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Outline

• Fundamentals of power system angle and 
voltage stability.

• Impact of loads on power system dynamics.
• Generator controls.
• Modeling.
• Trajectory sensitivity and approximation.
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Synchronous machines

• Conventional generators are synchronous 
machines.
– Rotor spins at synchronous speed.
– Field winding on the rotor, stator windings deliver 

electrical power to the grid.

• Note that the dynamic 
behavior of wind generators 
(as seen from the grid) is 
dominated by control loops 
not the physics of the 
machines.
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Machine dynamic models

• Dynamic models are well documented.
– Electrical relationships are commonly modeled by 

a set of four differential equations.
– Mechanical dynamics are modeled by the second-

order differential equation:

where
:  angle (rad) of the rotor with respect to a stationary

reference.
:  moment of inertia.
:  mechanical torque from the turbine.
:  electrical torque on the rotor.
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Angle/frequency dynamics
• Through various approximations, the dynamic 

behavior of a synchronous machine can be 
written as the swing equation:

where
:  deviation in angular velocity (frequency)

from nominal.
:  inertia.
:  damping, this is a fictitious term that may be 
added to represent a variety of damping sources, 
including control loops and loads. (It is zero in 
detailed modeling.)

:  mechanical and electrical power.
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System-wide frequency dynamics
• Response of frequency following generation tripping.
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Single machine infinite bus system

• For a single machine infinite bus system, the swing 
equation becomes:

where                      .
• Dynamics are similar to a nonlinear pendulum.
• Equilibrium conditions,          and                        .
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Region of attraction
• The equilibrium equation has two solutions,     and 

where:
:  stable equilibrium point.
:  unstable equilibrium point.

• Local stability properties are given by the eigenvalues 
of the linearized system at each equilibrium point.
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Region of attraction
• As      increases, the separation between equilibria 

diminishes.
– The region of attraction decreases as the loading increases.
– Solutions coalesce when                    . A bifurcation occurs.
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System damping
• Damping reduces as equilibria move closer.

– In this case the system is progressive weakened by lines tripping.
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Multiple equilibria
• Real power systems typically have many equilibria.
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Large disturbance behavior
• A fault on the system, for example a lightning strike, will force 

the states away from the stable operating (equilibrium) point.
– If the fault is sufficiently large, the disturbance will cause the 

trajectory to cross the boundary of the region of attraction, and 
stability will be lost.
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Critical clearing
• Critical clearing refers to the (hypothetical) situation where the 

fault is removed when the state lies exactly on the stability 
boundary.
– Conceptually, the resulting trajectory would run exactly to the 

unstable equilibrium point and stay there.
– This is equivalent to 

bumping a pendulum so 
that it reaches 
equilibrium in the upright 
position.
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Forcing critical clearing
• Approximate a trajectory on the 

stability boundary by a trajectory that 
spends a long time near the unstable 
equilibrium point.

Stable Region

Unstable 
Region

Parameter trade-off

Fault cleared
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Voltage reduction
• The single machine infinite bus example assumes the 

generator maintains a constant terminal voltage.
– The reactive power required to support the voltage is limited.
– Upon encountering 

this limit, the over-
excitation limiter will 
act to reduce the 
terminal voltage.
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Effect of load
• Consider the effect of load behavior on stability.
• Two cases:

– Constant admittance: 
– Constant power:

• Notice the loss of structural stability as the 
voltage index changes.

• Power electronic loads behave 
like constant power.
• Bad for grid stability.
• Examples: energy-efficient 

lighting, plug-in EVs.
• Below a certain voltage, power 

electronics shut down.
• This gives a fast transition from 

full power to zero.
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Voltage collapse
• Voltage collapse occurs when load-end dynamics 

attempt to restore power consumption beyond the 
capability of the supply system.
– Power systems have a finite supply capability.

• For this example, two 
solutions exist for 
viable loads.

• Solutions coalesce at 
the load bifurcation 
point.
– Known as the point of 

maximum loadability.
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Load restoration dynamics
• Transformers are frequently used to regulate load-

bus voltages.
• Sequence of events:

– Line trips out, raising the network impedance.
– Load-bus voltage drops, so transformer increases its tap 

ratio to try to restore the voltage.
– Load is voltage dependent, so the initial voltage increase 

causes the load to increase.
– The increasing load draws more current across the network, 

causing the voltage to drop further.
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Load restoration dynamics
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Voltage-angle interactions
• Each time the transformer taps up to lift the voltage at the load 

bus, the transmission system is weakened a little more, until the 
generator loses synchronism.
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Load model
• Motivated by a desire to capture phenomena such as 

“fault induced delayed voltage recovery” (FIDVR).
• WECC load model:
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Generator voltage control
• Voltage control is achieved by the automatic voltage regulator (AVR).

– Terminal voltage is measured and compared with a setpoint.
– The voltage error is driven to zero by adjusting the field voltage.

• An increase in the field voltage will result in an increase in the terminal 
voltage and in the reactive power produced by the generator.

• If field voltage becomes excessive, an over-excitation limiter will 
operate to reduce the field current.
– The terminal voltage will subsequently fall.
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Power system stabilizers
• High-gain voltage control can destabilize angle 

dynamics.
• To compensate, many generators have a power 

system stabilizer (PSS) to improve damping.
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High-gain AVR instability
Bifurcation diagram as AVR gain       varies.

Co-existing limit cycles 
for                .
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Governor
• Active power regulation is achieved by a governor.

– If frequency is less than desired, increase mechanical torque.
– Decrease mechanical torque if frequency is high.

• For a steam plant, torque is controlled by adjusting the steam 
value, for a hydro unit control vanes regulate the flow of water 
delivered by the penstock.

• Frequency is a common 
signal seen by all 
generators.
– If all generators tried to 

regulate frequency to its 
nominal setpoint, hunting 
would result.

– This is overcome through 
the use of a droop 
characteristic.
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Automatic generation control (AGC)
• Based on a control area 

concept (now called a 
balancing authority.)

• Each balancing authority 
generates an “area control 
error” (ACE) signal,

where      is the frequency 
bias factor.

• The ACE signal is used by AGC to adjust governor setpoints at 
participating generators.
• This restores frequency and tie-line flows to their scheduled values.
• Economic dispatch operates on a slower timescale to re-establish the 

most economic generation schedule.
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Modeling continuous-discrete interactions

• Note the PI block with non-windup limits.
• The behavior of such a block is not well defined.
• IEEE Standard 421.5-2016 provides a definition for 

such a block.

• Type-3 wind turbine converter control model:
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PI block with non-windup limits
• According to the IEEE standard:

• is modeled by:

• This model is prone to deadlock.
• Most commercial simulation programs 

don’t recognize deadlock.
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Latest model for type-3 wind turbines
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Trajectory sensitivities
• Consider a trajectory (or flow)                         generated by 

simulation.
• Linearize the system around the trajectory rather than 

around the equilibrium point.

• Trajectory sensitivities describe the change in the trajectory 
due to (small) changes in parameters and/or initial 
conditions.
– Parameters incorporated via 

• Provides gradient information for iteratively solving inverse 
problems, such as parameter estimation.
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Trajectory sensitivity evolution

• Along smooth sections of the trajectory:
System evolution Sensitivity evolution

At an event
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Trajectory sensitivity computation

System evolution

Implicit numerical integration allows efficient computation of 
trajectory sensitivities.

Trapezoidal integration

Sensitivity evolution Trapezoidal integration

Each integration timestep involves a Newton solution process.
• The Jacobian                  must be formed and factored.

Already factored
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Parameter ranking example
IEEE 39 bus system

Sensitivity of         to load
parameters
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Trajectory approximation
• Neglecting higher order terms of the Taylor series:

• Affine structure.

Example:
Generator field 
voltage response 
to a fault.
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Parameter uncertainty

Propagation of uncertainty 
is described (approximately) 
by the time-varying 
parallelotope

Worst-case analysis: Assume parameter uncertainty is uniformly distributed 
over an orthotope (multi-dimensional rectangle.)

Assume all trajectories 
emanating from               
have the same order of 
events.
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Example – worst case analysis
Uncertainty: 

Protection signal
• Zero crossing indicates 

protection trip.
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Example – probabilistic assessment
Uncertainty: 

Signal distribution at
0.9 sec.
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Grazing formulation for reachability
• At a grazing point the trajectory has a tangential 

encounter with the target hypersurface:
• Tangency implies:
• Grazing points are described by:

where initial conditions are 
parameterized by    .

• This formulation extends naturally:
• Continuation.
• Closest set of parameters that 

induce grazing.
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Example
• Single machine infinite bus system:
• Generator AVR/PSS:

• Determine             so 
that generator terminal 
voltage does not 
(initially) rise above

• 1.2 pu.
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Conclusions

• Power systems are nonlinear, non-smooth, 
differential-algebraic systems.
– Hybrid dynamical systems.

• A variety of controls, from local to wide-area, 
are used to ensure reliable, robust behavior.

• Care must be taken in modeling and simulation.
• Variability inherent in renewable generation:

– Challenge existing control structures.
– Require more exhaustive investigation of dynamic 

behavior.
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