Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Colloquia Archive 
 Postdoc Seminars Archive 
 Quantum Lunch 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 Kac Lectures 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Summer Research 
 Student Application 
 Past Visitors 
 PD Travel Request 
 History of CNLS 
 Maps, Directions 
 CNLS Office 
David Métivier

Postdoctoral Research Associate

Theoritical Physics

David Métivier

Office: TA-3, Bldg 1690, Room 123
Mail Stop: B258
Phone: (505) 667-7052
Fax: (505) 665-2659
home page

Research highlight
    I recently worked on two papers on Thermostatic Controlled Loads (TCLs), showing effects of the disorder (meaning non identical TCLs) and the effect of a realistic Mean Field control. Basically, both effects greatly improve the resilience of ensemble of TCLs, making them more suitable for Demand Response.
    ○ Métivier, D., Luchnikov I., Chertkov C. (2018). Power of Ensemble Diversity and Randomization for Energy Aggregation. arXiv:1808.09555.
    ○ Métivier, Chertkov C. (2018). Mean Field Control for Efficient Mixing of Energy Loads. arXiv:1810.00450.
    For another project on synchronization I work on the effect of delay in the Kuramoto model:
    ○ Métivier D., Gupta S. (2018). Bifurcations in the time-delayed Kuramoto model of coupled oscillators: Exact results. arXiv:1808.10436.
 Educational Background/Employment:
  • Physics/Chemistry B.S. (2009 - 2011), "Classe Préparatoire aux Grandes Écoles" (Paris, France)
  • Physics B.S. (2011 - 2012), École Normale Supérieure de Lyon (Lyon, France)
  • Physics M.S. (2012 - 2014), École Normale Supérieure de Lyon (Lyon, France)
  • Physics Ph.D. (2014 - 2017), Laboratory of Mathematics J.A. Dieudonné (Nice, France)
  • Employment:
    • CNLS/T-4 Postdoctoral Research Associate, Los Alamos National Laboratory (November 2017 - Now)

Research Interests:

  • Statistical Physics; Nonlinear Physics; Out-of-Equilibrium Physics
  • Bifurcation in Kinetics Systems:
    ○ BGK Plasma instabilities (through Vlasov-Poisson equation)
    ○ Astrophysics instabilities (through Vlasov-Newton equation)
    ○ Dimensional reduction of bifurcation (from Vlasov to a reduced model)
    ○ Synchronization in coupled oscillators systems (through Kuramoto model)
  • Coulombian model for very large Magneto-Optical Trap
  • Thermostatic Controlled Loads: control of a large aggregate via mean field coupling

Selected Recent Publications:

  1. Barré J., Métivier D. (2018). Vlasov-Fokker-Planck equation: stochastic stability of resonances and unstable manifold expansion. Nonlinearity 31 4667; arXiv:1703.01668.
  2. Barré, J., Métivier, D. (2016). Bifurcations and singularities for coupled oscillators with inertia and frustration. Physical Review Letters, 117(21), 214102.; arXiv:1605.02990.
  3. Barré, J., Métivier, D., Yamaguchi, Y. Y. (2016). Trapping scaling for bifurcations in the Vlasov systems. Physical Review E, 93(4), 042207.; arXiv:1511.07645
  4. Métivier, D., Bachelard, R., Kastner, M. (2014). Spreading of Perturbations in Long-Range Interacting Classical Lattice Models. Physical Review Letters, 112(21), 210601.; arXiv:1405.7556
LANL Operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the US Department of Energy.
Copyright © 2003 LANS, LLC | Disclaimer/Privacy