A Comparative Study of Probability Collectives Based
Multi-agent Systems and Genetic Algorithms

We compare Genetic Algorithms (GA’s) with
Probability Collectives (PC), a new framework for
distributed optimization and control. In contrast to
GA'’s, PC-based methods do not update populations
of solutions. Instead they update an explicitly param-
eterized probability distribution p over the space of
solutions. That updating of p arises as the optimiza-
tion of a functional of p. The functional is chosen
so that any p that optimizes it should be p peaked
about good solutions. The PC approach works in
both continuous and discrete problems. It does not
suffer from the resolution limitation of the finite bit
length encoding of parameters into GA alleles. It also
has deep connections with both game theory and sta-
tistical physics. We review the PC approach using
its motivation as the information theoretic formula-
tion of bounded rationality for multi-agent systems.
It is then compared with GA’s on a diverse set of
problems. To handle high dimensional surfaces, in
the PC method investigated here p is restricted to a
product distribution. Each distribution in that prod-
uct is controlled by a separate agent. The test func-
tions were selected for their difficulty using either tra-
ditional gradient descent or genetic algorithms. On
those functions the PC-based approach significantly
outperforms traditional GA’s in both rate of descent,
trapping in false minima, and long term optimization.

Typically the search of adaptive, distributed agent-
based algorithms is conducted by having each agent
run its own reinforcement learning algorithm [1]. In
this methodology the global utility function G(z) in
the system maps a joint move of the agents, z € X,
to the performance of the overall system. However, in
practice the agents in a MAS are bounded rational;
the equilibrium they reach typically involves mixed
strategies rather than pure strategies —i.e., they don’t
settle on a single point = optimizing G(z). This sug-
gests formulating a framework to explicitly account
for the bounded rational, mixed strategy character of
the agents. Probability Collectives (PC) adopts this
perspective to show that the equilibrium of a MAS
is the minimizer of a Lagrangian L£(P) (derived us-
ing information theory) that quantifies the expected
value of G for the joint distribution P(z1,za,...,znN).

Now consider a bounded rational game in which
the agents are independent, with each agent ¢ choos-
ing its move x; at any instant by sampling its prob-
ability distribution (mixed strategy) at that instant,
qi(x;). Accordingly, the probability distribution of
the joint-moves is a product distribution; i.e., P(x) =
P(z1,22,....,2N) = Hf\il ¢i(z;), if there are N agents

participate in the game. In this representation of a
MAS, lacking the full joint probability distribution,
all coupling between the agents occurs indirectly. It
is the separate distributions of the agents {g;} that
are statistically coupled, while the actual moves of
the agents are independent.

The core of PC-based algorithms is thus to approx-
imate the joint distribution by the product distribu-
tion, and to concentrate on how the agents update the
probability distributions across their possible actions
instead of specifically on the joint action generated
by sampling those distributions.

The PC approach differs from traditional optimiza-
tion methods such as gradient descent or GA which
concentrate on a specific choice for the design vari-
ables (i.e. pure strategies) and on how to update
that choice. Since the PC approach operates directly
on probability distributions, it offers a direct treat-
ment for incorporating uncertainty, which is also rep-
resented through probabilities [2]. This is the most
salient feature that this class of algorithms possesses
— the search course is guided by a probability distri-
bution over x, rather than a single value of z. By
building such a probabilistic model of promising so-
lutions and sampling the built model to generate new
candidate solutions, PC allows the agents to signifi-
cantly expand the range of exploration of the search
space, and simultaneously focus on promising solu-
tions areas. As a result, the estimation of distribution
algorithms can provide a robust and scalable solution
to many important classes of optimization problems.
The following sections report a comparative study of
the PC-based MAS and GA using several test prob-
lems.
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Figure 1: Surface plot for the four testbeds.

a0 A o o

~.

e PR

X 55 X % 070 X

The first test function is Schaffer’s test function Fr,
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which is defined as:
F@) = @7 +23)° P [sin® (50(27 +23)°") +1],
where —1 < z; < 1 for 1 < ¢ < 2. Figure l.a

displays the surface which is plotted upside down for
easier viewing of the inverted minimum as a peak.
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Figure 2: Best-so-far performance comparison.

Figure 2.a displays the best-so-far values attained
by the Multi-agents system(MAS) and the GA as a
function of the number of sample evaluations of the
objective function. The methods distinguish them-
selves with different rates of initial descent of the ob-
jective function (on left) and the long-term perfor-
mance (on right). Notably, the run-to-run variation
of the performance trajectory is much lower on the
PC-based MAS than for the GA (see vertical bars).

The second testbed is Ackley’s Path, which is a

widely used multimodal test function. The function’s
definition is:

ZI\L]I? )% Zz cos(czy)

—e ~

f(E)zfae_b( +a+el,

where a=20, b=0.2, ¢ = 2w, and —32.768 < z; <
32.768 for 1 < i < n.

Figure 1.c gives a visual gist of the function in a
lower 2-dimensional form. The surface is overall a
single deep well with a locally rough surface. The
empirical results of the search algorithms on this sur-
face are displayed in Figure 2.b. It is clear that the
PC-based MAS technique again significantly outper-

forms the GA in early decent towards the minimum.
The third testbed is the generalized Rosenbrock

function in ten dimensions. The definition of this
function is:
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where T = [z1, 79, ..., 2n]|T, =512 < x; < 5.12..
Rosenbrock’s saddle is a classic optimization prob-
lem with a narrow global optimum hidden inside a
long, narrow, curved flat valley. Monte-carlo meth-
ods will have difficulty landing a point in the narrow
spike and thus will not efficiently locate it. The U-
shape will also tend to make decomposition of the PC

into a product distribution challenging. Since it has
no barriers the surface would be ripe for gradient de-
scent; however while the valley will be found quickly
the curvature and flatness of the valley floor will frus-
trate sampled gradient estimation. The empirical re-
sults on this surface are displayed in Figure 2.c. It is
again clear that the PC-based MAS technique again
significantly outperforms the GA in early decent to-

wards the minimum. . ) . )
The final testbed employed in this section is

Michalewicz’s epistatic function:
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where
s LT P :
yi = ﬂCiCOSg — rH_lszng, if 4 mod 2=1 and i # N;
.o T . .
Yy = acifls'mg + xicosE, if ¢ mod 2=0 and i# N;
Yn = N,

0<z;<mforl1<i<N.

A system is highly epistatic if the optimal allele
for any locus depends on a large number of alleles
at other loci. This function is a highly multimodal,
nonlinear and nonseparable testbed (n! local optima).
A sketch of a two-dimensional version of this function
is displayed in Figure 1.d for the steepness parameter
m = 10. Larger m leads to more difficult search.
For very large m the function behaves like a needle
in the haystack since the function values for points
in the space outside the narrow peaks give very little
information on the location of the global optimum.

The empirical results on this surface are displayed
in Figure 2.d (for m = 200). It is clear that the PC-
based MAS technique again significantly outperforms
the GA. In particular, the PC still demonstrates a
surprising search power even though the function be-
haves like a needle in the haystack and is very difficult
to search.
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