
Small-World-Synchronized Computing Networks

Regular lattices are commonly used to study phys-
ical systems with short-range interactions. New stud-
ies motivated by the natural/artificial systems have
been focusing on coupled multi-component systems
where the interaction between the components is fa-
cilitated by a complex network. The basic question
here is how the collective behavior of the system is
influenced by this possibly complex interaction topol-
ogy. We study a synchronization problem in Small-
World (SW) networks with “local” relaxation in a
noisy environment. This study is directly applica-
ble to synchronization in certain parallel simulation
schemes implemented on a network of computers such
as parallel discrete-event simulation systems (PDES)
[1]. It also addresses generic and universal character-
istics of SW-synchronized systems with such dynam-
ics.

As the number of available processing elements
(PE) on parallel architectures increases to tens of
thousands or grid-computing networks proliferate
over the Internet, fundamental questions of synchro-
nizability and, in turn, the scalability of the under-
lying algorithms must be addressed. For scalability
the time horizon formed by the local simulated times
of the processing elements in PDES should have a
bounded spread (width) as the number of PEs, NPE ,
goes to infinity. In this study we examine differ-
ent network communication topologies and show a
possible way to construct scalable parallel algorithms
for systems with asynchronous dynamics and short-
range interactions on regular lattices.

If the spread of the simulated time horizon is very
large, significant amount of memory should be re-
served to store the data temporarily until the proces-
sors with low simulated time values reach the com-
mon level. In order to achieve a scalable algorithm
we consider the parallel simulation itself as a com-
plex interacting system where the specific synchro-
nization rules correspond to the “microscopic dynam-
ics”. Our approach exploits a mapping between non-
equilibrium surface growth and the evolution of sim-
ulated time horizon [2] so that we can use the tools
and framework of statistical mechanics. We focus
on the steady-state simulated time landscapes of the
synchronization schemes and this work has also rele-
vance to criticality on SW networks.

Since the discrete events in PDES are not synchro-
nized by a global clock, the processing elements have
to synchronize themselves by communicating with
others. One of the first approaches to this problem for
self-initiating processes is the original scheme where
there are only nearest-neighbor interactions mimick-
ing [2] the interaction topology of the underlying

physical system. This basic model associated each
component or site with one PE (worst-case scenario)
under periodic boundary conditions. In this original
scheme, at each time step only those PEs whose local
simulated time are smaller than the local simulated
times of their nearest neighbors are incremented by
an exponentially distributed random amount so that
the discrete events exhibit Poisson asynchrony. If the
time of any PE is not smaller than its neighbors’ time
then no update occurs, i.e., PE idles. Using a map-
ping between simulated times and surface site heights
in the coarse-grained description, it was shown that
[2] the simulated time horizon of the original scheme
is governed by the Kardar-Parisi-Zhang (KPZ) equa-
tion.

When analyzing the statistical and morphological
properties of the stochastic landscape of the sim-
ulated times, it is convenient to study the height-
height correlation or its Fourier transform, the height-
height structure factor. The equal-time height-height
structure factor S(k, t) is defined as S(k, t)Nδk,−k′ =

〈τ̃k(t)τ̃k′ (t)〉 where τ̃k =
∑N

j=1 e−ikjτj is the Fourier
transform of the simulated times with the wave num-
ber k=2πn/N , n=0, 1, 2, ..., N − 1 and δk,−k′ is the
Kronecker delta. Structure factor essentially contains
all the “physics” needed to describe the scaling be-
havior of the time surface. Here we focus on the
steady-state properties (t→∞) of the time horizon
where the structure factor becomes independent of
time, limt→∞ S(k, t)=S(k). In the long time limit
in one dimension, for a KPZ/EW surface one has
S(k)= D

2[1−cos(k)] where D is the constant factor in the

second moment of the noise, i.e. D= 〈η(x,t)η(x′,t′)
2δ(x−x′)δ(t−t′) .

The measured steady-state structure factor for 1D,
obtained by simulating the original scheme based on
the exact rules for the evolution of the local sim-
ulated times confirms the coarse-grained prediction
for small k values, S(k)∼k−2. For 2D, the structure
factor as a function of the magnitude of the wave
vector for the original scheme also exhibits a power-
law behavior confirmed by using restricted solid-on-
solid simulations as S(|~k|)∼|~k|−2.78 for small values
of k. The relation between the steady-state struc-
ture factor and the steady-state average width is
〈w2〉= 1

Nd

∑
k 6=0 S(k) and one can easily show that in

the original scheme 〈w2〉∼N for 1D and 〈w2〉∼N0.78

for 2D. Hence in the original scheme for both 1D and
2D, the width diverges with the system size.

The divergent width for very large systems dis-
cussed, is the result of the divergent lateral corre-
lation length ξ of the simulated time surface reaching
the system-size N in the steady-state. To de-correlate
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Figure 1: SW synchronization network in (a) 1D and
(2) 2D. Red arrows show the random SW links in
both.

the simulated time horizon we modify the virtual
communication topology of the PEs. The result-
ing communication network must include the original
short-range (nearest-neighbor) connections to faith-
fully simulate the dynamics of the underlying sys-
tem. We add one random link with strength p (the
probability to include the random link as well in the
simulated time comparison) for every node as shown
in Fig. 1. Note that the occasional extra checking (at
every 1/p parallel steps on average) of the simulated
time of the random link is not needed for the faith-
fulness of the simulation. It is merely introduced to
control the width of the time horizon.
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Figure 2: (a) Structure factor for the SW synchro-
nization scheme in 1D for p=0.1. (b) Structure factor

as a function of |~k| for SW synchronization scheme in
2D for p=1. The insets show the linear behavior of
the structure factor when plotted on rescaled axis,
1/S(k) vs. k2 for small values of k.

The random links in the system create a relax-
ation term in the stochastic growth equation and this
implies that limk→0 S(k)<∞, that is, there are no
large amplitude long-wavelength modes in the sur-
face. Consequently, the width is also finite. We see
that the simulated time surface of the SW network is
macroscopically smooth when compared to the KPZ
surface resulted from a short-range (original scheme)
network. Considering only the linear terms in KPZ
equation, we obtain S(k) ∝ 1

γ+k2 where γ is a mono-
tonically increasing function of probability parame-
ter p and γ(p)=0 as can be seen in Fig. 2. In this
approximation, the lateral correlation length of the
surface fluctuations is ξ∼γ−1/2, that is, it is finite for

all p 6=0.
This kind of behavior in structure factor implies

that the width of the simulated time surface satu-
rates to an asymptotic value for a nonzero value of p
as the number of PEs goes to infinity [Fig. 3]. The
generalization about adding random links to a higher-
dimensional underlying regular lattice is intuitively
clear. Because one- and two-dimensional cases with
random links are effectively governed by the mean-
field equation, in higher dimensions it will be even
more so (i.e., the critical dimension of the model with
SW links is less than one). Since we have a finite cor-
relation length and consequently a finite width in 1D
and 2D, we can argue that in higher dimensions the
SW networks should behave in the same way.
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Figure 3: The average steady-state width as a func-
tion of system-size for different p values in (a) 1D
SW (b) 2D SW synchronization network. Note that

in 2D, N=N
1/d
PE =N

1/2
PE is the linear system size.

In conclusion, the simulated time horizon for the
SW-synchronized PDES scheme becomes macroscop-

ically smooth and essentially exhibits mean-field like
characteristics. The random links, on top of a regular
lattice, generate an effective mass for the propagator
of the simulated time horizon (in a field theory sense)
corresponding to a finite correlation length [3]. There
is growing evidence that systems without inherent
frustration exhibit (strict or anomalous) mean-field-
like behavior when the original short-range interac-
tion topology is modified to a SW network.
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