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H2-Optimal Estimation of Linear Delayed and PDE Systems

Danio Braghini1, Sachin Shivakumar2 and Matthew M. Peet3

Abstract— The H2 norm is a commonly used performance
metric in the design of estimators. However, H2-optimal esti-
mation of most PDEs is complicated by the lack of state-space
and transfer function representations. To address this problem,
we re-characterize the H2-norm in terms of a map from initial
condition to output. We then leverage the Partial Integral Equa-
tion (PIE) state-space representation of systems of linear PDEs
coupled with ODEs to recast this characterization of H2 norm
as a convex optimization problem defined in terms of Linear
Partial Integral (LPI) inequalities. We then parameterize a class
of PIE-based observers and solve the associated H2-optimal
estimation problem. The resulting observers are validated using
numerical simulation.

I. INTRODUCTION

Partial Differential Equations (PDEs) are used to describe
the evolution of some process whose state is distributed over
a spatial domain. Examples of such processes include fluid
flow [1], vibroacoustics [2], chemical reaction networks [3],
and time-delay systems [4], where the corresponding dis-
tributed states are velocity profile, displacement, species
concentration, and history. For such systems, it is often
desirable to be able to track the evolution of the system using
sensor measurements – either for the purpose of feedback
control [5], [6] or for monitoring and fault detection [7], [8].

Unlike Ordinary Differential Equations (ODEs) and other
such lumped-parameter systems, however, direct measure-
ment of the system state of a PDE requires an uncountable
number of sensors – a practical impossibility. Consequently,
there has been significant interest in the development of
observers wherein by tracking a finite set of measurements,
we may infer real-time estimates of the entire distributed
state. Furthermore, for PDEs, the need to integrate boundary
conditions and the distributed states precludes the existence
of a convenient and universal state-space representation. This
means that most efforts to design estimators for such systems
are ad hoc – requiring significant modification for even minor
changes in the model [9]. As a result, most approaches
to the estimation of the PDE state entail a reduction of
the PDE state to finite dimensions, either through early-
lumping [10], [11], by reducing the distributed states to
finite-dimensions, or late-lumping [12], [13], which enforces
synthesis conditions on a finite number of test functions.

Recently, efforts have been made to synthesize observers
for PDE systems without lumping through the use of a more
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convenient state-space representation of PDEs. This method
integrates the PDE evolution equation with the boundary con-
ditions by defining the state as the highest spatial derivative
of the distributed state and parameterizing the evolution of
this state by means of integral operators with polynomial
kernels. This method has the advantage that such operators
form an algebra, which can be represented using matrices
and optimized using Linear Matrix Inequalities (LMIs). The
representation of a PDE using such operators is referred to
as a Partial Integral Equation (PIE), and methods for the
construction of PIE representations of a broad class of PDEs
are well-established [14]–[17].

Observer designs for PDE systems that admit a PIE rep-
resentation have previously been presented in [18], [19] and
for time-delay systems in [20]. These results parameterize
the observer dynamics using PIEs and pose conditions for
stability and performance bounds as the solution of a convex
optimization problem expressed in terms of Partial Integral
(PI) operator variables and Linear Partial integral Inequalities
(LPIs), which can be enforced using recently developed
Matlab toolboxes such as [21]. These results ensure stability
and bound the L2-gain of a tracking error to disturbances
such as sensor noise. The problem with minimization of
L2-gain, however, is that disturbances such as sensor noise
are not typically characterized in terms of energy, but rather
in terms of frequency content and power spectral density –
implying that the H2 norm is a more suitable performance
metric in design of observers (e.g. LQG and Kalman filters).

The goal of this paper, then, is to formulate and solve
the problem of H2-optimal observer synthesis. Unlike H∞-
optimal observer synthesis, wherein a proxy for H∞ per-
formance is L2-gain, the main technical difficulty for H2-
optimal estimation is the identification of a time-domain
proxy for H2 performance. To address this difficulty, we rely
on an initial condition to output L2-gain characterization of
the H2 metric as proposed in [22]. This allows us to extend
classical LMIs for H2-performance to LPI-type conditions to
performance bounds on the error dynamics of the PIE-based
observer.

This paper is structured as follows. First, Section II defines
PI operators, PIEs, and LPIs. Section III introduces a time-
domain characterization of the H2 norm and formulates H2-
optimal observer synthesis problem. Section IV gives an LPI
characterization of the H2-norm of a PIE and Section V
extends this result to give an LPI condition for computing
H2-optimal observer gains. Section VI gives a procedure to
find observer gains from the LPI solution and Section VII
presents numerical examples for observer validation.

Notation: Lp
2[a, b] is the space of Lesbegue square-



integrable Rp-valued functions on spatial domain s ∈ [a, b],
endowed with the standard inner product. RLm,p

2 [a, b] de-
notes the Hilbert space Rm×Lp

2[a, b]. Occasionally, we omit
domain and simply write Lp

2 or RLm,p
2 . We use the bold

font, (e.g. x) to indicate scalar or vector-valued functions
of a spatial variable. For Hilbert spaces X,Y , L(X,Y )
denotes the set of bounded linear operators from X to Y
with L(X) := L(X,X). We use the calligraphic font (e.g.
A) to represent such bounded linear operators.

II. STATE SPACE AND CONVEX OPTIMIZATION: PIS,
PIES, AND LPIS

In this section, we introduce the algebra of Partial Integral
(PI) operators, the class of systems modelled using Partial
Integral Equations (PIEs), and the class of convex optimiza-
tion problems defined in terms of Linear PI (LPI) Inequality
constraints.

A. The Algebra of Partial Integral Operators

We begin by defining the algebra of partial integral op-
erators which will be used to parameterize partial integral
equations in Subsection II-B.

Definition 1. We say P = Π
[

P Q1

Q2 {Ri}

]
∈ ΠΠΠ4 ⊂

L(RLm1,n1

2 ,RLm2,n2

2 ) if there exists a matrix P and poly-
nomials Q1, Q2, R0, R1, and R2 such that(
P
[
x
x

])
(s) :=

[
Px+

∫ b

a
Q1(θ)x(θ)dθ

Q2(s)x+Rx(s)

]
,

(Rx)(s)=R0(s)x(s) +

s∫
a

R1(s, θ)x(θ)dθ +

b∫
s

R2(s, θ)x(θ)dθ.

We refer to ΠΠΠ4 as the set of 4-PI operators. If m1 = m2

and n1 = n2, this set of PI operators is closed under
composition, addition, and adjoint; explicit formulae for
these operations can be obtained in terms of the polynomial
matrices used to parameterize them [15].

As in Defn. 1, the notation Π
[

P Q1

Q2 {Ri}

]
is used

to indicate the 4-PI operator associated with the matrix
P and polynomial parameters Qi, Rj . The associated di-
mensions (m1, n1,m2, n2) are inherited from the dimen-
sions of the constant matrix P ∈ Rm2×m1 and polyno-
mial matrices Q1(s) ∈ Rm2×n1 , Q2(s) ∈ Rn2×m1 , and
R0(s), R1(s, θ), R2(s, θ) ∈ Rn2×n1 . In the case where a
dimension is zero, we use ∅ in place of the associated
parameter with zero dimension.

B. Partial Integral Equations

It has been shown in, e.g. [15], that a large class of
PDE coupled with ODEs, with sensed and regulated outputs,
y(t) ∈ Rny , z(t) ∈ Rnz , and in-domain disturbances, w(t) ∈
Rnw , may be equivalently represented using a partial integral
equation (PIE) of the form
∂t(T x(t)) = Ax(t) + B1w(t), x(0) ∈ RL2,

z(t) = C1x(t), y(t) = C2x(t) +D21w(t), (1)
where the parameters A,B1, C2, etc., are all 4-PI operators
and where the solution of the PIE, x(t) ∈ RLm,n

2 [a, b]

yields a solution to the PDE as T x(t). The PIE state, x(t),
combines the ODE state with a spatial derivative of the
PDE state and admits no boundary conditions or continuity
constraints.

The solution of this class of PIE is formally defined
as follows, where x ∈ Lp

2e[0,∞) means x(t) ∈ Rp and∫ T

0
∥x(t)∥2 dt is finite for all T ≥ 0.

Definition 2 (PIE solution). Given PI operators T , A, B1,
C1, C2, D21 we say {x, z, y} is a solution to the PIE system
for given initial condition x(0) ∈ RLm,n

2 [a, b] and input
w ∈ Lnw

2e [0,∞), if T x(t) is Frechét differentiable for all
t ∈ [0,∞), and if x(t) ∈ RLm,n

2 [a, b], z ∈ Lnz
2e [0,∞), and

y ∈ L
ny

2e [0,∞) satisfy Eq. (1) for all t ∈ [0,∞).

C. Linear PI Operator Inequalities

As described in Subsection II-A, 4-PI operators of the
form given in Defn. 1 constitute a composition algebra of
bounded linear operators and are parameterized by poly-
nomial matrices, which in turn can be parameterized by
the coefficients of those polynomials. In this paper, we
reformulate the problem of H2-optional estimator synthesis
as an optimization problem where the decision variables
are themselves PI operators and are subject to inequality
constraints which are affine in those decision variables –
See, e.g. Eqn. (12) in Thm. 8. Optimization problems in
this form may be solved by using matrices to parameterize
the coefficients of the polynomials that define the PI operator
variables. Inequalities are enforced by using positive matrices
to parameterize positive PI operators, as described in [14],
and implemented in the PIETOOLS Matlab toolbox [21].

III. PROBLEM FORMULATION

In this section, we introduce a suitable time-domain char-
acterization of the H2 norm and use this characterization to
define the problems of H2 norm bounding and H2-optimal
estimation for systems that admit a PIE representation.

A. The H2 norm of a PIE

For this subsection, we restrict our consideration to the
characterization of the H2 norm of a system represented by
a PIE of the form

∂t(T x(t)) = Ax(t) + B1w(t),

z(t) = C1x(t), x(0) = 0, (2)
where x(t) ∈ RLm,n

2 [a, b] is the state, w(t) ∈ Rnw is a
disturbance, and z(t) ∈ Rnz is the output. Specifically, in
Definition. 3, we define the H2 norm of this system as L2-
gain of initial condition to output of an auxiliary system
with no disturbance. While non-standard, we will see that
this characterization of H2 performance is equivalent in a
certain sense to the standard definition of H2 norm.

Definition 3. Consider solutions of the auxiliary PIE

∂t(T x(t)) = Ax(t),

z(t) = C1x(t), T x(0) = B1x0. (3)



We define the H2 norm of System (2) (denoted G) as

∥G∥H2
:= sup

z,x satisfy (3)
∥x0∥=1

∥z∥L2
.

To see the relationship between the definition of H2 norm
in Definition 3 and the standard definition, recall the usual
state-space representation of an ODE.[

ẋ(t)
z(t)

]
=

[
A B
C 0

] [
x(t)
w(t)

]
, ∀t ∈ [0,∞). (4)

Corollary 4. Suppose A is Hurwitz and Ĝ(s) = C(sI −
A)−1B with B ∈ Rnx×nw . Consider solutions of the
auxiliary ODE

ẋ(t) = Ax(t),

z(t) = Cx(t), x(0) = Bx0, (5)
Then

sup
z,x satisfies (5)

∥x0∥=1

∥z∥L2
≤ ∥G∥H2

≤
√
nw sup

z,x satisfies (5)
∥x0∥=1

∥z∥L2
.

Proof. Suppose {x, z} satisfy (5) with initial condition
x(0) = Bx0. Then x(t) = eAtBx0 and hence if ∥x0∥ = 1,
we have

∥z∥2L2
=

∫ ∞

0

x(τ)TCTCx(τ)dτ

=

∫ ∞

0

xT
0 B

T eA
T τCTCeAτBx0dτ

≤ σ̄

(∫ ∞

0

BT eA
T τCTCeAτBdτ

)
≤ trace

(∫ ∞

0

BT eA
T τCTCeAτBdτ

)
= ∥G∥2H2

.

Furthermore,

∥G∥2H2
= trace

(∫ ∞

0

BT eA
T τCTCeAτBdτ

)
≤ nwσ̄

(∫ ∞

0

BT eA
T τCTCeAτBdτ

)
= nw sup

∥x0∥=1

∫ ∞

0

xT
0 B

T eA
T τCTCeAτBx0dτ

= nw sup
∥x0∥=1

∥z∥2L2
.

Clearly, if the PIE has a single input, the proposed
definition of H2 norm coincides with the typical definition.
Alternatively, in the case of multiple inputs, our time-
domain characterization of H2 norm would coincide with
an alternative definition of H2 norm given by

∥Ĝ∥2H2
=

1

2π

∫ ∞

−∞
σ̄ (G∗(iω)G(iω)dω) .

Having defined the H2-norm, we proceed to formulate the
H2-optimal estimator synthesis problem.

B. H2-Optimal Estimators

Our goal is to design observers for the class of coupled
ODE-PDE system which admit a PIE representation of form

∂t(T x(t)) = Ax(t) + B1w(t), x(0) = 0,

z(t) = C1x(t), y(t) = C2x(t) +D21w(t), (6)
where recall the state of the original PDE is obtained from
the solution of the PIE as T x(t). The signal y(t) are
measurements of the PDE and z(t) represents those parts
of the state by which we will measure the performance of
our estimator. Our estimator dynamics are then assumed to
have the Luenberger observer structure
∂t (T x̃(t)) = Ax̃(t) + L (C2x̃(t)− y(t)) , x̃(0) = 0, (7)

which mirror the dynamics of the observed system, but
without the disturbance, which is unknown. The term,
C2x̃(t) − y(t), reflects the difference between the predicted
and measured output from the PDE. This term is weighted by
the observer gain, L : Rny → RLm,n

2 which is taken to be a
PI operator. By combining the observer in Eqn. (7) with the
measured output of a PDE, real-time estimates of the PDE
state can be obtained as T x̃(t) and used in conjunction with
state-feedback controllers or fault detection algorithms.

The H2-optimal estimation problem, then, is to choose L
which minimizes the H2-norm of the map from disturbance
w to error in the regulated output, which we define as ez(t) =
C1x̃(t)−z(t). This map can likewise be represented as a PIE
with state e(t) = x̃(t)−x(t), where x̃ satisfies Eqn. (7) and
x satisfies Eqn. (6) so that

∂t (T e(t)) = (A+ LC2)e(t)− (B1 + LD21)w(t),

ez(t) = C1e(t), e(0) = 0. (8)
We see that System (8) is of the form in Eqn. (2) with A 7→
A + LC2, B1 7→ − (B1 + LD21) and C1 7→ C1. Thus we
can formulate the H2-optimal synthesis problem using the
auxiliary PIE from Defn. 3
∂t (T e(t)) = (A+ LC2)e(t),

ez(t) = C1e(t), T e(0) = − (B1 + LD21)x0. (9)
as

min
L∈ΠΠΠ4

sup
z,e satisfy (9)

∥x0∥=1

∥ez∥L2
. (10)

In Section V, we will reformulate the H2-optimal estimation
problem as an LPI. First, however, we need to address the
problem of computing H2-norm of a PIE using LPIs.

IV. AN LPI FOR THE H2 NORM

In this section, we show how to use LPIs to compute the
H2 norm of a PIE. We begin by reformulating the following
result from [22].

Theorem 5. Suppose (2) is defined by T ,A,B1, C1 ∈ ΠΠΠ4. If
there exists some ϵ > 0 and P ≽ ϵI such that:

trace(B∗
1PB1) ≤ γ2,

A∗PT + T ∗PA+ C∗
1C1 ≼ −ϵI, (11)

then ∥G∥H2
≤ γ.

We now use an extension of the Schur complement to
obtain an LPI for bounding the H2 norm which will be



used for estimator design in Section V. This reformula-
tion, however, requires us to define vertical and horizontal
concatenation of ΠΠΠ4 operators such that the concatenated
operator is in ΠΠΠ4 (See Lemmas 39 and 40 from [15]). This
definition separately concatenates the real and distributed
portions of the operator so that if, e.g. P ∈ L(RLn,m

2 ) and
Q ∈ L(RLp,q

2 ), then[
P 0
0 Q

]
∈ L(Rn+p × Lm+q

2 ).

In proof of the following lemma, we do not re-order rows
and columns. However, the result holds for the standard
definition of concatenation since inequalities are preserved
under symmetric reordering of rows and columns.

Lemma 6 (Schur Complement). Suppose P,Q,R ∈ ΠΠΠ4.
Then the following are equivalent.

1)
[
P Q
Q∗ R

]
≽ ϵI for some ϵ > 0.

2) R−Q∗P−1Q ≽ ϵI and P ≽ ϵI for some ϵ > 0.

Proof. In this proof, there is no rearrangement of rows or
columns. Now, mirroring the standard proof of the Schur
complement, suppose that 1) is true. Then, we have

⟨x,Px⟩ =
〈[

x
0

]
,

[
P Q
Q∗ R

] [
x
0

]〉
≥ ϵ ∥x∥2 ,

which implies that P is invertible. Now note that[
P 0
0 R−Q∗P−1Q

]
=

[
I −P−1Q
0 I

]∗ [ P Q
Q∗ R

] [
I −P−1Q
0 I

]
,

and hence〈
x, (R−Q∗P−1Q)x

〉
=

〈[
0
x

]
,

[
P 0
0 R−Q∗P−1Q

] [
0
x

]〉
=

〈[
−P−1Qx

x

]
,

[
P Q
Q∗ R

] [
−P−1Qx

x

]〉
≥ ϵ

∥∥∥∥[−P−1Qx
x

]∥∥∥∥2

≥ ϵ ∥x∥2 .

For the converse, suppose 2) is true. Then[
P Q
Q∗ R

]
=

[
I P−1Q
0 I

]∗ [P 0
0 R−Q∗P−1Q

] [
I P−1Q
0 I

]
,

which implies〈[
x
y

]
,

[
P Q
Q∗ R

] [
x
y

]〉
≥ ϵ

∥∥∥∥[I P−1Q
0 I

] [
x
y

]∥∥∥∥2

.

Now, define

∥∥∥∥∥
[
I P−1Q
0 I

]−1
∥∥∥∥∥
L(RL2)

= δ. Then

∥∥∥∥[I P−1Q
0 I

] [
x
y

]∥∥∥∥2

≥ δ

∥∥∥∥[xy
]∥∥∥∥2

,

and hence 〈[
x
y

]
,

[
P Q
Q∗ R

] [
x
y

]〉
≥ ϵδ

∥∥∥∥[xy
]∥∥∥∥2

,

as desired.

Theorem 7. Suppose T ,A,B1, C1 ∈ ΠΠΠ4. Suppose there
exists some matrix W , ϵ > 0, and a 4-PI operator P ≽ ϵI
such that: [

−γI C1
C∗
1 T ∗PA+A∗PT

]
≼ −ϵI (12)[

W B∗
1P

PB1 P

]
≽ ϵI (13)

trace(W ) ≤ γ. (14)
Then sup

z,x satisfy (3)
∥x0∥=1

∥z∥L2
≤ γ.

Proof. Suppose γ,P,Z are as stated above. Then, Inequal-
ity (12) combined with Lemma 6 implies

A∗PT + T ∗PA+
1

γ
C∗C ≼ −ϵI.

Likewise, Inequality (13) combined with Lemma 6 implies
W − B∗PP−1PB = W − B∗PB ≻ 0.

Now W and B∗PB are matrices and hence trace(B∗PB) <
traceW ≤ γ. Define P̂ = γP so that P = 1

γ P̂ and hence

A∗P̂T + T ∗P̂A+ C∗C ≼ −γϵI, trace(B∗P̂B) ≤ γ2,

which implies the conditions of Thm 5 are satisfied.

In the next section, this result is used to design observers
which minimize a bound on the H2 norm of the error
dynamics.

V. AN LPI FOR H2-OPTIMAL ESTIMATOR

In this section, we consider the problem of designing the
estimator gain L ∈ ΠΠΠ4 which minimizes a bound on the H2

norm of the error dynamics defined in Subsection III-B.

Theorem 8. Suppose there exist ϵ > 0, matrix W , and 4-PI
operators P ≽ ϵI and Z , such that[

−γI C1
C∗
1 T ∗PA+A∗PT + T ∗ZC2 + C∗

2Z∗T

]
≼ −ϵI,[

W −(B∗
1P +DT

21Z∗)
−(PB1 + ZD21) P

]
≽ ϵI,

trace(W ) ≤ γ.

Then, if L = P−1Z , the H2-norm of the system in Eq. (8)
is upper bounded by γ.

Proof. Let L = P−1Z . Then[
−γI C1
C∗
1 T ∗P (A+ LC2) + (A+ LC2)∗ PT

]
=

[
−γI C1
C∗
1 T ∗P

(
A+ P−1ZC2

)
+

(
A+ P−1ZC2

)∗
PT

]
=

[
−γI C1
C∗
1 T ∗PA+A∗PT + T ∗ZC2 + C∗

2Z∗T

]
≼ −ϵI,

and [
W − (B1 + LD21)

∗ P
−P (B1 + LD21) P

]
=

[
W −(B∗

1P +DT
21Z∗)

−(PB1 + ZD21) P

]
≽ ϵI.

Since trace(W ) ≤ γ, from Theorem 7, we conclude that γ
is an upper bound on the H2-norm of the PIE system defined
by {T , (A+ LC2),−(B1 + LD21), C1} as in Eq. 8.

VI. ESTIMATOR GAIN RECONSTRUCTION

In this section, we suppose that we have obtained P,Z
which satisfy Thm. 8. Our next step is to construct the
observer gain L = P−1Z and use this gain in combination
with the PIE estimator in (7) to track the state of a PDE.



First, if P ∈ ΠΠΠ4 is invertible, then the inverse P−1 can
be computed using, e.g. Lem. 17 in [23] and numerically
approximated by a PI operator

P−1 ≈ P̂ := Π
[

P̂ Q̂

Q̂T {R̂i}

]
.

Then, if Z = Π
[

Z1 ∅
Z2 {∅}

]
, we have, by the 4-PI compo-

sition formula [15], that L = Π
[

L1 ∅
L2 {∅}

]
, where

L1 = P̂Z1 +

∫ b

a

Q̂(s)Z2(s)ds,

L2(s) = Q̂(s)TZ1 + R̂0(s)Z2(s)

+

∫ s

a

R̂1(s, θ)Z2(θ)dθ +

∫ b

s

R̂2(s, θ)Z2(θ)dθ.

L1 represents the correction to the ODE state and L2

represents a correction to the distributed state. In the fol-
lowing section, we test observers designed in this manner
by numerical integration of a PIE estimator using the output
from the numerical integration of the PDE it is observing.

VII. NUMERICAL EXAMPLES

In this section, we validate the proposed algorithm for
observer synthesis by constructing the H2-optimal observer
gains and numerically integrating the estimator dynamics
using the output from numerical integration of the asso-
ciated PDEs subject to disturbances. Our illustration uses
two PDE examples: an unstable non-homogeneous reaction-
diffusion equation (Example A) and an energy-preserving
Euler-Bernoulli beam equation (Example B).

In both cases, the command-line PDE input option of
PIETOOLS [21] is used to obtain the PIE representation of
the PDE. Solution of the LPI in Thm. 8, operator inversion,
and estimator gain reconstruction is likewise performed using
PIETOOLS. Numerical integration of both the PIE estimator
and PDE plant are performed using a Galerkin projection
with Chebyshev bases order up to 8, and as implemented in
PIESIM [24]. In each case, we plot both the evolution of
the performance metric being minimized (ez) as well as the
error in the estimate of the distributed PDE state.

Example A (Unstable Reaction-Diffusion Equation). In
this example, we consider the unstable, non-homogeneous
reaction-diffusion PDE with both sensor and process noise
where sensor measurements are taken at the boundary.

ξ̇(t, s) = 3ξ(t, s) + (s2 + 0.2)∂2
sξ(t, s)−

s2

2
w(t),

ξ(t, 0) = ∂sξ(t, 1) = 0,

z(t) =

∫ 1

0

ξ(t, θ)dθ, y(t) = ξ(t, 1) + w(t). (15)

PIETOOLS is used to obtain the PIE representation of this
PDE with PIE state, x(t) = ∂2

sξ(t), and system parameters

T = Π
[

∅ ∅
∅ {0, R1, R2}

]
, B1 = Π

[
∅ ∅

−0.5s2 {∅}

]
,

A = Π
[

∅ ∅
∅ {S0, 2R1, 2R2}

]
, C1 = Π

[
∅ 0.5s2 − s
∅ {∅}

]
,

C2 = Π
[

∅ −s
∅ {∅}

]
, D21 = 1,
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Fig. 1: Numerical estimation of an H2-optimal estimator
for an unstable reaction-diffusion equation (Eq. (15)) using
measurement at the boundary along with process and sensor
disturbance w(t) = sin(100t) and PDE initial condition
ξ(0, s) = s2/2 − s (x(0, s) = 1). (a): Evolution of error
in estimate of the PDE state T e(t) = T x̃(t) − ξ(t). (b):
Evolution of the regulated output z(t) of both estimator and
PDE.

where R1(s, θ) = −θ, R2(s, θ) = −s, and S0(s) = s2+0.2.
In Fig. 1, we find a numerical simulation of the PDE and
H2-optimal estimator with a time step of 0.002s, w(t) =
sin(100t), and PDE initial condition ξ(0, s) = s2/2 − s
implying x(0, s) = 1. In this simulation, we see errors in
both the estimated state of the PDE and the regulated output
decaying quickly despite instability in the PDE and persistent
high-frequency excitation.

Example B (Euler-Bernoulli Beam Equation). Consider a
cantilevered Euler - Bernoulli beam with both sensor and
process noise where the sensor measures tip velocity at the
boundary.

η̈(t, s) = − 1

10
∂4
sη(t, s) +

s2 − 2s

2
w(t),

η(t, 0) = ∂sη(t, 0) = ∂2
sη(t, 1) = ∂3

sη(t, 1) = 0,

z(t) =

∫ 1

0

η̇(t, s)ds, y(t) = η̇(t, 1) + w(t). (16)

We may rewrite this equation in first-order form by defining
the concatenated state v(t, s) =

(
η̇(t, s), ∂2

sη(t, s)
)

[14], to
obtain the coupled PDE system

v̇(t) =

[
0 −0.1
1 0

]
∂2
sv(t) +

[
s2−2s

2
0

]
w(t) +

[
1
0

]
u(t),[

1 0
]
v(t, 0) =

[
1 0

]
∂sv(t, 0) = 0,[

0 1
]
v(t, 1) =

[
0 1

]
∂sv(t, 1) = 0,

z(t) =

∫ 1

0

[
1 0

]
v(t, s)ds, y(t) =

[
1 0

]
v(t, 1) + w(t).

As in Ex. A, we find the PIE system parameters to be

T = Π
[

∅ ∅
∅ {R0, R1, R2}

]
, A = Π

[
∅ ∅
∅ {S0, S1, S2}

]
,

B1 = Π
[

∅ ∅
s2/2 {∅}

]
, C1 = Π

[
∅ 0.5s2 − s
∅ {∅}

]
,

C2 = Π
[

∅ −s
∅ {∅}

]
, D21 = 1,

with PIE state, x(t) = ∂2
sv(t), where
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Fig. 2: Numerical estimation of an H2-optimal estimator for
a neutrally stable Euler-Bernoulli beam equation (Eq. (16))
using velocity measurement at the tip without disturbances
and with PDE initial condition η̇(0, s) = s2/2. (a): Evolution
of error in estimate of the PDE state ˜̇η(t, ·) − η̇(t, ·). (b):
Evolution of the regulated output (z(t)) of both estimator
and PDE.

R0(s) = S1(s, θ) = S2(s, θ) =

[
0 0
0 0

]
, S0(s) =

[
0 −0.1
1 0

]
,

R1(s, θ) =

[
s− θ 0
0 0

]
, R2(s, θ) =

[
0 0
0 θ − s

]
.

In Fig. 2, we find a numerical simulation of the Euler-
Bernoulli beam and H2-optimal estimator with zero distur-
bance, PDE initial condition η̇(0, s) = s2/2 and a time
step of 0.001s. In this simulation, we see errors in both the
estimated state of the PDE and the regulated output decaying
quickly while the energy of the beam itself is preserved.

VIII. CONCLUSION

The H2 norm is a commonly used performance metric
in the estimation of linear state-space systems. However,
finding observers which minimize the H2 norm for a delayed
or PDE system is complicated by the lack of an equivalent
time-domain characterization of this norm. To address this
problem, we have proposed an alternative initial condition
to output characterization of the H2 norm and applied
this characterization to the PIE representation of the error
dynamics. This approach then allowed us to pose the optimal
observer synthesis problem as an LPI which can then be
solved using existing software. The results were applied
to estimation of the distributed state using boundary mea-
surement subject to process and sensor noise and validated
using numerical simulation of an unstable non-homogeneous
reaction-diffusion equation and an energy-preserving Euler-
Bernoulli beam equation.
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