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The Turbulence Problem 
An Experimentalist’s Perspective

Turbulent fluid flow is a complex, nonlinear multiscale phenomenon, which poses some 
of the most difficult and fundamental problems in classical physics. It is also of tremendous
practical importance in making predictions—for example, about heat transfer in nuclear
reactors, drag in oil pipelines, the weather, and the circulation of the atmosphere and the
oceans. But what is turbulence? Why is it so difficult to understand, to model, or even to
approximate with confidence? And what kinds of solutions can we expect to obtain? This
brief survey starts with a short history and then introduces both the modern search for uni-
versal statistical properties and the new engineering models for computing turbulent flows.
It highlights the application of modern supercomputers in simulating the multiscale velocity
field of turbulence and the use of computerized data acquisition systems to follow the 
trajectories of individual fluid parcels in a turbulent flow. Finally, it suggests that these 
tools, combined with a resurgence in theoretical research, may lead to a “solution” of the
turbulence problem.

Robert Ecke

Leonardo da Vinci’s 
illustration of the swirling
flow of turbulence.
(The Royal Collection  2004,
Her Majesty Queen Elizabeth II)

           



Many generations of scientists
have struggled valiantly to understand
both the physical essence and the
mathematical structure of turbulent
fluid motion (McComb 1990, Frisch
1995, Lesieur 1997). Leonardo da
Vinci (refer to Richter 1970), who in
1507 named the phenomenon he
observed in swirling flow “la tur-
bolenza” (see the drawing on the
opening page), described the follow-
ing picture: “Observe the motion of
the surface of the water, which resem-
bles that of hair, which has two
motions, of which one is caused by
the weight of the hair, the other by the
direction of the curls; thus the water
has eddying motions, one part of
which is due to the principal current,
the other to the random and reverse
motion.” 

Two aspects of da Vinci’s observa-
tions remain with us today. First, his
separation of the flow into a mean and
a fluctuating part anticipates by
almost 400 years the approach taken
by Osborne Reynolds (1894). The
“Reynolds decomposition” of the
fluid velocity into mean and fluctuat-
ing parts underpins many engineering
models of turbulence in use today.1

Second, da Vinci’s identification of
“eddies” as intrinsic elements in tur-
bulent motion has a modern counter-
part: Scientists today are actively
investigating the role of such struc-
tures as the possible “sinews” of tur-
bulent dynamics.

Long after da Vinci’s insightful
observations, a major step in the
description of fluid flows was the
development of the basic dynamical

equation of fluid motion. The Euler
equation of motion (written down in
the 18th century) describes the con-
servation of momentum for a fluid
without viscosity, whereas the Navier-
Stokes equation (19th century)
describes the rate of change of
momentum at each point in a viscous
fluid. The Navier-Stokes equation for
a fluid with constant density ρ and
constant kinematic viscosity ν is 

(1)  
,

with ∇ ⋅ u = 0, which is a statement
of fluid incompressibility and with
suitable conditions imposed at the
boundaries of the flow. The variable
u(x,t) is the (incompressible) fluid
velocity field, and P(x,t) is the pres-
sure field determined by the preserva-
tion of incompressibility. This
equation (when multiplied by ρ to get
force per unit volume) is simply
Newton’s law for a fluid: Force equals
mass times acceleration. The left side
of Equation (1) is the acceleration of
the fluid,2 and the right side is the
sum of the forces per unit mass on a
unit volume of the fluid:3 the pressure
force and the viscous force arising

from momentum diffusion through
molecular collisions. Remarkably, a
simple equation representing a simple
physical concept describes enor-
mously complex phenomena.

The Navier-Stokes equations are
deterministic in the sense that, once
the initial flow and the boundary con-
ditions are specified, the evolution of
the state is completely determined, at
least in principle. The nonlinear term
in Equation (1), u · ∇u, describes the
advective transport of fluid momen-
tum. Solutions of the nonlinear
Navier-Stokes equations may depend
sensitively on the initial conditions so
that, after a short time, two realiza-
tions of the flow with infinitesimally
different initial conditions may be
completely uncorrelated with each
other. Changes in the external forcing
or variations in the boundary condi-
tions can produce flows that vary
from smooth laminar flow to more
complicated motions with an identifi-
able length or time scale, and from
there to the most complicated flow of
them all, namely, fully developed tur-
bulence with its spectrum of motions
over many length scales. Depending
on the specific system (for example,
flow in a pipe or behind a grid), the
transition from smooth laminar flow
to fully developed turbulence may
occur abruptly, or by successively
more complex states, as the forcing is
increased. 

The difficulties of finding solutions
to the Navier-Stokes equations that
accurately predict and/or describe the
transition to turbulence and the turbu-
lent state itself are legendary, prompt-
ing the British physicist Sir Horace
Lamb to remark, “I am an old man
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1 Reynolds rewrote the Navier-Stokes
fluid equation as two equations—one for
the mean velocity, which includes a quad-
ratic term in the fluctuating velocity called
the Reynolds stress, and one for the fluc-
tuations, which is usually modeled by
some suitable approximation. This
approach underpins commonly used engi-
neering models of turbulent fluid motion
known as Reynolds-Averaged Navier-
Stokes (RANS)—refer to Taylor (1938).

2 The acceleration term looks compli-
cated because of the advection term 
u ⋅ ∇u, which arises from the coordinate
transformation from a frame moving with
the fluid parcels (the “Lagrangian” frame,
in which Newton's law has the usual
form) to a frame of reference fixed in
space (the “Eulerian” frame, in which
other aspects of the mathematics are sim-
pler). Specifically, acceleration of the
fluid is, by definition, the second time
derivative of the Lagrangian fluid trajec-
tory x(t), which describes the motion of
the fluid element that was initially at
position x(0). The first time derivative is
the Lagrangian fluid velocity, dx(t)/dt,
which is related to the Eulerian fluid
velocity by dx(t)/dt = u(t,x(t)). Because u
is a function of time t and position x(t),
which itself is a function of time, the
Eulerian expression for the Lagrangian
second time derivative (the fluid accelera-
tion) is obtained through the chain rule
and equals du/dt = ∂u/∂t + u ⋅ ∇u. 

3 Often, there is an additional term added
to the right side of the equation that repre-
sents an external forcing of the flow per
unit volume such as by gravity.
Alternatively, the forcing can arise from
the imposition of boundary conditions,
whereby energy is injected by stresses at
those boundaries.

                                                                                   



now, and when I die and go to heaven
there are two matters on which I hope
for enlightenment. One is quantum
electrodynamics, and the other is the
turbulent motion of fluids. And about
the former I am rather optimistic”—
1932 (in Tannehill et al. 1984). One of

the most influential turbulence theo-
rists in the last 40 years, Robert
Kraichnan, started studying turbulence
while working with Albert Einstein at
Princeton, when he noticed the simi-
larity between problems in gravita-
tional field theory and classical fluid

dynamics. His contributions include
field-theoretic approaches to turbu-
lence that have had recent stunning
success when applied to the turbulent
transport of passive scalar concentra-
tion (see the article “Field Theory 
and Statistical Hydrodynamics” on
page 181).

What Is Turbulence? 

So, what is turbulence and why is
it so difficult to describe theoretically?
In this article, we shall ignore the
transition to turbulence and focus
instead on fully developed turbulence.
One of the most challenging aspects is
that, in fully developed turbulence,
the velocity fluctuates over a large
range of coupled spatial and temporal
scales. Examples of turbulence
(Figure 1) are everywhere: the flow of
water from a common faucet, water
from a garden hose, the flow past a
curved wall, and noisy rapids result-
ing from flow past rocks in an ener-
getically flowing river. Another
example is the dramatic pyroclastic
flow in a volcanic eruption. In
Figure 2, the explosive eruption of
Mount St. Helens is illustrated at suc-
cessively higher magnification, show-
ing structure at many length scales. In
all these examples, large velocity dif-
ferences (as opposed to large veloci-
ties) resulting from shear forces
applied to the fluid (or from intrinsic
fluid instability) produce strong fluid
turbulence, a state that can be defined
as a solution of the Navier-Stokes
equations whose statistics exhibit spa-
tial and temporal fluctuations.

Historically, investigations of tur-
bulence have progressed through
alternating advances in experimental
measurements, theoretical descrip-
tions, and most recently, the introduc-
tion of numerical simulation of
turbulence on high-speed computers.
Similarly, there has been a rich inter-
play between fundamental understand-
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Figure 1. Common Examples of Fluid Turbulence 
Turbulence is commonly apparent in everyday life, as revealed by the collage of pic-
tures above: (a) water flow from a faucet, (b) water from a garden hose, (c) flow past
a curved wall, and (d) and (e) whitewater rapids whose turbulent fluctuations are so
intense that air is entrained by the flow and produces small bubbles that diffusely
reflect light and cause the water to appear white.

(a) (b)

(c)

(d) (e)

       



ing and applications. For example, tur-
bulence researchers in the early to mid
20th century were motivated by two
important practical problems: predict-
ing the weather and building ever
more sophisticated aircraft. Aircraft
development led to the construction of
large wind tunnels, where measure-
ments of the drag and lift on scaled
model aircraft were used in the design
of airplanes. On the other hand,
weather prediction was severely ham-
pered by the difficulty in doing numer-
ical computation and was only made
practical after the development, many
decades later, of digital computers; in
the early days, the calculation of the
weather change in a day required
weeks of calculation by hand! In addi-
tion to these two large problems, many
other aspects of turbulent flow were
investigated and attempts were made
to factor in the effects of turbulence on
the design and operation of real
machines and devices. 

To understand what turbulence is
and why it makes a big difference in
practical situations, we consider flow
through a long cylindrical pipe of
diameter D, a problem considered
over a century ago by Osborne
Reynolds (1894). Reynolds measured
mean quantities such as the average
flow rate and the mean pressure drop
in the pipe. A practical concern is to
determine the flow rate, or mean
velocity U, as a function of the
applied pressure, and its profile, as a
function of distance from the wall.
Because the fluid is incompressible,
the volume of fluid entering any cross
section of the pipe is the same as the
volume flowing out of the pipe. Thus,
the volume flux is constant along the
flow direction. We can use
Equation (1) to get a naive estimate of
the mean velocity U for flow in a hor-
izontal pipe. Consider as a concrete
example the flow of water in a rigid
pipe hooked up to the backyard water
faucet. Taking a 3-meter length of a
2.5-centimeter diameter pipe and esti-

mating the water pressure at
30 pounds per square inch (psi), 
the imposed pressure gradient ∇P is
0.1 psi/cm or 7000 dynes/cm3. We
assume the simplest case, namely, that
the flow is smooth, or “laminar,” so
that the nonlinear term in Equation (1)
can be neglected, and that the flow
has reached its limiting velocity with
∂U/∂t = 0. In that case, the density-
normalized pressure gradient 
∇P/ρ would be balanced by the vis-
cous acceleration (or drag), ν∇2u.
Using dimensional arguments and
taking into account that u = 0 at the
pipe wall, we estimate that
ν∇2u ≈ νU/D2, which yields the esti-

mate for the mean flow velocity of
U ~ ∇PD2/ρν. Thus, for water with
viscosity ν = 0.01 cm2/s flowing in a
pipe with diameter D = 2.5 centime-
ters, the laminar flow velocity would
reach U ~ 40,000 m/s or almost
30 times the speed of sound in water!
Clearly, something is wrong with this
argument. It turns out that the flow in
such a pipe is turbulent (it has highly
irregular spatial and temporal velocity
fluctuations) and the measured mean
flow velocity U is smaller by a factor
of about 4000, or only about 10 m/s! 

How can we improve our estimate?
For the turbulent case, we might
assume, as Reynolds did, that the non-
linear term dominates over the vis-

cous term and then equate the nonlin-
ear term (u · ∇u ~ U2/D) to the pres-
sure gradient, thereby obtaining the
much more realistic estimate of 
U ~ (∇PD/ρ)1/2 ~ 1.5 m/s. This esti-
mate actually overestimates the
effects of the nonlinear term.

As illustrated in Figure 3, the solu-
tion for the laminar-flow velocity pro-
file is quite gradual, whereas the
turbulent velocity profile is much
steeper at the walls and levels off in
the center of the pipe. Evidently, the
effect of turbulence is to greatly
increase the momentum exchange in
the central regions of the pipe, as
large-scale eddies effectively ‘lock
up’ the flow and thereby shift the
velocity gradient (or velocity shear)
closer to the wall. Because the flow
resistance in the pipe is proportional
to the steepness of the velocity profile
near the wall, the practical conse-
quence of the turbulence is a large
increase in the flow resistance of the
pipe—that is, less flow for a given
applied pressure. The real-world
implications of this increase in flow
resistance are enormous: A large frac-
tion of the world’s energy consump-
tion is devoted to compensating for
turbulent energy loss! Nevertheless,
the detailed understanding and predic-
tion from first principles still elude
turbulence theory.
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Figure 2. Scale-Independence in Turbulent Flows
The turbulent structure of the pyroclastic volcanic eruption of Mt. St. Helens shown
in (a) is expanded by a factor of 2 in (b) and by another factor of 2 in (c). The char-
acteristic scale of the plume is approximately 5 km. Note that the expanded images
reveal the increasingly finer scale structure of the turbulent flow. The feature of
scale independence, namely, that spatial images or temporal signals look the same
(statistically) under increasing magnification is called self-similarity.

(a) (b) (c)

                                                                        



The example of pipe flow illus-
trates an important feature of turbu-
lence—the ratio of the nonlinear term
to the viscous dissipation term pro-
vides a good measure of the strength
of turbulence. In fact, this ratio,
Re = UD/ν, where D is the size of the
large-scale forcing (typically shear), is
known as the Reynolds number after
Reynolds’ seminal work on pipe flow
(1894). For a small Reynolds number,
Re << 1, the nonlinearity can be neg-
lected, and analytic solutions to the
Navier-Stokes equation corresponding
to laminar flow can often be found.
When Re >> 1, however, there are no
stable stationary solutions,4 and the
fluid flow is highly fluctuating in
space and time, corresponding to tur-
bulent flow. In particular, the flow is

fully developed turbulence when Re is
large compared with the Re for transi-
tion to turbulence for a particular set
of forcing and boundary conditions.
For example, in the problem above,
where D = 2.5 cm and U = 10 m/s,
the Reynolds number is Re ~ 3 × 105

compared with a typical Re ~ 2000 for
the onset of turbulence in pipe flow. 

The Search for Universal
Properties and the

Kolmogorov Scaling Laws

In early laboratory experiments on
turbulence, Reynolds and others sup-
plemented their measurements of
applied pressure and average velocity
by observing the rapidly fluctuating
character of the flow when they used
dyes and other qualitative flow-visuali-
zation tools. In the atmosphere, how-
ever, one could measure much
longer-term fluctuations, at a fixed
location, and such Eulerian measure-
ments intrigued the young theoretical
physicist G. I. Taylor (1938).
Turbulence is difficult to measure

because the turbulent state changes
rapidly in space and time. Taylor pro-
posed a probabilistic/statistical
approach based on averaging over
ensembles of individual realizations,
although he soon replaced ensemble
averages by time averages at a fixed
point in space. Taylor also used the
idealized concept (originally intro-
duced by Lord Kelvin in 1887) of sta-
tistically homogeneous, isotropic
turbulence. Homogeneity and isotropy
imply that spatial translations and rota-
tions, respectively, do not change the
average values of physical variables.5

Lewis F. Richardson was another
influential fluid dynamicist of the early
20th century. Richardson performed
the first numerical computation for
predicting the weather (on a hand cal-
culator)! He also proposed (1926) a
pictorial description of turbulence
called a cascade, in which nonlinearity
transforms large-scale velocity circula-
tions (or eddies, or whorls) into circu-
lations at successively smaller scales
(sizes) until they reach such a small
scale that the circulation of the eddies
is efficiently dissipated into heat by
viscosity. Richardson captured this
energy cascade in a poetic take-off on
Jonathan Swift’s famous description of
fleas.6 In Richardson’s words, “Big
whorls have little whorls that feed on
their velocity, and little whorls have
lesser whorls and so on to viscosity”
(circa 1922). A schematic illustration
of the energy cascade picture is shown
in Figure 4, where the mean energy
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Figure 3. Mean Velocity Profiles for Laminar and Turbulent Pipe Flow
The velocity profile across the diameter (D = 2R where R is the radius) of a pipe for
laminar-flow conditions (black curve) shows a gradual velocity gradient compared
with the very steep gradients near the walls resulting from turbulent flow conditions
(red curve). Those steep gradients are proportional to the flow resistance in the
pipe. Thus turbulence results in significantly less flow for a given applied pressure.

4 How large Re must be to get a turbulent
state depends on the particular source of
forcing and on the boundary conditions.
For example, the transition to turbulence
in pipe flow can occur anywhere in the
range 1000 < Re < 50,000 depending on
inlet boundary conditions and the rough-
ness of the pipe wall. For most com-
monly encountered conditions, the
transition is near Re = 2000.

5 Many theoretical descriptions use these
assumptions, but typical turbulence
encountered in the real world often obeys
neither condition at large scales. A key
question in real-world situations is
whether the assumptions of homogeneity
and isotropy are satisfied at small scales,
thus justifying application of a general
framework for those smaller scales.

6 “So, the naturalists observe, the flea,/
hath smaller fleas that on him prey;/ And
these have smaller still to bite ‘em;/ And
so proceed, ad infinitum.”—Jonathan
Swift, Poetry, a Rhapsody

                                              



injection rate ε at large scales is bal-
anced by the mean energy dissipation
rate at small scales. Richardson and
Taylor also appreciated that generic
properties of turbulence may be dis-
covered in the statistics of velocity dif-
ferences between two locations
separated by a distance r, denoted as
δu(x, x+r) = u(x) – u(x+r). The statis-
tics of velocity differences at two loca-
tions are an improvement over the
statistics of velocity fluctuations at a
single location for a number of techni-
cal reasons, which we do not discuss
here. Longitudinal projections of
velocity differences 

are often measured in modern experi-
ments and are one of the main quanti-
ties of interest in the analysis of fluid
turbulence.

Measuring velocity differences on
fast time scales and with high preci-
sion was a difficult proposition in the
early 20th century and required the
development of the hot-wire
anemometer, in which fluid flowing
past a thin heated wire carries heat
away at a rate, proportional to the
fluid velocity. Hot-wire anemometry
made possible the measurement, on
laboratory time scales, of the fluctuat-
ing turbulent velocity field at a single
point in space (see Figure 5). For a
flow whose mean velocity is large,
velocity differences were inferred
from those single-point measurements
by Taylor’s “frozen-turbulence”
hypothesis.7
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Figure 4. The Energy Cascade Picture of Turbulence  
This figure represents a one-dimensional simplification of the cascade process with
ββ representing the scale factor (usually taken to be 1/2 because of the quadratic
nonlinearity in the Navier-Stokes equation). The eddies are purposely shown to be
“space filling” in a lateral sense as they decrease in size.
(This figure was modified with permission from Uriel Frisch. 1995. Turbulence: The Legacy of A. N. Kolmogorov.

Cambridge, UK: Cambridge University Press.)

Figure 5. Time Series of Velocities in a Turbulent Boundary Layer
This time series of velocities for an atmospheric turbulent boundary layer with
Reynolds number Re ~ 2 ×× 107 was measured at a single location with a hot-wire
anemometer. The velocity fluctuations are apparently random. (This figure is courtesy of

Susan Kurien of Los Alamos, who has used data recorded in 1997 by Brindesh Dhruva of Yale University.)

7 If the mean velocity is large compared
with velocity fluctuations, the turbulence
can be considered “frozen” in the sense
that velocity fluctuations are swept past a
single point faster than they would change
because of turbulent dynamics. In that
case, the spatial separation ∆r is related to
the time increment ∆t by ∆r = – U∆t,
where U is the mean velocity. See also the
article “Taylor’s Hypothesis, Hamilton’s
Principle, and the LANS-α Model for
Computing Turbulence” on page 152 .

                                                               



Single-point measurements of tur-
bulent velocity fluctuations have been
performed for many systems and have
contributed both to a fundamental
understanding of turbulence and to
engineering modeling of the effects of
turbulence at small scales on the flow
at larger scales. (See the section on
engineering models.) Single-point
measurements of velocity fluctuations
have been the primary tool for investi-
gating fluid turbulence.They remain in
common use because of their large
dynamic range and high signal-to-noise
ratio relative to more modern develop-
ments such as particle image velocime-
try, in which the goal is to measure

whole velocity fields. For now, we con-
sider results that were motivated or
measured with the limitations of single-
point experiments in mind. 

The Kolmogorov Scaling Laws.
In 1938, von Kármán and Howarth
derived an exact theoretical relation
for the dynamics of turbulence statis-
tics. Starting from the Navier-Stokes
equation and assuming homogeneity
and isotropy, the two scientists
derived an equation for the dynamics
of the lowest-order two-point velocity
correlation function. (This function is
〈u(x) · u(x+r)〉, where the angle
brackets denote an ensemble average,

that is, an average over many statisti-
cally independent realizations of the
flow. The two-point velocity correla-
tion functions cannot describe univer-
sal features of turbulence because
they are scale dependent (the large-
scale flow dominates their behavior)
and they lack Galilean invariance.
Nevertheless, their derivation inspired
a real breakthrough. In 1941, Andrei
Kolmogorov recast the Kármán-
Howarth equation in terms of the
moments of δu(r), the velocity differ-
ences across scales, thereby producing
a relationship between the second
moment 〈[δu(r)]2〉 and the third
moment 〈[δu(r)]3〉. These statistical
objects, which retain Galilean invari-
ance and hence hold the promise of
universality, are now known as struc-
ture functions.

Kolmogorov then proposed the
notion of an “inertial range” of scales
based on Richardson’s picture of the
energy cascade: Kinetic energy is
injected at the largest scales L of the
flow at an average rate ε and gener-
ates large-scale fluctuations. The
injected energy cascades to smaller
scales via nonlinear inertial (energy-
conserving) processes until it reaches
a scale of order ld, where viscous dis-
sipation becomes dominant and the
kinetic energy is converted into heat.
In other words, the intermediate spa-
tial scales r, in the interval ld << r <<
L, define an inertial range in which
large-scale forcing and viscous forces
have negligible effects. With these
assumptions and the Kármán-Howarth
equation recast for structure functions,
Kolmogorov derived the famous
“four-fifths law.” The equation defin-
ing this law describes an exact rela-
tionship for the third-order structure
function within the inertial range: 

where ε is assumed to be the finite
energy-dissipation rate (per unit mass)
of the turbulent state. This relation-
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Figure 6. Kolmogorov-like Energy Spectrum for a Turbulent Jet
The graph shows experimental data for the energy spectrum (computed from veloc-
ity times series like that in Figure 5) as a function of wave number k, or E(k) vs k,
for a turbulent jet with Reynolds number Re ~ 24,000. Note that the measured spec-
trum goes as E(k) ∝∝ k–5/3. (Champagne 1978. Redrawn with the permission of Cambridge University Press.)

                                                                              



ship is a statement of conservation of
energy in the inertial range of scales
of a turbulent fluid; the third moment,
which arises from the nonlinear term
in Equation (1), is thus an indirect
measure of the flux of energy through
spatial scales of size r. (High
Reynold’s-number numerical simula-
tions are compared with the four-fifths
law and with other statistical charac-
terizations of turbulence in the article
“Direct Numerical Simulations of
Turbulence” on page 142.) 

Kolmogorov further assumed that
the cascade process occurs in a self-
similar way. That is, eddies of a given
size behave statistically the same as
eddies of a different size. This
assumption, along with the four-fifths
law, gave rise to the general scaling
prediction of Kolmogorov, which
states that the nth order structure func-
tion (referred to in the article “Direct
Numerical Simulations of Turbulence”
as Sn(r)) must scale as rn/3. During the
decades that have passed since
Kolmogorov’s seminal papers (1941),
empirical departures from his scaling
prediction have been measured for n
different from 3, leading to our pres-
ent understanding that turbulent scales
are not self-similar, but that they
become increasingly intermittent as
the scale size decreases. The charac-
terization and understanding of these
deviations, known as the “anomalous”
scaling feature of turbulence, have
been of sustained and current interest
(see the box “Intermittency and
Anomalous Scaling in Turbulence” on
page 136). 

Empirical observations show that a
flow becomes fully turbulent only
when a large range of scales separates
the injection scale L and the dissipa-
tion scale ld. A convenient measure of
this range of spatial scales for fluid
turbulence, which also characterizes
the number of degrees of freedom of
the turbulent state, is the large-scale
Reynolds number, Re. The Reynolds
number is also the ratio of nonlinear

to viscous forces introduced earlier in
the context of pipe flow. Most theo-
ries of turbulence deal with asymptot-
ically large Re, that is, Re → ∞, so
that an arbitrarily large range of scales
separates the injection scales from the
dissipation scales.

Because energy cascading down
through spatial scales is a central fea-
ture of fluid turbulence, it is natural to
consider the distribution of energy
among spatial scales in wave number
(or Fourier) space, as suggested by
Taylor (1938). The energy distribution
E(k) = 1/2|u~(k)|2, where u~(k) is the
Fourier transform of the velocity field
and the wave number k is related to
the spatial scale l by k = 2π/l.8 Wave-
number space is very useful for the
representation of fluid turbulence
because differential operators in real
space transform to multiplicative
operators in k-space. For example, the
diffusion operator in the term ν∇2u
becomes νk2u~ in the Fourier repre-
sentation. Another appealing feature
of the wave number representation is
the nonlocal property of the Fourier
transform, which causes each Fourier
mode represented by wave number k
to represent cleanly the corresponding
scale l. On the other hand, the k-space
representation is difficult from the
perspective of understanding how spa-
tial structures, such as intense eddies,
affect the transfer of energy between
scales, that is between eddies of dif-
ferent sizes. 

The consequence of energy conser-
vation on the form of E(k) was inde-
pendently discovered by Obukov
(1941), Heisenberg (1948), and
Onsager (1949), all of whom obtained
the scaling relationship for the energy
spectrum E(k) ~ k–5/3 for the inertial
scales in fully developed homoge-
neous isotropic turbulence. This result

is not independent of the picture pre-
sented above in terms of real space-
velocity differences but is another
way of looking at the consequences of
energy conservation. Many subse-
quent experiments and numerical sim-
ulations have observed this
relationship to within experimental/
numerical uncertainty, thereby lending
credence to the energy cascade pic-
ture. Figure 6 shows the energy spec-
trum obtained from time series
measurements at a single point in a
turbulent jet, where the spatial scale is
related to time by Taylor’s hypothesis
that the large mean velocity sweeps
the “frozen-in” turbulent field past the
measurement point. 

Vorticity. Another important
quantity in the characterization and
understanding of fluid turbulence is
the vorticity field, ωω(x,t) = ∇∇ × u(x,t),
which roughly measures the local
swirl of the flow as picturesquely
drawn by da Vinci in the opening
illustration. The notion of an “eddy”
or “whorl” is naturally associated
with one’s idea of a vortex—a com-
pact swirling object such as a dust
devil, a tornado, or a hurricane—but
this association is schematic at best.
In three-dimensional (3-D) turbu-
lence, vorticity plays a quantitative
role in that the average rate of energy
dissipation ε is related to the mean-
square vorticity by the relation ε = –
u〈ωω2〉. Vorticity plays a different
role in two-dimensional (2-D) turbu-
lence. Vortex stretching has long been
recognized as an important ingredient
in fluid turbulence (Taylor 1938); if a
vortex tube is stretched so that its
cross section is reduced, the mean-
square vorticity in that cross section
will increase, thereby causing strong
spatially localized vortex filaments
that dissipate energy. The notion of
vortex stretching and energy dissipa-
tion is discussed in the article “The
LANS-α model for Computing
Turbulence” on page 152.
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8If isotropy is assumed, the energy distri-
bution E(k), where k is a vector quantity,
depends only on the magnitude k = |k| and
one can denote the energy as E(k) without
loss of generality.

                                                                                                                                



Engineering Models 
of Turbulence

It is worth stressing again that tur-
bulence is both fundamentally inter-
esting and of tremendous practical
importance. As mentioned above,
modeling complex practical problems
requires a perspective different from
that needed for studying fundamental
issues. Foremost is the ability to get
fairly accurate results with minimal
computational effort. That goal can
often be accomplished by making
simple models for the effects of turbu-
lence and adjusting coefficients in the
model by fitting computational results
to experimental data. Provided that
the parameter range used in the model
is well covered by experimental data,
this approach is very efficient.
Examples that have benefited from
copious amounts of reliable data are
aircraft design—aerodynamics of
body and wing design have been at
the heart of a huge international
industry—and aerodynamic drag
reduction for automobiles to achieve
better fuel efficiency. Global climate
modeling and the design of nuclear
weapons, on the other hand, are
examples for which data are either
impossible or quite difficult to obtain.
In such situations, the utmost care
needs to be taken when one attempts
to extrapolate models to circum-
stances outside the validation regime. 

The main goal of many engineering
models is to estimate transport proper-
ties—not just the net transport of
energy and momentum by a single fluid
but the transport of matter such as pol-
lutants in the atmosphere or the mixing
of one material with another. Mixing is
a critical process in inertial confine-
ment fusion and in weapons physics
applications. It is crucial for certifica-
tion of the nuclear weapons stockpile
that scientists know how well engineer-
ing models are performing and use that
knowledge to predict outcomes with a
known degree of certainty. 

The Closure Problem for
Engineering Models. Engineering
models are constructed for computa-
tional efficiency rather than perfect
representation of turbulence. The class
of engineering models known as
Reynolds-Averaged Navier-Stokes
(RANS) provides a good example of
how the problem of “closure” arises
and the parameters that need to be
determined experimentally to make
those models work. Consider again
the flow of a fluid with viscosity ν in
a pipe with a pressure gradient along
the pipe. When the pressure applied at
the pipe inlet and the pipe diameter D
are small, the fluid flow is laminar,
and the velocity profile in the pipe is
quadratic with a peak velocity U that
is proportional to the applied pressure
(refer to Figure 3). When the forcing
pressure gets large enough to produce
a high flow velocity and therefore a
large Reynolds number, typically Re =
UD/ν ≥ 2000, the flow becomes tur-
bulent, large velocity fluctuations are
present in the flow, and the velocity
profile changes substantially (refer
again to Figure 3). An engineering
challenge is to compute the spatial dis-
tribution of the mean velocity of the
turbulent flow. Following the proce-
dure first written down by Reynolds,
the velocity and pressure fields are
separated into mean (the overbar
denotes a time average) and fluctuat-
ing (denoted by the prime) parts: 

where i denotes one of the compo-
nents of the vector field u(x,t) and the
average of the fluctuating part of the
velocity is zero by definition. Also, 

Substituting these expressions into
Equation (1), using the constant-den-
sity continuity condition

and averaging term by term yields an
equation for the mean velocity:

(2)

Note that the equation for the mean
flow looks the same as the Navier-
Stokes equation for the full velocity u,
Equation (1), with the addition of a
term involving the time average of a
product of the fluctuating parts of the
velocity, namely, the Reynolds stress
tensor,

That additional term, which repre-
sents the transport of momentum
caused by turbulent fluctuations, acts
like an effective stress on the flow and
cannot, at this time, be determined
completely from first principles. As a
result, many schemes have been
developed to approximate the
Reynolds stress.

The simplest formulation for the
Reynolds stress tensor is

where νT(x) is called the turbulent
eddy viscosity because the additional
term looks like a viscous diffusion
term. A more sophisticated approach
is to solve for the Reynolds stress by
writing an equation for the time evo-
lution of u′iu′j (Johnson et al. 1986).
This equation has multiple undeter-
mined coefficients and depends on the
third moment u′iu′ju′k. . Again, the third-
order moment is unknown and needs
to be approximated or written in terms
of fourth-order moments. In principle,
an infinite set of equations for higher-
order moments is required, so one
needs to “close” the set at a small
number to achieve computational effi-

132 Los Alamos Science Number 29  2005

The Turbulence Problem

                                                   



ciency. At any stage of approximation,
undetermined coefficients are set by
comparison with experimental or
direct numerical simulation data. This
approach is often very effective,
although it does depend on the quality
of the data and on the operating
parameter regime covered by the data. 

Modern Developments

By the end of the 1940s, great
progress had been made in the study
of turbulence. The statistical approach
to turbulence, the importance of the
energy and its wave number represen-
tation, the notion of measuring veloc-
ity differences, and the dynamics of
vortex structures as an explanation of
the mechanism of fluid turbulence had
all been articulated by Taylor. The
cascade picture of Richardson had
been made quantitative by
Kolmogorov and others. The concepts
of universal scaling and self-similarity
were key ingredients in that descrip-
tion. On the practical side, tremen-
dous advances had been made in
aeronautics, with newly emerging jet
aircraft flying at speeds approaching
the speed of sound. Empirical models
based on the engineering approach
described above were being used to
describe these practical turbulence
problems. 

The next 50 years were marked by
steady progress in theory and model-
ing, increasingly sophisticated experi-
ments, and the introduction and
widespread use of the digital com-
puter as a tool for the study of turbu-
lence. In the remainder of this review,
we touch on some of the advances of
the post-Kolmogorov era, paying par-
ticular attention to the ever-increasing
impact of the digital computer on
three aspects of turbulence research:
direct numerical simulations of ideal-
ized turbulence, increasingly sophisti-
cated engineering models of
turbulence, and the extraordinary

enhancement in the quality and quan-
tity of experimental data achieved by
computer data acquisition. As far
back as the Manhattan Project, the
computer (more exactly, numerical
schemes implemented on a roomful
of Marchand calculators) began to
play a major role in the calculations
of fluid problems. A leading figure in
that project, John von Neumann
(1963), noted in a 1949 review of
turbulence that “… a considerable
mathematical effort towards a
detailed understanding of the mecha-
nism of turbulence is called for” but
that, given the analytic difficulties
presented by the turbulence problem,
“… there might be some hope to
‘break the deadlock’ by extensive,
but well-planned, computational
efforts.” Von Neumann’s foresight in
understanding the important role of
computers for the study of turbulence
predated the first direct numerical
simulation of the turbulent state by
more than 20 years.

From a fundamental perspective,
the direct numerical simulation of
idealized isotropic, homogeneous tur-
bulence has been revolutionary in its
impact on turbulence research
because of the ability to simulate and
display the full 3-D velocity field at
increasingly large Reynolds number.
Similarly, experimentation on turbu-
lence has advanced tremendously by
using computer data acquisition;
20 years ago it was possible to meas-
ure and analyze time series data from
single-point probes that totaled no
more than 10 megabytes of informa-
tion, whereas today statistical ensem-
bles of thousands of spatially and
temporally resolved velocity fields,
taking 10 terabytes of storage space
can be obtained and processed. This
millionfold increase in experimental
capability has opened the door to
great new possibilities in turbulence
research that will be enhanced even
further by expected future increases
in computational power. 

Below, we briefly address
advances in numerical simulation, in
turbulence modeling, and theoretical
understanding of passive scalar trans-
port, topics dealt with more exten-
sively in the articles immediately
following this one. We then describe
several exciting new experimental
advances in fluid turbulence research
and close this introduction with a
view toward “solving” at least some
aspect of the turbulence problem.

Direct Numerical 
Simulation of Turbulence

Recent advances in large-scale sci-
entific computing have made possible
direct numerical simulations of the
Navier-Stokes equation under turbu-
lent conditions. In other words, for
simulations performed on the world’s
largest supercomputers, no closure or
subgrid approximations are used to
simplify the flow, but rather the simu-
lated flow follows all the twisting-
turning and stretching-folding motions
of the full-blown Navier-Stokes equa-
tions at effective large-scale Reynolds
numbers of about 105. These simula-
tions render available for analysis the
entire 3-D velocity field down to the
dissipation scale. With these numeri-
cally generated data, one can study
the structures of the flow and corre-
late them with turbulent transfer
processes, the nonlinear processes that
carry energy from large to small
scales.

An especially efficient technique
for studying isotropic, homogeneous
turbulence is to consider the flow in
a box of length L with periodic
boundary conditions and use the
spectral method, an orthogonal
decomposition into Fourier modes, to
simulate the Navier-Stokes equation.
Forcing is typically generated by
maintaining constant energy in the
smallest k mode (or a small number
of the longest-wavelength modes).
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The first direct numerical simulation
of fluid turbulence (Orszag and
Patterson 1972) had a resolution of
323, corresponding to Re ~ 100. By
the early 1990s, Reynolds numbers
of about 6000 for a 5123 simulation
could be obtained (She et al. 1993);
the separation between the box size
and the dissipation scale was just
short of a decade. Recent calcula-
tions on the Los Alamos Q machine,
using 20483 spatial resolution, and
on the Japanese Earth Simulator with
40963 modes (Kaneda et al. 2003)
achieved a Reynolds number of
about 105, corresponding to about
1.5 decades of turbulent scales,
which is approaching fully developed
turbulence in modestly sized wind
tunnels. It is important to appreciate
that the Re of direct numerical turbu-
lence simulations grows only as Re ∝
N4/9, where N is the number of
degrees of freedom that are com-
puted: A factor of 2 increase in the
linear dimension of the box means
computing 23 more modes for a cor-
responding increase in Re of about
2.5. Nevertheless, for isotropic,
homogeneous fully developed 
turbulence, direct numerical simula-
tion has become the tool of choice
for detailed characterization of 
fundamental flow properties and
comparison with Kolmogorov-type
theories. More details regarding
numerical simulation of turbulence
can be found in the article “Direct
Numerical Simulations of
Turbulence” on page 142.

Modern Turbulence Models

Although the RANS models
described above maintain a dominant
role in turbulence modeling, other
approaches have become tractable
because of increases in computational
power. A more recent approach to
modeling turbulent processes is to
decompose spatial scales of the flow

into Fourier modes and then to trun-
cate the expansion at some intermedi-
ate scale (usually with a smooth
Gaussian filter) and model the small
scales with a subgrid model. One then
computes the large scales explicitly
and approximates the effect of the
small scales with the subgrid model.
This class of methods (Meneveau
and Katz 2000) is called large eddy
simulation (LES) and has become an
alternative to RANS modeling when
more-accurate spatial information is
required. Because of the spatial fil-
tering, LES modeling has problems
with boundaries and is less computa-
tionally efficient than RANS tech-
niques. Nevertheless, LES models
may be more universal than RANS
models and therefore rely less on ad
hoc coefficients determined from
experimental data. 

Another variant of the subgrid-
model approach recently invented at
Los Alamos is the Lagrangian-aver-
aged Navier-Stokes alpha (LANS-α)
model. Although not obtainable by 
filtering the Navier-Stokes equations,
the LANS-α model has a spatial cut-
off determined by the coefficient α.
For spatial scales larger than α, the
dynamics are computed exactly (in
effect, the Navier-Stokes equations
are used) and yield the energy 
spectrum E(k) ∝ k–5/3, whereas for
spatial scales less than α, the energy
falls more rapidly, E(k) ∝ k–3. The
LANS-α model can be derived from a
Lagrangian-averaging procedure start-
ing from Hamilton’s principle of least
action. It is the first-closure (or sub-
grid) scheme to modify the nonlinear
term rather than the dissipation term
and, as a result, has some unique
advantages relative to more traditional
LES schemes (see the articles “The
LANS-α Model for Computing
Turbulence” and “Taylor’s
Hypothesis, Hamilton’s Principle, and
the LANS-α Model for Computing
Turbulence” on pages 152 and 172,
respectively).

Beyond the 
Kolmogorov Theory

The 50 years that have passed,
from about 1950 until the new millen-
nium, were notable for increasingly
sophisticated theoretical descriptions
of fluid turbulence, including the sem-
inal contributions of Robert
Kraichnan (1965, 1967, 1968, 1975),
who pioneered the foundations of the
modern statistical field-theory
approach to hydrodynamics, particu-
larly by predicting the inverse energy
cascade from small scales to large
scales in 2-D turbulence, and George
Batchelor (1952, 1953, 1959, 1969).
Those developments are generally
beyond the scope of the present
review, and we have already referred
the reader to recent books in which
they are surveyed in detail (McComb
1990, Frisch 1995, Lesieur 1997). We
touch briefly, however, on a few
recent developments that grew out of
those efforts and on the influence of
the Lagrangian perspective of fluid
turbulence. 

The physical picture that emerges
from the Kolmogorov phenomenology
is that the turbulent scales of motion
are self-similar; that is, the statistical
features of the system are independent
of spatial scale. One measure of this
self-similarity is the nondimensional
ratio of the fourth moment to the
square of the second moment, 
F = 〈δu4〉/〈δu2〉2, as a function of
scale separation. If the velocity distri-
bution is self-similar, then F should
be constant, or flat, as a function of
length scale. Indeed, the nondimen-
sional ratio of any combination of
velocity-increment moments should
be scale independent. If, however, F
behaves as a power law in the separa-
tion r, then the system is not self-sim-
ilar, but instead it is characterized by
intermittency: short bursts (in time) or
isolated regions (in space) of high-
amplitude fluctuations separated by
relatively quiescent periods or
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regions. From the 1960s to the 1980s,
experimentalists reported departures
from the Kolmogorov scaling. The
measured fourth-order and higher
moments of velocity differences did
not scale as rn/3, but rather as a lower
power of the separation r,
〈δun〉 ~ rξn , with ξn < n/3 for n > 3.
To preserve the correct dimensions of
the nth-order velocity difference
moments, the deviations from
Kolmogorov scaling, or from self-
similarity, can be written as a correc-
tion factor given by the ratio of the
large scale L to the separation r to
some power ∆n, or (L/ r)∆n (see the
box “Intermittency and Anomalous
Scaling in Turbulence” on page 136).
Some recent analytic progress toward
understanding the origin of the
observed anomalous scaling has been
made in the context of passive scalar
turbulence and involves the applica-
tion of nonperturbative field-theory
techniques to that problem (see the
article “Field Theory and Statistical
Hydrodynamics” on page 181).

The passive scalar problem
describes the transport and effective
diffusion of material by a turbulent

velocity field. This stirring process
characterizes fluid mixing, which has
many important scientific and techni-
cal applications. Whereas intermit-
tency is rather weak in turbulent
velocity statistics, the distribution of a
passive scalar concentration carried
by a turbulent flow is very intermit-
tent. In other words, there is a much
larger probability (compared with
what one would expect for a random,
or Gaussian, distribution) of finding
local concentrations that differ greatly
from the mean value. For characteriz-
ing fluid mixing, the Lagrangian
frame of reference (which moves with
the fluid element as opposed to the
Eulerian frame, which is fixed in
space) is very useful theoretically
because a passive scalar is carried by
fluid elements. Figure 7 shows the
distribution of a virtual drop of yellow
dye carried by a 2-D turbulent flow in
a stratified layer experiment.9 The
structured distribution of the dye illus-

trates how the velocity field stretches
and folds fluid elements to produce
mixing. Adopting the Lagrangian
frame of reference is rapidly emerging
as a powerful new approach for mod-
eling turbulent mechanisms of energy
transfer. This approach has led to
Lagrangian tetrad methods, a phenom-
enological model arising from the
nonperturbative field-theoretical
approach to turbulence, and to the
LANS-α model mentioned above.

Recent Experimental
Developments

Quantitative single-point measure-
ments of velocity combined with
qualitative flow visualization (van
Dyke 1982) have characterized almost
all experimental measurements of
fluid turbulence for most of the 20th
century. Recently, however, new
experimental techniques enabled by
digital data acquisition, powerful
pulsed-laser technology, and fast digi-
tal imaging systems have emerged
and are causing great excitement in
the field of turbulence.
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Figure 7. Passive Scalar Turbulence in a Stratified Layer
An effective blob of yellow dye is carried by a forced 2-D turbulent flow in a stratified layer. The images show (a) the initial dye
concentration and (b) the concentration after about one rotation of a large-scale eddy. The sharp gradients in the concentration
lead to the very strong anomalous scaling in the transport of the passive scalar field.

9The “virtual” drop consists of more than
10,000 fluid elements, whose evolution is
computed by solving the Lagrangian
equation dx(t)/dt = u(t,x(t)) from experi-
mental velocity fields. 

(a) (b)
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Intermittency is associated with the violent, atypi-
cal discontinuous nature of turbulence. When a
signal from turbulent flow (for example, the veloc-
ity along a particular direction) is measured at a
single spatial point and a sequence of times 
(an Eulerian measurement), the fluctuations in the
values appear to be random. Since any random
sequence is most naturally explained in terms of its
statistical distribution, one typically determines the
statistics by constructing a histogram of the signal.
The violent nature of turbulence shows itself in the
very special shape of the histogram, or the proba-
bility distribution function (PDF), of the turbulent
velocity signal. It is typically wider than the
Gaussian distributions emerging in the context of
equilibrium statistical physics—for example, the
Gaussian distribution that describes the velocity of
(or the distance traveled by) a molecule undergo-
ing Brownian motion.

The PDF of the energy dissipation rate, P(ε), illus-
trates how far from Gaussian a turbulent distribu-
tion can be. At values far above the average, ε >>
〈ε〉, where ε ≡ ν(∇u)2, the probability distribution
P(ε) has a stretched exponential tail, ln P(ε) ∝ –εa

(La Porta 2001). The extended tail of the turbulent
PDF illustrates the important role played by the
atypical, violent, and rare events in turbulence. 

Intermittency has many faces. In the context of
two-point measurements, intermittency is associ-
ated with the notion of anomalous scaling.
Statistics of the longitudinal velocity increments,
δu(r) (the difference in the velocity components
parallel to the line separating the two points) in
developed turbulence becomes extremely non-
Gaussian as the scale decreases. In particular, if the
scale r separating the two points is deep inside the
inertial interval, L >>r >> ld, then the nth moment
of the longitudinal velocity increment is given by

(1)

where L is the integral (pumping, energy-contain-
ing) scale of turbulence. The first thing to mention
about Equation (1) is that the viscous, Kolmogorov
scale ld does not enter the relation in the devel-
oped turbulence regime. This fact is simply related
to the direction of the energy cascade: On average,
energy flows from the large scale, where it is
pumped into the system, toward the smaller scale,
ld, where it is dissipated; it does not flow from the
small scale. Secondly, ∆n on the right side of
Equation (1) is the anomalous scaling exponent. In
the phenomenology proposed by Kolmogorov in
1941, the flow is assumed to be self-similar in the
inertial range of scales, which implies that anom-
alous scaling is absent, ∆n = 0, for all values of n.
The self-similar scaling phenomenology is an
extension of the four-fifths law proven by
Kolmogorov in 1941 for the third moment 

(See discussion of the four-fifths law in “Direct
Numerical Simulations of Turbulence” on page
142). This law is a statement of conservation of
energy from scale to scale in the inertial regime of
homogeneous isotropic turbulence. Modern 
experimental and numerical tests (Frisch 1995) 
unequivocally dismiss the self-similarity assump-
tion, ∆n = 0, as invalid. But so far, theory is still
incapable of adding any other exact relation to the
celebrated four-fifths law. 

On the other hand, even though a comprehensive
theoretical analysis of developed isotropic turbu-
lence remains elusive, there has been an important
breakthrough in understanding anomalous scaling
in the simpler problem of passive scalar turbulence
(see the article “Field Theory and Statistical
Hydrodynamics” on page 181).
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One innovative example of a new
turbulence experiment (La Porta
2001) is the use of silicon strip detec-
tors from high-energy physics to track
a single small particle in a turbulent
flow with high Reynolds number (see
Figure 8). This is an example of the
direct measurement of Lagrangian
(moving with the fluid) properties of
the fluid flow. Because the particle
trajectories are time resolved, the
acceleration statistics can be obtained
directly from experiment, and theoret-
ical predictions for those statistics can
be tested.

Another application of new tech-
nology has made possible the local
time-resolved determination of the
full 3-D velocity gradient tensor10 at a
point in space (Zeff 2003). Knowing
the local velocity gradients allows one
to calculate the energy dissipation rate
ε and mean-square vorticity, Ω =
〈ω2〉/2, and thereby provide an experi-
mental measure of intense and inter-
mittent dissipation events (see
Figure 9).

Both these techniques can be used
to obtain large data samples that are
statistically converged and have on
the order of 106 data sets per parame-
ter value. At present, however, the
physical length scales accessible to
these two techniques are constrained
to lie within or close to the dissipation
scale ld. By using holographic meth-
ods, one can obtain highly resolved,
fully 3-D velocity fields (see
Figure 10), which allow the full turbu-
lent inertial range of scales to be
investigated (Zhang et al. 1997). For
holographic measurements, however,
one is limited to a small number of
such realizations, and time-resolved
measurements are not currently
achievable. Finally, for physical realizations of

2-D flows, full-velocity fields can be
measured with high resolution in both
space and time (Rivera et al. 2003),
and the 2-D velocity gradient tensor
can be used to identify topological
structures in the flow and correlate

them with turbulent cascade mecha-
nisms. The technique used to make
these measurements and those repre-
sented in Figure 10 is particle-image
velocimetry (PIV) or its improved
version, particle-tracking velocimetry
(PTV). Two digital images, taken
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Figure 8. Three-Dimensional Particle Trajectory in a Turbulent Fluid 
A high-speed silicon-strip detector was used to record this trajectory of a particle
in a turbulent fluid with Re = 63,000 (La Porta 2001). The magnitude of the instanta-
neous acceleration is color-coded. Averaging over many such trajectories allows
comparison with the theory of Lagrangian acceleration statistics.
(Modified with permission from Nature. This research was performed at Cornell University.)

Figure 9. Intermittency of Energy Dissipation and Enstrophy at 
Re = 48,000
Time traces of the local energy dissipation εε (crosses) and enstrophy ΩΩ = 〈ωω2〉/2
(solid curve) illustrate the very intermittent behavior of these dissipation quantities
for turbulent flow with Re = 48,000 (Zeff 2003). (Modified with permission from Nature. This

research was performed at the University of Maryland.)

10 The velocity gradient tensor is a 3 × 3
matrix consisting of the spatial derivatives
of three components of velocity. For
example, for the velocity component ui,
the derivatives are ∂ui/∂x1, ∂ui/∂x2, and
∂ui/∂x3. 
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closely spaced in time, track the
motion of small particles that seed the
flow and move with the fluid. The
basic notion is illustrated in Figure 11,
where two superimposed digital
images of particle fields, separated by
∆t = 0.03 second, are shown. Within

small subregions of the domain, pat-
terns of red particles in image 1 can
be matched with very similar patterns
of blue particles in image 2 by maxi-
mizing the pattern correlation. An
average velocity vector for the match-
ing patterns is then calculated over the

entire box from which a velocity field
is obtained, as shown in Figure 12(a).
Notice that there are some anomalous
vectors caused by bad matching that
need to be fixed by some interpolation
scheme. PTV, on the other hand, uses
a particle-matching algorithm to track
individual particles between frames.
The resulting vector field is shown in
Figure 12(b). The PTV method has
higher spatial resolution than PIV but
also greater computational-processing
demands and more stringent image-
quality constraints. From the PTV
velocity field, the full vorticity 
field ωω can be computed as shown in
Figure 12(c).

An additional advantage of the
PTV approach is that, for high enough
temporal resolution, individual parti-
cle tracks can be measured over many
contiguous frames, and information
about Lagrangian particle trajectories
can be obtained. Some 2-D particle
tracks are shown in Figure 13.

This capability can be combined
with new analysis methods for turbu-
lence to produce remarkable new
visualization tools for turbulence.
Figure 14 shows the full backward
and forward time evolution of a
marked region of fluid within an iden-
tified stable coherent structure (a vor-
tex). These fully resolved
measurements in two dimensions will
help build intuition for the eventual
development of similar capabilities in
three dimensions. Further, the physi-
cal mechanisms of 2-D turbulence are
fascinating in their own right and may
be highly relevant to atmospheric or
oceanic turbulence.

The Prospects for
“Solving” Turbulence

Until recently, the study of turbu-
lence has been hampered by limited
experimental and numerical data on the
one hand and the extremely intractable
form of the Navier-Stokes equation on
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Figure 10. High-Resolution 3-D Turbulent Velocity Fields 
These images were obtained using digital holographic particle-imaging velocimetry.
(Zhang et al. 1997. Modified with permission from Experiments in Fluids.)

Figure 11. Superimposed Digital Images of a Particle Field
Two digital images of suspended particles taken 0.003 s apart are superimposed.
The first exposure is in red; the second, in blue. In PIV, the pattern of particles
over a small subregion is correlated between exposures, and an average velocity
is computed by the mean displacement δδx of the pattern. In PTV, each particle is
matched between exposures; as a result, spatial resolution is higher, and there is
no spatial averaging. These data allow one to infer the velocity field connecting
the two images.
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Figure 14. Time Evolution of a
Compact Distribution of 104

Points in a Coherent Vortex at
Time t2
Vortex merging and splitting happen
at times t1 and t3, respectively. The
color-coding of the surface repre-
sents the spatially local energy flux
to larger (red) and smaller (blue) 
spatial scales.
(M. K. Rivera, W. B. Daniel, and R. E. Ecke, to be

published in Gallery of Fluid Images, Chaos, 2004.)

Figure 13. Individual Lagrangian Particle Tracks 
for Forced 2-D Turbulence
(a) Approximately 104 particles are tracked for short periods.
(b) Several individual trajectories are shown for several 
injection-scale turnover times.

Figure 12. Two-Dimensional Vector
Velocity and Vorticity Fields
The velocities in (a) and (b) were
obtained from data similar to those in
Figure 11 using PIV and PTV techniques,
respectively. The vorticity field in (c) is
calculated from the velocity field in (b).

(a)

(c)

(b)

(a)

(b)

           



the other. Today, the advent of large-
scale scientific computation, combined
with new capabilities in data acquisi-
tion and analysis, enables us to simu-
late and measure whole velocity fields
at high spatial and temporal resolu-
tions. Those data promise to revolu-
tionize the study of fluid turbulence.
Further, new emerging ideas in statisti-
cal hydrodynamics derived from field
theory methods and concepts are pro-
viding new theoretical insights into the
structure of turbulence (Falkovitch et
al. 2001). We will soon have many of
the necessary tools to attack the turbu-
lence problem with some hope of solv-
ing it from the physics perspective if
not with the mathematical rigor or the
extremely precise prediction of proper-
ties obtained in, say, quantum electro-
dynamics. Let me explain then what I
mean by that solution. In condensed
matter physics, for example, the mys-
tery of ordinary superconductivity was
solved by the theory of Bardeen,
Cooper, and Schrieffer (1957), which
described how electron pairing medi-
ated by phonons led to a Bose-Einstein
condensation and gave rise to the
superconducting state. Despite this
solution, there has been no accurate
calculation of a superconducting transi-
tion temperature for any superconduct-
ing material because of complications
emerging from material properties. I
think that there is hope for understand-
ing the mechanisms of turbulent
energy, vorticity, and mass transfer
between scales and between points in
space. This advance may turn out to be
elegant enough and profound enough
to be considered a solution to the mys-
tery of turbulence. Nevertheless,
because turbulence is probably a whole
set of problems rather than a single
one, many aspects of turbulence will
likely require different approaches. It
will certainly be interesting to see how
our improved understanding of turbu-
lence contributes to new predictability
of one of the oldest and richest areas in
physics. n
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