
Long tail of Bit-Error-Rate distribution in long haul optical
transmission

Optical fibers are widely used for transmission of
information. In an ideal case, information carried
by pulses would be transmitted non-damaged. In re-
ality, however, various impairments lead to the in-
formation loss. Noise generated by optical ampli-
fiers and fiber birefringence are the two major im-
pairments in high-speed fiber communications. The
amplifier noise is short-correlated in time, while the
birefringence varies significantly along the optical line
and is practically frozen in time, since the character-
istic temporal scale of such variations is long com-
pared to the signal propagation time through the en-
tire fiber line. Coexistence of two different sources of
randomness characterized by two well-separated time
scales is common in statistical physics of disordered
systems. A classical example is the glassy behavior
driven by short-correlated thermal noise in a system
with frozen structural disorder. Complete statistical
description of a system, with both disorder and noise
present, requires the two step averaging, and for-
mally introducing a so-called “higher”-order statis-
tics, i.e. a probability distribution function (second-
step averaging over the disorder) of a quantity defined
in terms of another probability distribution function
(first-step averaging over the noise). Extreme non-
Gaussianity of the “higher”-order statistics is an im-
portant feature of the disordered systems. We show
that, first, the disordered system approach is appro-
priate for optical fiber systems, and second, we re-
port emergence of an extremely non-Gaussian tail
in the optical fiber system “higher”-order statistics
[1, 2, 3, 4].

Birefringent disorder is caused by weak random
ellipticity of the fiber cross section. Birefringence
splits the pulse into two polarization components and
also leads to pulse broadening. This effect known as
polarization mode dispersion (PMD) have been ex-
tensively studied experimentally and theoretically .
PMD is usually characterized by the so-called PMD
vector that was found to obey Gaussian statistics.
It was also shown that first-order PMD compensa-
tion corresponding to cancellation of the PMD vec-
tor on the carrier frequency is experimentally imple-
mentable. Higher-order generalizations of the PMD
vector (introduced to resolve a complex frequency de-
pendence of the PMD phenomenon with higher accu-

racy) as well as a suggestion on how to compensate
for PMD in higher orders have been also discussed
and implemented experimentally. Common wisdom
hiding behind the standard approach says that one
should start with evaluating effects of PMD and am-
plifier noise separately and then estimate the joint
effect taking the impairments on equal footing. In
[1, 2, 3, 4] we challenged this equal-footing approach.
We showed that the overall effects of temporal noise
and structural disorder may not be separated since
BER strongly depends on a realization of birefrin-
gent disorder. Thus, the PDF of BER and especially
its tail corresponding to large values of BER are the
objects of prime interest and practical importance for
describing the probability of the system outage.

The envelope of the electromagnetic (optical) field
propagating through optical fiber in the linear regime
(i.e. at relatively low pulse intensity), which is sub-
ject to PMD distortion and amplifier noise, satisfies
the following equation

∂zΨ − m̂(z)∂tΨ = ξ(z, t), (1)

z, t and ξ being the position along the fiber, the re-
tarded time (measured in the reference frame moving
with the optical signal), the amplifier noise. (Here
we discuss a simple model situation. See [1, 2, 3, 4]
for description of steps leading to Eq.(1.) The enve-
lope Ψ is a two-component complex field where the
components stand for two polarization states of the
optical signal. We assume the optical system length
Z to be much larger than the distance between the
nearest amplifier stations. Coarse-graining on the
inter-amplifier scale allows treating amplification in
the continuous limit. Zero in average additive noise
ξ is the amplification leftover. The amplifier noise has
Gaussian statistics and its correlation time is much
shorter then the pulse width. Therefore, the statistics
of ξ is fully determined by its pair correlation func-
tion 〈ξα(z1, t1)ξ∗β(z2, t2)〉 = Dξδαβδ (z1 − z2) δ(t1 −
t2), and the coefficient Dξ characterizes the noise
strength. Averaging over birefringent disorder is of
different nature: Statistics here is collected over dif-
ferent fibers or, alternatively, over different states of
the same fiber collected over time. The birefringence
2×2 matrix m̂ can be expanded in the Pauli matrices
m̂(z) = hj(z)σ̂j where hj is a real three-component
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field. The field is zero in average and short-correlated
in z 〈hi(z1)hj(z2)〉 = Dmδijδ(z1 − z2), where Dm

characterizes the disorder strength.
We consider the return-to-zero (RZ) modulation

format when pulses in a given frequency channel are
well separated in t. Detection of a pulse at the fiber
output corresponding to z = Z requires a measure-
ment of the pulse intensity I =

∫
dt G(t) |KΨ(Z, t)|2,

where the function G(t) is a convolution of the electri-
cal (current) filter function with the sampling window
function (limiting the information slot). The linear
operator K stands for an optical filter and may also
incorporate a variety of engineering “tricks” applied
to the output signal Ψ(Z, t). Ideally, I takes a dis-
tinct value if the bit encodes “1” and is negligible
if the bit encodes “0”. Both the noise and disorder
enforce I to deviate from its ideal value. One de-
clares the output signal to encode 0 or 1 if the value
of I is less or larger than the decision threshold I0.
The information is lost if the output value of the bit
differs from the input one. The probability of such
event should be small (this is a mandatory condition
for a successful fiber line performance) i.e. both im-
pairments typically cause only small distortion of a
pulse. Formally, this means: DξZ � 1, DmZ � 1,
where the initial signal width and its amplitude are
both re-scaled to one.

Here, we skip details of calculations, that can be
found in [1, 2, 3, 4], presenting bare results. We found
that the remote tail , B � B0, of the PDF of B in
the “setting the clock” case is

S(B) dB ∼ Bα
0 dB

B1+α
, α =

Dξ

2µ2Dm
. (2)

If no compensation is applied Eq.(2) transforms into,
lnS ≈ −Dξ2Z/(2Dmµ2

1), while in the first-order
compensation case the asymptotic result for the PDF
tail (2) remains valid with µ2 replaced by another
constant µ′

2/π. The dependence of the PDF on BER
is illustrated in Fig. 1. One also finds from Eq. (2)
that the outage probability, O ≡ ∫ 1

B∗
dB S(B), where

B∗ is some fixed value taken to be much larger than
B0, is estimated as lnO ∼ (Dξ/Dm) ln(B0/B∗).

Eq. (2) describes our major result: The PDF of
BER has a long algebraic tail. The exponent α of
the algebraic decay is proportional to the ratio of the
amplifier noise variance, Dξ, to the birefringent dis-
order variance, Dm. This statement clearly shows
that effects of noise and disorder are, actually, in-
separable. Another interesting feature of Eq. (2) is
that the exponent α is Z-independent. The only Z-
dependent factor in the final result (2) is the overall
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Figure 1: Schematic log-log plot of the PDF of Bit-
Error-Rate.

normalization factor Bα
0 . Note also that some nu-

merical results, consistent with Eq. (2) are already
available that shows a linear relation between lnS
and lnB, i.e. just the algebraic decay predicted by
Eq. (2).
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