette, Benoît Legat, and Juan
Pablo Vielma. “JuMP 1.0: Recent improvements to a modeling language for mathematical
optimization”. In: Mathematical Programming Computation 15.3 (2023), pp. 581–589. DOI:
10.1007/s12532-023-00239-3. URL: https://doi.org/10.1007/s12532-023-00239-3.

[19] Yann LeCun, Corinna Cortes, and Christopher J. C. Burges. “The MNIST Database of Hand-
written Digits”. In: (1998). URL: http://yann.lecun.com/exdb/mnist/.

[20] Mary B. Cain, Richard P. O’Neill, and Anya Castillo. History of Optimal Power Flow and
Formulations. Tech. rep. Federal Energy Regulatory Commission, 2012.

[21] Adam B. Birchfield, Ti Xu, Kathleen M. Gegner, Komal S. Shetye, and Thomas J. Overbye.
“Grid Structural Characteristics as Validation Criteria for Synthetic Networks”. In: IEEE
Transactions on Power Systems 32.4 (2017), pp. 3258–3265. DOI: 10.1109/TPWRS.2016.
2616385.

[22] Adam Birchfield. Hawaii Synthetic Grid – 37 Buses. Accessed 2024-12-10. 2023. URL:
https://electricgrids.engr.tamu.edu/hawaii40/.

[23] Manuel Garcia, Nicole LoGiudice, Robert Parker, and Russell Bent. Transient Stability-
Constrained OPF: Neural Network Surrogate Models and Pricing Stability. 2025. arXiv:
2502.01844 [math.OC]. URL: https://arxiv.org/abs/2502.01844.

[24] PowerWorld Simulator Manual. https://www.powerworld.com/WebHelp/ Accessed December
10, 2024. PowerWorld Corporation. Champaign, IL, USA.

[25] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. 2017. arXiv:
1412.6980 [cs.LG]. URL: https://arxiv.org/abs/1412.6980.

[26] Carleton Coffrin, Russell Bent, Kaarthik Sundar, Yeesian Ng, and Miles Lubin. “PowerMod-
els.jl: An Open-Source Framework for Exploring Power Flow Formulations”. In: 2018 Power
Systems Computation Conference (PSCC). 2018, pp. 1–8. DOI: 10.23919/PSCC.2018.8442948.

[27] Carleton Coffrin. PowerModelsSecurityConstrained.jl. Accessed 2024-12-10. 2022. URL:
https://github.com/lanl-ansi/PowerModelsSecurityConstrained.jl.

[28] Oscar Dowson, Robert B Parker, and Russel Bent. MathOptAI.jl: Embed trained machine
learning predictors into JuMP models. 2025. arXiv: 2507.03159 [cs.LG]. URL: https://arxiv.
org/abs/2507.03159.

[29] Iain S. Duff. “MA57—a code for the solution of sparse symmetric definite and indefinite
systems”. In: 30.2 (2004). ISSN: 0098-3500. DOI: 10.1145/992200.992202.

[30] François Pacaud, Daniel Adrian Maldonado, Sungho Shin, Michel Schanen, and Mihai An-
itescu. “A feasible reduced space method for real-time optimal power flow”. In: Electric Power
Systems Research 212 (2022), p. 108268. ISSN: 0378-7796. DOI: https://doi.org/10.1016/j.epsr.
2022.108268.

[31] Robert Parker, Bethany Nicholson, John Siirola, Carl Laird, and Lorenz Biegler. “An implicit
function formulation for optimization of discretized index-1 differential algebraic systems”.
In: Computers & Chemical Engineering 168 (2022), p. 108042. ISSN: 0098-1354. DOI: https:
//doi.org/10.1016/j.compchemeng.2022.108042.

[32] Sakshi Naik, Lorenz Biegler, Russell Bent, and Robert Parker. Variable aggregation for
nonlinear optimization problems. 2025. arXiv: 2502.13869 [math.OC]. URL: https://arxiv.
org/abs/2502.13869.

[33] Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. “Efficient Neural
Network Robustness Certification with General Activation Functions”. In: Advances in Neural
Information Processing Systems (NuerIPS). 2018.

8

https://doi.org/10.1007/s12532-023-00239-3
https://doi.org/10.1007/s12532-023-00239-3
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1109/TPWRS.2016.2616385
https://doi.org/10.1109/TPWRS.2016.2616385
https://electricgrids.engr.tamu.edu/hawaii40/
https://arxiv.org/abs/2502.01844
https://arxiv.org/abs/2502.01844
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/10.23919/PSCC.2018.8442948
https://github.com/lanl-ansi/PowerModelsSecurityConstrained.jl
https://arxiv.org/abs/2507.03159
https://arxiv.org/abs/2507.03159
https://arxiv.org/abs/2507.03159
https://doi.org/10.1145/992200.992202
https://doi.org/https://doi.org/10.1016/j.epsr.2022.108268
https://doi.org/https://doi.org/10.1016/j.epsr.2022.108268
https://doi.org/https://doi.org/10.1016/j.compchemeng.2022.108042
https://doi.org/https://doi.org/10.1016/j.compchemeng.2022.108042
https://arxiv.org/abs/2502.13869
https://arxiv.org/abs/2502.13869
https://arxiv.org/abs/2502.13869

	Introduction
	Nonlinear optimization
	Representing neural networks as constraints
	Full-space
	Reduced-space
	The Hessian of the Lagrangian

	Test problems
	Adversarial image generation for an MNIST classifier
	Transient-constrained optimal power flow

	Results
	Computational setting
	Structural results
	Runtime results

	Conclusion

