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1. Introduction 

 The advent of large language models (LLMs) has significantly advanced the field of natural 

language processing (NLP). However, the research community has expressed concerns about some of 

their limitations; in particular, the substantial computational power required to run highly parameterized 

models and their lack of interpretability. At the same time, it remains unclear whether we have fully 

explored potential methodological enhancements for traditional machine learning (ML) models. In this 

work, we present a preliminary study with two overarching goals: (1) To test the hypothesis that 

incorporating grammatical features into traditional ML models can improve their performance, and (2) To 

compare these grammatically enhanced ML models to transformer-based models, such as BERT. We use 

these models for the detection of public health misinformation, defined as information that is false or 

inaccurate, but not intended to deceive or harm. This is distinct from disinformation, which is 

disseminated with malicious intent. We treat “fake news” as a type of misinformation, consistent with 

other literature on this subject (Ni et el., 2023; Liu et al., 2024). 

One of the major limitations of LLMs, including transformer-based models, is their lack of 

interpretability. Without knowledge of the linguistic characteristics that inform model output, it is 

difficult to validate model predictions. This undermines trust, especially in contexts where accuracy and 

accountability are essential. It may obscure key insights about the target domain, or worse, lead to 

misguided actions or reinforced bias in high-stakes contexts. This opacity also hampers error diagnosis, 

and limits progress towards more refined, state-of-the-art research. Additionally, LLMs are 

computationally intensive, requiring substantial hardware resources, large datasets and significant energy 

consumption. This hinders the reproducibility of results and limits broader participation in LLM-based 

research.  

Well-established principles of corpus linguistics and grammatical variation have historically been 

overlooked in the development of automated text classification models. Amongst these are: (a) The 

importance of preserving naturally occurring language, which is often compromised by the 

disadvantageous use of text pre-processing, and (b) The role of the functional relationship between 

situational characteristics, pervasive grammatical features, and the discourse function of those features at 

the text level (Biber and Egbert, 2023). Decades of grammatical variation research have demonstrated that 

different text types will display unique combinations of grammatical features based on their situational 

characteristics. For example, persuasive, expository, and narrative discourse will display unique 

grammatical patterns due in part to variation in their communicative functions. The pervasiveness of this 

finding in linguistic research, across all text types, suggests that grammatical patterns could be a key 

discriminative feature in distinguishing between misinformation and non-misinformation in mainstream 

U.S. news media.   

Recent research on medical and public health misinformation has demonstrated that linguistic 

insights can play an important role in text classification tasks. For example, in analyzing the effects of 

text preprocessing on model performance, Siino et al. (2024: 12) found that support vector machine 

(SVM) models without any form of text pre-processing outperformed their counterparts that applied the 



full battery of pre-processing techniques (e.g., lower-casing, stop word removal, stemming, etc.). Notably, 

they reported that stemming led to the poorest performance in all models evaluated. Recent work has also 

substantiated the importance of considering the grammatical features in misinformation. In a study 

evaluating the influence of isolated feature types on model performance for text classification tasks, Di 

Sotto and Viviani (2022: 15) found that of all the isolated features considered in the study (e.g., medical 

terminology, sentiment), the model relying solely on grammatical features1 for misinformation detection 

achieved the highest performance2.  

In this work, we incorporate grammatical features into traditional ML models to evaluate the 

effect they have on model performance for detecting public health misinformation. We then compare the 

performance of these grammatically enhanced models to commonly used transformer-based models.  

 

2. Methods 

 

2(a). Corpus Selection 

 We sought an open-source public health misinformation corpus that met the following criteria:  

a) The corpus represents a narrowly defined source domain (e.g., news media articles, Reddit 

posts, blogs, etc.). 

b) Access to the full texts is provided. 

c) Annotations represent ground-truth labels of misinformation or non-misinformation, or their 

equivalents (e.g., fake or real news). 

d) Annotations are assigned by subject matter experts using principled and consistent criteria 

throughout the annotation process. 

 There were two significant challenges identifying open-source public health misinformation 

corpora with respect to the criteria above. First, many of the open-source corpora that we identified did 

not assign class labels based on the content of the text, but on the source domain. For example, the 

description of a public health misinformation corpus released in 2023 reads: “(...) the truthful articles 

were obtained by crawling articles from Reuters.com (...) The fake news articles were collected from 

unreliable websites that were flagged by Politifact and Wikipedia (...)” (Hemina et al., 2023). In addition, 

many open-source corpora merged multiple source domains to form a single corpus (e.g., social media 

posts and news articles). For the purposes of this study, combining texts from distinct registers3 into a 

single corpus makes it exceedingly difficult to identify distinctive grammatical features of 

misinformation, as it introduces a number of confounding variables to the model, such as the target 

audience and a variety of other register-specific conventions.  

 Despite these challenges, we were able to identify a single corpus that met our criteria. We 

selected the HealthStory sub-corpus from the greater FakeHealth corpus, which was compiled through a 

web-based project that ran from 2005 – 2018. The goal of this project was to critically analyze claims 

about health care interventions to improve the quality of health care information (Dai et al., 2020: 2)4. The 

project was funded by the Informed Medical Decisions Foundation, which is free from industry influence 

and does not advertise or accept funding from any entities with potential conflicts of interest.  

The HealthStory sub-corpus represents public health misinformation broadly, covering a range of 

health interventions (e.g., procedures, treatments, products) for a variety of health ailments (e.g., cancer, 

surgery, heart attacks, mental health, pregnancy). The HealthStory sub-corpus was principally compiled 

in terms of both source domain and public health topics. The source domain is narrow, representing news 

stories published by a set of mainstream U.S. news media outlets (e.g., Associated Press, NPR, FoxNews). 

 
1 The authors referred to these as “linguistic-stylistic” features, rather than “grammatical” features. 
2 This outcome was specific to the HealthRelease sub-corpus. 
3 In this study, register is defined as a culturally recognized text variety with overt external indicators (Biber, 2019: 44). 
4 This paper can be accessed through the archive link: https://arxiv.org/pdf/2002.00837. The full FakeHealth corpus is available 

for download via Dai’s GitHub: https://github.com/EnyanDai/FakeHealth/tree/master/dataset 

https://arxiv.org/pdf/2002.00837
https://github.com/EnyanDai/FakeHealth/tree/master/dataset


The “fake” and “real” classes are represented comparably across the news media outlets, as indicated by 

the average misinformation rating of the texts from each news source (Figure 1). To obtain this average, 

texts were rated on a scale ranging from 0 – 5 (0 = fake; 5 = real) based on a set of select criteria. As 

shown in Figure 2, texts in both classes cover a range of public health ailments and interventions. 

 
Figure 1  

Average rating for each news source, 95% confidence interval error bars (Dai et al., 2020).  

 
 
Figure 2 

Word clouds of news headlines in the “real” and “fake” classes (Dai et al., 2020) 

     “Real” texts                            “Fake” texts 

 
 

The texts were annotated by medical and health service experts, all of whom signed industry-independent 

disclosure agreements. The annotation procedure followed a standard rating system, consisting of 10 

criteria used to assess various aspects of the text, such as overclaiming, missing information, and conflicts 

of interest (Dai et al., 2020: 3). A score between 0 and 5 was assigned to each text based on the proportion 

of the criteria satisfied, and texts were binned into classes representing ground-truth labels. Texts 

receiving scores of 0 – 2 were assigned to the “fake” class and texts receiving a score of 3 – 5 were 

assigned to the “real” class.5 

A drawback of the HealthStory sub-corpus is that it is relatively small and exhibits class 

imbalance, comprising 1,218 “real” texts and 472 “fake” texts6. We took this into consideration in the 

fine-tuning and evaluation of both the ML and transformer-based classification models.  

 

2(b). Grammatical Annotation and Feature Selection 

 We used the Biber Tagger for grammatical annotation (see Biber, 2006). This tagger identifies 

over 150 features and is currently the most widely used tagger in corpus linguistic research due to the rich 

 
5 For further details about the design and compilation of the FakeHealth corpus, please see Dai et al. (2020), or visit the official 

project website: www.HealthNewsReviews.org 
6 Through the process of cleaning and grammatical annotation, a final dataset of 1,102 “real” and 431 “fake” texts were retained 

for analysis. 

http://www.healthnewsreviews.org/


syntactic and semantic detail it identifies. To select a subset of grammatical features through quantitative 

means, we employed a key feature analysis (KFA) (Biber and Egbert, 2018; Egbert and Biber, 2023). A 

KFA measures the degree to which a grammatical feature is used with a markedly higher or lower 

frequency in a particular text type relative to another. Relative frequency is measured through a Cohen’s d 

effect size; derived from the mean and standard deviation of each feature, in each text type. A feature is 

considered “key” to a text type if it meets Cohen’s (1977) small effect size benchmark of d = ±.20. In this 

study, we considered features with a d-value of ≥ .20 to be distinctive of “fake” texts, and features with a 

d-value of ≤ -.20 to be distinctive of “real” texts. Features with a d-value between -.20 and .20 were not 

considered key to either class, and thus dropped from consideration. 

 Informed by the results of the KFA, we selected nine of the 150 features to incorporate into the 

traditional ML models: all nouns, modal verbs of possibility (e.g., may, might), attributive adjectives, 

contractions, verbs of communication (e.g., propose, inform, respond), word count, and Dimension 1 and 

4 scores derived from Biber’s 1988 multi-dimensional analysis of spoken and written language 

(calculated by applying the factor loadings extracted in Biber’s 1988 study). 

 

2(c). Model Fine-tuning and Evaluation 

 We evaluated three traditional ML models that are frequently used for binary text classification: 

random forest (RF), logistic regression (LR), and support vector machine (SVM). For these ML models, 

we employed term frequency-inverse document frequency (TF-IDF) for feature extraction. Three 

transformer-based models were obtained from the Hugging Face Model Hub: bert-base-uncased, 

distilbert-base-uncased and roberta-base. Pre-trained BERT models are well-suited for text classification 

tasks due to the bidirectional, encoder-only architecture. A simple classification head can be added on top 

of the pre-trained model in the fine-tuning stage for downstream classification tasks (Delvin et al., 2019). 

All layers of the BERT models accessed through Hugging Face are unfrozen, allowing the model weights 

to be updated during fine-tuning. Each model includes a classification head implemented as a fully 

connected layer applied to the [CLS] token representation.  

We fine-tuned and evaluated all models under maximally similar conditions. We employed 

nested cross-validation (CV), where the inner CV is used to select optimal model hyperparameters, and 

the outer CV is used to evaluate the model, trained with the selected parameters on the held-out data. This 

is used to test for overfitting. We used 5-fold cross-validation for both the inner and outer CVs, and 

explored 3 – 4 influential hyperparameters for each model (see Appendix A). The “best” model 

hyperparameters within the nested-cross validation were selected by maximizing the F1 score for the 

“fake” class.  

For both CVs, we used stratified cross-validation to ensure balanced class distribution for each 

fold. To further address class imbalance in the traditional ML models, each sample was assigned a weight 

that was inversely proportional to its class frequency. In the transformer-based models, class imbalance 

was addressed by computing class weights and using the WeightedRandomSampler to generate class-

balanced batches. These weights were also incorporated into the loss function to reinforce balanced 

learning.  

We evaluated the models using the following performance metrics: F1 macro, AUC, and 

precision, recall, and F1 scores for both the “fake” and “real” classes. Given the small, imbalanced 

dataset, we bootstrapped the pooled sample of predictions from the outer folds to calculate standard error 

and 95% confidence intervals. 

   

3. Results 

 

3(a). Comparison of Unigram-only and Unigram-grammar ML Model Performance 

Results indicate that grammatical features have the potential to enhance the performance of 

traditional ML models. With the addition of only the nine grammatical features selected via the KFA, all 

traditional ML models outperformed their counterparts, albeit modestly. In the ML models with 

grammatical features, F1 scores for the “fake” class showed improvement ranging from .02 – .03. While 



this increment falls within the margin of error, similar improvement was found across all performance 

metrics reported for the UG models (see Table 1). There are only two deviations from this pattern: the 

random forest F1 and recall scores for the “real” class, and the logistic regression recall score for the 

“real” class. The consistency with which grammatical features improved the performance of the 

traditional ML models suggests that it would be advantageous to consider grammatical features in similar 

use cases.  

Table 1 displays the contrast in performance between unigram-only (U) and unigram-grammar 

(UG) models. Where the UG model outperformed the U model, the performance metric is marked in bold 

red font. Where the opposite is true, the performance metric is marked in bold blue font.  

 

3(b). Comparison of Transformer-based and Unigram-grammar ML Model Performance 

Given that the grammatically enhanced models largely outperformed their unigram-only 

counterparts, we chose to compare the performance of the enhanced models to the transformer-based 

models. In our use case, the two model types achieved comparable performance, with grammatically 

enhanced ML models yielding slightly higher scores. While all scores fell within the margin of error, the 

ML models consistently outperformed the transformer-based models across all performance metrics, with 

the exception of the AUC score (see Table 2). 

 Table 2 presents the performance metrics of the grammatically enhanced ML models and the 

transformer-based models. For each of the performance metrics reported, the highest score amongst all 

models is marked in bold red font. Note that the highest score was achieved by one of the grammatically 

enhanced ML models on seven of the eight performance metrics. The random forest model recorded the 

highest F1 score for the “fake” class (.542 ±.017), though only marginally outperforming DistilBERT 

(.539 ±.018) and well within the margin of error. Figure 3 depicts the performance of all models with 

respect to F1 macro scores. 

 



Table 1 

Unigram-only (U) and unigram-grammar (UG) model comparison: mean, standard error, 95% confidence intervals. Models incorporating grammatical features 

appear shaded gray. For each ML model, the U and UG performance metrics are compared to one another. Where the UG model outperformed the U model, the 

performance metric is marked in bold red font. Where the opposite is true, the performance metric is marked in bold blue font. 

 

    “Real” Class   “Fake” Class  

Model F1 Macro AUC Precision Recall F1 Precision Recall F1 

RF (U) 
 

.660 ± .013 

[.635, .687] 

.732 ± .013 

[.705, .760] 

.817 ± .009 

[.801, .835] 

.776 ± .013 

[.753, .802] 

.800 ± .009 

[.780, .814] 

.493 ± .018 

[.460, .531] 

.556 ± .024 

[.508, .603] 

.523 ± .019 

[.486, .559] 

RF (UG) 
 

.668 ± .013 

[.644, .694] 
 

.740 ± .014 

[.715, .766] 
 

.828 ± .009 

[.812, .844] 
 

.765 ± .013 

[.740, .790] 
 

.795 ± .009 

[.778, .813] 
 

.498 ± .018 

[.464, .532] 
 

.594 ± .023 

[.550, .636] 
 

.542 ± .018 

[.507, .575] 
 

LR (U) 

 

.604 ± .013 

[.578, .628] 

.681 ± .016 

[.649, .711] 

.816 ± .010 

[.796, .836] 

.636 ± .015 

[.607, .665] 

.714 ± .011 

[.692, .737] 

.405 ± .013 

[.377, .431] 

.633 ± .024 

[.587, .677] 

.494 ± .013 

[.463, .525] 

LR (UG) 

 

.618 ± .012 

[.592, .641] 

.685 ± .016 

[.654, .716] 

.833 ± .011 

[.812, .853] 

.630 ± .015 

[.601, .659] 

.717 ± .012 

[.694, .739] 

.417 ± .013 

[.391, .443] 

.677 ± .023 

[.631, .724] 

.516 ± .015 

[.486, .546] 

SVM (U) 

 

.590 ± .012 

[.565, .612] 

.653 ± .015 

[.626, .683] 

.806 ± .010 

[.677, .721] 

.616 ± .014 

[.786, .827] 

.700 ± .011 

[.589, .645] 

.388 ± .013 

[.364, .413] 

.621 ± .024 

[.573, .666] 

.477 ± .016 

[.448, .507] 

SVM (UG) 

 

.624 ± .012 

[.601, .647] 

.690 ± .014 

[.657, .713] 

.821 ± .009 

[.803, .839] 

.674 ± .014 

[.649, .702] 

.740 ± .010 

[.721, .759] 

.429 ± .013 

[.403, .456] 

.623 ± .022 

[.580, .666] 

.508 ± .015 

[.478, .537] 

 

As seen in Table 1, the incorporation of grammatical features improved performance for most traditional ML models, on most metrics. 



 
Table 2 

ML and transformer-based model comparison: mean, standard error, 95% confidence intervals. Grammatically enhanced ML models appear shaded gray. For 

each performance metric, the highest value is marked in bold red font.  

 

    “Real” Class   “Fake” Class  

Model F1 Macro AUC Precision Recall F1 Precision Recall F1 

RF (UG) .668 ± .013 

[.644, .694] 

.740 ± .014 

[.715, .766] 

.828 ± .009 

[.812, .844] 

.765 ± .013 

[.740, .790] 

.795 ± .009 

[.778, .813] 

.498 ± .018 

[.464, .532] 

.594 ± .023 

[.550, .636] 

.542 ± .018 

[.507, .575] 

LR (UG) .618 ± .012 

[.592, .641] 

.685 ± .016 

[.654, .716] 

.833 ± .011 

[.812, .853] 

.630 ± .015 

[.601, .659] 

.717 ± .012 

[.694, .739] 

.417 ± .013 

[.391, .443] 

.677 ± .023 

[.631, .724] 

.516 ± .015 

[.486, .546] 

SVM (UG) .624 ± .012 

[.601, .647] 

.690 ± .014 

[.657, .713] 

.821 ± .009 

[.803, .839] 

.674 ± .014 

[.649, .702] 

.740 ± .010 

[.721, .759] 

.429 ± .013 

[.403, .456] 

.623 ± .022 

[.580, .666] 

.508 ± .015 

[.478, .537] 

BERT .612 ± .013 

[.586, .637] 

.655 ± .016 

[.626, .684] 

.785 ± .008 

[.770, .801] 

.761 ± .013 

[.735, .788] 

.773 ± .009 

[.756, .791] 

.434 ± .018 

[.398, .473] 

.468 ± .024 

[.422, .515] 

.450 ± .019 

[.413, .487] 

RoBERTa .657 ± .013 

[.631, .681] 

.741 ± .014 

[.712, .768] 

.830 ± .090 

[.813, .847] 

.732 ± .014 

[.704, .758] 

.778 ± .100 

[.759, .795] 

.474 ± .016 

[.443, .504] 

.617 ± .024 

[.568, .664] 

.536 ± .017 

[.502, .568] 

DistilBERT .664 ± .012 

[.638, .687] 

.731 ± .015 

[.702, .759] 

.829 ± .090 

[.811, .846] 

.752 ± .013 

[.727, .776] 

.788 ± .090 

[.770, .806] 

.487 ± .024 

[.455, .518] 

.603 ± .016 

[.555, .650] 

.539 ± .017 

[.505, .572] 



Figure 3  

Comparison of F1 scores for the “fake” class across grammatically enhanced ML models and transformer-based 

models 

 
 

4. Conclusion 

 In this work, we explored the extent to which incorporating grammatical features into traditional 

ML models (e.g., logistic regression, random forest, support vector machine) can improve model 

performance for misinformation detection. To identify grammatical features that may help distinguish 

texts containing public health misinformation (“fake” texts) from those that do not (“real” texts), we used 

a key feature analysis, which serves to identify grammatical features that are frequent and pervasive in 

each group of texts relative to the other. We then compared the performance of the grammatically 

enhanced ML models to the performance of LLMs on the same task. Preliminary results of our study 

show that incorporating grammatical features into traditional ML models led to modest improvements in 

performance, with the top-performing ML model achieving results comparable to those of the LLMs.  

Time limitations hindered our ability to optimize both the traditional ML and transformer-based 

models. All models were fine-tuned and evaluated with a maximum allowable runtime of 48 hours. While 

the traditional ML models took anywhere from five minutes to seven hours to run, the transformer-based 

models frequently approached or exceeded the 48-hour runtime limit. As a result, we attempted to train 

the transformer-based models multiple times with slightly altered hyperparameters to avoid early 

termination. This required that we weigh the importance of various hyperparameters for tuning, such as 

batch_size, learning_rate, epochs, and max_token_length. While BERT models have a max_token_length 

of 512, we were unable to run the bert-based-uncased model at the maximum token length without 

cutting numerous other hyperparameters from the grid. Future iterations of this study should employ a 

standardized method of hyperparameter specification in order to properly optimize the models.  

 The limitations of the transformer-based models also affected our ability to optimize the 

traditional ML models. To prevent providing the ML models with a performance advantage due solely to 

the lack of constraints relative to the transformer-based models, we standardized the training conditions of 

all model types. While we could have carried out a far more extensive exploration of optimal 

hyperparameters for the traditional ML models, we chose to avoid introducing this potential bias. 

 While we saw a modest increase in ML model performance when grammatical features were 

incorporated into the models, and comparable performance between grammatically enhanced ML models 

and transformer-based models, it is important to note that the overall performance of all models in this 

study was relatively poor. Future studies should consider exploring a broader range of LLMs and 



traditional ML models, as well as additional features that have shown promise in detecting 

misinformation (e.g., sentiment and polarity). It would also be valuable to conduct similar studies using 

misinformation corpora from diverse source domains to assess the generalizability of these findings. 

 Overall, our preliminary results indicate that traditional models still hold untapped potential. With 

further methodological enhancements, we may be able to narrow the performance gap between traditional 

ML models and more advanced AI models. Given their advantages in computational efficiency and 

interpretability, traditional ML models remain a compelling alternative to LLMs, especially in contexts 

where resources are limited or model transparency is critical. Continued exploration and refinement of 

traditional ML models, alongside ongoing comparisons with LLMs, will be important as AI technologies 

continue to advance. 
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Appendix A 

Hyperparameter Grids for Nested Cross-Validation 

Table A1 

Hyperparameter grids for each text classification model 

Model Hyperparameters 

BERT max_token_length, param_grid, batch_size, learning_rate 

RoBERTa max_token_length, batch_size, learning_rate, epochs 

DistilBERT max_token_length, batch_size, learning_rate, epochs 

Random Forest n_estimators, min_samples_leaf, max_depth 

Logistic Regression C, max_iter, solver, penalty, fit_intercept 

Support Vector 

Machine 

C, kernel (linear); 

C, gamma, kernel (rbf);  

C, gamma, kernel (poly), degree 

 

 

 

 

 

 

  



Appendix B 

Boxplots Depicting the Mean, Standard error, and 95% Confidence Intervals for Performance Metrics in 

ML and Transformer-based Models 

 
Figure B1 

Performance metrics for unigram-only logistic regression model 

 
 
Figure B2 

Performance metrics for unigram-grammar logistic regression model 

 
 

 



Figure B3 

Performance metrics for unigram-only random forest model 

 
 
Figure B4 

Performance metrics for unigram-grammar random forest model 

 
 

 

 

 

 

 



Figure B5 

Performance metrics for unigram-only support vector machine model 

 
 

Figure B6 

Performance metrics for unigram-grammar support vector machine model 

 
 

 

 

 

 



Figure B7 

Performance metrics for the bert-base-uncased model 

 
 
Figure B8 

Performance metrics for the RoBERTa-base model 

 
 

 

 

 

 



Figure B9 

Performance metrics for the DistilBERT-base-uncased model 

 
 

 

 


