Wave-Particle Interactions with Highly Oblique Whistler Waves

Jay Albert

Air Force Research Lab

Active Experiments in Space: Past, Present, and Future

11-15 September 2017

Ref: Albert (2017), J. Geophys. Res. Space Physics, 122, 5339–5354. See also: Artemyev et al. (2016), Space Sci. Rev., 200, 261–355. Radiation belt electrons are well-described by multidimensional quasi-linear diffusion:

$$\frac{\partial f}{\partial t} = \frac{1}{G} \frac{\partial}{\partial \alpha_0} G\left(\frac{D_{\alpha_0 \alpha_0}}{p^2} \frac{\partial f}{\partial \alpha_0} + \frac{D_{\alpha_0 p}}{p} \frac{\partial f}{\partial p}\right) \\ + \frac{1}{G} \frac{\partial}{\partial p} G\left(\frac{D_{\alpha_0 p}}{p} \frac{\partial f}{\partial \alpha_0} + D_{pp} \frac{\partial f}{\partial p}\right) + L^2 \frac{\partial}{\partial L} \frac{D_{LL}}{L^2} \frac{\partial f}{\partial L}$$

2

The *D*'s are largely driven by cyclotron-resonant whistler-mode waves:

plasmaspheric hiss chorus waves magnetosonic waves lightning-generated whistlers Navy VLF transmitters

These waves $\sim B_w \sin(\mathbf{k} \cdot \mathbf{x} - \omega t)$ are characterized by amplitude, frequency ω , and wave vector \mathbf{k} , with wave normal angle θ (between \mathbf{k} and \mathbf{B}_0).

Typically, θ is small. But some chorus and hiss have $\theta \sim \theta_{RC}$, where $\mu = kc/\omega \rightarrow \infty$.

[Li et al., JGR 2013]

Dipole antennas in space (e.g., DSX) are also predicted to radiate whistlers very near θ_{RC} .

Fig. 1. Normalized radiation patterns for magnetic (L) and electric (D) dipoles at the frequency $f = 0.75 f_{eH}$. The patterns shown are typical of those that occur in the frequency range $f_{eH} > f > \frac{1}{2} f_{eH}$, assuming a moderate to high density plasma.

[Wang and Bell, JGR 1972]

It has recently been suggested that D is "enhanced,"

though earlier analysis suggests $D \rightarrow 0$.

The [Lyons 1974] QLT diffusion coefficient formulas are:

$$D_{\alpha\alpha} = \sum_{n=-\infty}^{\infty} \frac{\Omega_e B_w^2}{\gamma^2 B^2} \int_{\theta_{\min}}^{\theta_{\max}} d\theta \sin \theta \Delta_n G_1 G_2 \quad \text{integral over resonances}$$

$$\Delta_n = \frac{\pi}{2} \frac{\sec \theta}{|v_{\parallel}/c|^3} \Phi_n^2 \frac{(-\sin^2 \alpha + \Omega_n/\omega)^2}{|1 - (\partial \omega/\partial k_{\parallel})\theta/v_{\parallel}|} \quad \text{individual W - P interaction}$$

$$\Phi_n \sim \{J_n, J_{n\pm 1}\}(k_{\perp}\rho) \quad \Phi_n \sim \{J_n, J_{n\pm 1}\}(k_{\perp}\rho)$$

$$G_1 = \frac{\Omega_e B^2(\omega)}{\int_{\omega_{LC}}^{\omega_{UC}} B^2(\omega') d\omega'}, \quad G_2 = \frac{g(\omega, \theta)}{N(\omega)} \quad \text{in } (\omega, \theta)$$

$$N(\omega) = \int_{\theta_{\min}}^{\theta_{\max}} d\theta' \sin \theta' g(\omega, \theta') \Gamma(\omega, \theta') \quad \text{normalization integral}$$

$$\Gamma = \mu^2 \left| \mu + \omega \frac{\partial \mu}{\partial \omega} \right| \quad \mu(\omega, \theta) = \text{refractive index}$$

where $\Omega_n = -n \frac{\Delta^2 e}{\gamma}$, and (ω, θ) are linked by the resonance condition.

As $\theta_{\max} \rightarrow \theta_{RC}$, $\mu \rightarrow \infty$, $D \rightarrow$? Not obvious.

Theory and numerics show that for each n, $D_{\alpha\alpha}^{n}$ and $D_{pp}^{n} \rightarrow 0$ as $\theta \rightarrow \theta_{RC}$ [Albert, JGR, 2012]. But this isn't the whole story. Need to worry about $\sum_{n=-\infty}^{\infty} D^{n}$ (as $\theta \rightarrow \theta_{RC}$, the range of contributing *n* grows)

To study this, μ^2 can be approximated by $\mu^2 = \frac{\omega_{pe}^2}{\omega(\Omega_e \cos \theta - \omega)}$ which is qualitatively similar near the RC.

Then
$$\Gamma = \frac{\omega \Omega_e}{\omega_{pe}^2} \mu^5$$
. With $g(\omega, \theta) \approx \begin{cases} g_0, \ \theta_{\min} \le \theta \le \theta_{\max} \\ 0, \ \text{otherwise} \end{cases}$
$$N(\omega) = \left(\frac{\omega_{pe}^2}{\omega \Omega_e}\right)^{3/2} g_0 \left[\frac{\cos \theta_{\max} - \frac{2}{3}\cos \theta_{RC}}{(\cos \theta_{\max} - \cos \theta_{RC})^{3/2}} - \frac{\cos \theta_{\min} - \frac{2}{3}\cos \theta_{RC}}{(\cos \theta_{\min} - \cos \theta_{RC})^{3/2}}\right].$$

Compare to full-blown
$$N(\omega) = \int_{\theta_{\min}}^{\theta_{\max}} d\theta' \sin \theta' g(\omega, \theta') \Gamma(\omega, \theta'),$$

or Lyons [1974]: $N(\omega) = \omega^2 \Big(\frac{\omega_{pe}^2}{c^2 \Omega_e^2} \frac{1+M}{M}\Big)^{3/2} \frac{2}{(2\pi)^2} I(\omega),$
 $I(\omega) = \int_0^{\infty} g(\tan^{-1}x) x \{(1+x^2)\Psi\}^{-3/2}$
 $\times \Big\{1 + \frac{1}{\Psi} \Big[\frac{\omega^2}{\Omega_p \Omega_e} - \Big\{\frac{1}{2} \frac{\omega^2}{\Omega_p^2} (1-M)^2\Big\} \Big\{(1+x^2) \Big(\Psi - 1 + \frac{\omega^2}{\Omega_p \Omega_e}\Big) + \frac{1}{2} x^2\Big\}^{-1}\Big]\Big\} dx,$
with $M = \frac{m_e}{m_p}, \ \Psi = \frac{\omega_{pe}^2}{\Omega_e^2} \frac{1+M}{M} \mu^{-2}.$

The change of vars leading to this also helps with the full $N(\omega)$, giving large giving large speedup near θ_{RC} .

This approximate $N(\omega)$ can also be written as

$$N(\boldsymbol{\omega}) = \frac{g_0}{3} \frac{\boldsymbol{\omega}}{\Omega_e} \Big[\mu_{\text{max}}^3 \Big(1 + 3 \frac{\mu_G^2}{\mu_{\text{max}}^2} \Big) - \mu_{\text{min}}^3 \Big(1 + 3 \frac{\mu_G^2}{\mu_{\text{min}}^2} \Big) \Big]$$

ere $\mu_G = \mu \Big(\boldsymbol{\omega}, \boldsymbol{\theta}_G \Big)$

where $\mu_G = \mu(\omega, \theta_G)$.

Idea: use (ω, μ) instead of (ω, θ) as the main variables. This replaces $\theta_{\min} < \theta < \theta_{\max}$ with $\mu_{\min} < \mu < \mu_{\max}$.

For large
$$\mu$$
, resonant $\cos\theta \approx \frac{\omega}{\Omega_e} \approx \sqrt{\frac{n}{\gamma(v_{\parallel}/c)\mu}}$.

Then all the terms in D can be approximated, giving

$$D_{\alpha\alpha} \approx A_0 \sum_n \int z^4 \frac{J_n^2(z)}{|n|} dz$$

where $z = k_{\perp} \rho \sim \mu^{1/2}$ and

$$A_{0} = \frac{3\pi}{4} \frac{\Omega_{e}^{6} / \omega_{pe}^{4}}{\omega_{UC} - \omega_{LC}} \frac{c^{7} / v_{\perp}^{7} \gamma^{6}}{\mu_{\max}^{3} - \mu_{\min}^{3}} \frac{B_{w}^{2}}{B^{2}}.$$

The range of *n* is restricted by ω_{LC} , ω_{UC} , μ_{\min} , μ_{\max} . This is much simpler than the original expressions. More: the large-arg. approx. for J_n applies if $\tan \alpha > \omega_{UC}/\Omega_e$. Then \sum_n and $\int dz$ can be done analytically, giving

$$D_{\alpha\alpha} \approx \frac{3}{64} \frac{c^3}{\nu_{\perp}^3} \frac{\omega_{UC}^3}{\Omega_e^3} D_0 \mu_{\max},$$

$$D_{\alpha p} \approx -\frac{1}{12} \frac{c^4}{\nu_{\perp}^2} \frac{\omega_{UC}^2}{\Omega_e^2} D_0, \qquad D_0 = \frac{\Omega_e^4}{\omega_{Pe}^4} \frac{\Omega_e B_w^2}{\gamma^2 B^2}$$

$$D_{pp} \approx \frac{3}{16} \frac{c^5}{\nu_{\perp} \nu^4} \frac{\omega_{UC}}{\Omega_e} \frac{D_0}{\mu_{\max}}$$

As $\mu_{\max} \to \infty$, $D_{\alpha\alpha} \to \infty$ and $D_{pp} \to 0$.

These results have been checked numerically:

Note: $\mu_{\max} \to \infty$ was taken with B_w fixed, so $E_w \to \infty$.

Holding E_w fixed instead gives $B_w \rightarrow 0$ and

$$D_{\alpha\alpha} \sim \frac{E_w^2}{\mu_{\max}}, \quad D_{\alpha p} \sim \frac{E_w^2}{\mu_{\max}^2}, \quad D_{pp} \sim \frac{E_w^2}{\mu_{\max}^3}$$

Then $D_{\alpha\alpha} \rightarrow 0$, not ∞ .

This may be a more realistic model as $\theta \rightarrow \theta_{RC}$.

If $\tan \alpha \ll \omega_{LC}/\Omega_e$, the small-arg. approx. for J_n leads to

$$D_{\alpha\alpha} \sim \frac{B_w^2}{\mu_{max}^3}, \qquad D_{pp} \sim \frac{B_w^2}{\mu_{max}^3}$$

or
 $D_{\alpha\alpha} \sim \frac{E_w^2}{\mu_{max}^3}, \qquad D_{pp} \sim \frac{E_w^2}{\mu_{max}^3}$
which both give $D_{\alpha\alpha} \rightarrow 0$ for highly oblique waves.

or

(Can redo all of the above using μ_{\parallel} instead of μ .)

This result has also been checked numerically.

 μ

Summary

D for highly oblique whistlers is different from moderately oblique. Analytical estimates show what to expect, and help with the full calcs.

 $D \rightarrow \infty$ vs. $D \rightarrow 0$? It depends on the model: Parameterize by B_w^2 or E_w^2 or S_w or ...? (Scale B_w by E_{em}/E_w ? Horne et al., JGR 2013) Limited by μ_{max} or $\mu_{\parallel max}$? Set by $T_{e\parallel}$ or something else? We're reaching the validity limits of cold plasma theory.

Other possible applications:

EMIC: $\mu \to \infty$ as $\omega \to \Omega_i$. MS: no RC, but θ and μ are large.