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Radiation belt electrons are well-described by

multidimensional quasi-linear diffusion:
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The D’s are largely driven by cyclotron-resonant

whistler-mode waves:

plasmaspheric hiss

chorus waves

magnetosonic waves

lightning-generated whistlers

Navy VLF transmitters

These waves ∼ Bw sin(k·x−ωt) are characterized by

amplitude, frequency ω, and wave vector k,

with wave normal angle θ (between k and B0).
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Typically, θ is small. But some chorus and hiss have
θ ∼ θRC, where µ = kc/ω → ∞.

chorus statistics
from THEMIS

[Li et al., JGR 2013]
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Dipole antennas in space (e.g., DSX) are also predicted

to radiate whistlers very near θRC.

[Wang and Bell, JGR 1972]

It has recently been suggested that D is “enhanced,”

though earlier analysis suggests D→ 0.
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The [Lyons 1974] QLT diffusion coefficient formulas are:
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wave power distribution
in (ω,θ)
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, and (ω,θ) are linked by the resonance condition.
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As θmax → θRC, µ → ∞, D→ ?

Not obvious.

Theory and numerics show that

for each n, Dn
αα and Dn

pp → 0

as θ → θRC [Albert, JGR, 2012].

But this isn’t the whole story.

Need to worry about
∞

∑
n=−∞

Dn

(as θ → θRC, the range of contributing n grows)

7



To study this, µ2 can be approximated by µ
2 =

ω2
pe

ω(Ωe cosθ −ω)
which is qualitatively similar near the RC.
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Then Γ =
ωΩe
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µ
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The change of vars leading to this also helps with the

full N(ω), giving large giving large speedup near θRC.
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This approximate N(ω) can also be written as
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where µG = µ(ω,θG).

Idea: use (ω,µ) instead of (ω,θ) as the main variables.

This replaces θmin < θ < θmax with µmin < µ < µmax.
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For large µ, resonant cosθ ≈ ω

Ωe
≈

√
n
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.

Then all the terms in D can be approximated, giving
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The range of n is restricted by ωLC, ωUC, µmin, µmax.

This is much simpler than the original expressions.
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More: the large-arg. approx. for Jn applies if tanα > ωUC/Ωe.

Then ∑n and
∫

dz can be done analytically, giving
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As µmax → ∞, Dαα → ∞ and Dpp → 0.
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These results have been checked numerically:
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Note: µmax → ∞ was taken with Bw fixed, so Ew → ∞.

Holding Ew fixed instead gives Bw → 0 and

Dαα ∼
E2

w
µmax

, Dα p ∼
E2

w
µ2

max
, Dpp ∼

E2
w

µ3
max

Then Dαα → 0, not ∞.

This may be a more realistic model as θ → θRC.
15



If tanα � ωLC/Ωe, the small-arg. approx. for Jn leads to
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which both give Dαα → 0 for highly oblique waves.

(Can redo all of the above using µ‖ instead of µ.)
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This result has also been checked numerically.
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Summary

D for highly oblique whistlers is different from moderately oblique.

Analytical estimates show what to expect, and help with the full calcs.

D→ ∞ vs. D→ 0 ? It depends on the model:

Parameterize by B2
w or E2

w or Sw or ...?

(Scale Bw by Eem/Ew? Horne et al., JGR 2013)

Limited by µmax or µ‖max? Set by Te‖ or something else?

We’re reaching the validity limits of cold plasma theory.

Other possible applications:

EMIC: µ → ∞ as ω →Ωi. MS: no RC, but θ and µ are large.
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