
Gradient Networks

It has recently been recognized that a large num-
ber of systems are organized into structures best
described by complex networks, or massive graphs.
Many of these networks, also called scale-free net-
works, such as citation networks, the www, the in-
ternet (Fig. 1), cellular metabolic networks, the sex-
web, the world-wide airport network possess power-
law degree distribution, P (k) ∼ k−γ . Scale-free net-
works are very different from pure random graphs,
which are well studied in the mathematical literature,
and which have “bell curve” Poisson degree distribu-
tions. (Degree is the number of neighboring nodes a
node is connected to via direct links.) Therefore, it is
natural to ask: Why do scale-free networks emerge in
nature? The diverse range of systems in which scale-

Figure 1: Skitter data depicting a macroscopic snap-
shot of Internet connectivity, with selected backbone
ISPs colored separately.

free networks appear suggests that perhaps there is a
simple common reason for their development.

Generally, real-world networks do not form or
evolve simply by purely random processes. Instead,
networks develop in order to fulfill a main function,
which is to transport various entities such as infor-
mation, cars, power/energy, water, forces, etc. All
these large-scale networks mentioned above are non-
globally designed. They evolve and grow through lo-
cal changes, through a natural selection-like dynam-
ics. For example, if a router on the internet is fre-
quently congested and packets are lost or delayed due
to that, it will get replaced by several interconnected
new routers, and/or the connections rewired in that
router’s neighborhood. The question is whether such
local “improvement” dynamics (local attempts for
optimization) will constrain the global network struc-
ture. It is plausible that the structure that the net-
work evolves into (scale-free in particular) will be one

that ensures efficient and robust transport.
In order to investigate the connection between flow

processing efficiency and network structure, we need
to first define a flow dynamics on the network [1]. In
particular, we consider the case when the flows are
generated by gradients of a scalar field distributed on
the nodes of a network. This approach is motivated
by the idea that transport processes are often driven
by local gradients of a scalar. Examples include elec-
tric current which is driven by a gradient of electric
potential, and heat flow which is driven by a gradient
of temperature. An example where gradient-induced
transport on complex networks plays an important
role is diffusive load balancing used in distributed
computation (and also employed in packet routing on
the internet). In this case, a computer (or a router)
asks its neighbors on the network for their current job
load (or packet load), and then the router balances its
load with the neighbor that has the minimum number
of jobs to run (or packets to route). Thus, the scalar
at each node is the negative of the number of jobs
at that node, and the flow occurs in the direction
of the gradient of this scalar in the node’s network
neighborhood.

In order to construct a simple and general model of
a transport process, assume that there are N nodes,
and that the transport takes place on a fixed sub-
strate network S which describes the interconnections
of the nodes. Associated with each node i is a non-
degenerate random number hi which describes the
“potential” of the node. Then a gradient network G
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Figure 2: The gradient network. a) the gradient at
node i is a directed edge pointing towards the largest
increase of the scalar potential in the node’s neigh-
borhood. b) an example of a gradient network.

can be constructed as the collection of directed links
that point from each node to the nearest neighbor
of that node on the substrate network S which has
the highest potential, see Fig. 2. Of course, in gen-
eral, the potential for each point can evolve in time,
and as a result, the gradient network G will be time-
dependent. If we furthermore assume that all links
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have the same ‘conductance’, or transport properties,
the gradient network will describe the instantaneous
substructure carrying the maximum flow. It can be
shown that all non-degenerate (the probability that
two neighboring nodes having exactly the same scalar
value is zero) gradient networks are forests, i.e. they
have no loops (except for self-loops), and consist only
of trees. Furthermore, if S is a simple random graph,
in which each pair of nodes is linked with probabil-
ity p, and the scalars hi are i.i.d. random variables,
then the distribution of the number of links point-
ing to each node (the in-degree distribution) on the
gradient network becomes the power law [2]:

R(l) ' c

l
, 0 < l < z , (1)

where c is a constant. This is valid in the the limit
N →∞ and p → 0, such that Np = z = const. À 1,
see Fig. 3a). Therefore, in this “scaling” limit, gradi-
ent networks are scale-free networks ( being charac-
terized by a power-law ∼ l−γ , γ = 1). This behavior
is rather surprising, since the substrate network S is
not scale-free, and in the same limit has a “bell curve”
Poisson degree distribution.
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Figure 3: a) comparison between the exact formula
(not shown here, see [1]) and numerics. b) the de-
gree distributions of the gradient network and the
substrate, when the substrate is a Barabási-Albert
scale-free graph.

Alternatively, if the substrate network S is scale-
free, for example, a Barabási-Albert (BA) network,
then the associated gradient network is also a scale-
free network, see Fig. 3b). In this case, the gradi-
ent network has the same type of structure as the
substrate network, i.e., it is a scale-free (power law)
graph characterized by the same exponent.

This observation has an important consequence
on the efficiency of flow processing. If the flow is
processed in non-zero time at the nodes, such as in
the case of the internet, where packets have to be read
and redirected, which is a non-instantaneous, physi-
cal process, queues may be generated at nodes. It is
easy to see that the total length of queues at an in-
stant is proportional to the fraction of nodes having
at least one incoming link on the corresponding gra-
dient network. Thus, the notion of gradient networks
allows a transport characteristic related to congestion

or jamming in the substrate network to be defined:

J = 1−
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where Nreceive is the number of nodes that receive
gradient flow, and Nsend is the number of nodes that
send it. The value of J is always between 0 and
1, with J = 1 corresponding to maximal conges-
tion (vanishing number of receivers/processors), and
J = 0 corresponding to no congestion. Note that J is
rather a congestion pressure characteristic generated
by gradients, than an actual throughput character-
istic. For a random graph substrate network the ex-
pression of J can be calculated to give the asymptotic
behavior in the large network scaling limit, p = const.
and N → ∞ as J ' 1 − ln N

N ln( 1
1−p ) . Therefore, in

that limit random networks become maximally con-
gested. However, for scale-free networks the conclu-
sion in the same limit is drastically different. In that
case, J tends to a positive constant bounded away
from unity, i.e., scale-free networks are not prone to
jamming. Figure 4 shows as comparison the conges-
tion factors as function of network size both for ran-
dom and scale-free substrate networks. Although we
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Figure 4: The congestion coefficient for random
graphs) and scale-free networks.

have not specified a network evolution mechanism,
what we have shown is that from the point of view
of efficient flow processing, scale-free structures will
more likely be selected for global structure (consistent
with observation), than non-scale-free structures, like
random graphs.
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