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A Geim et al, Nature (2013)

Van der Waals heterostructures

Atomically thin layers: Electrons exposed at interface

Van der Waals stacking: clean interface, no lattice matching requirement.



MoS2 NbSe2 TaS2 FeSe CrI3 …

MoS2 S S/M S/CDW S/S.C. S/MA

NbSe2 ME/S M M/CDW M/S.C M/MA

TaS2 CDW/S CDW/M CDW CDW/S.C CDW/
MA

FeSe S.C./S S.C./M S.C./CDW S.C. S.C./M
A

CrI3 MA/S MA/M MA/CDW MA/S.C MA

…

Tremendous new opportunities! 

MoS2
(semiconductor)

Van der Waals heterostructures
-- Novel materials and emerging phenomena

1T-TaS2
(CDW)

FeSe 
(superconductor)

• Integrating vastly different materials together:

2D semiconductors, metals, superconductors, magnet
(no constraint of lattice matching)

CrI3
(magnet)



Electrical Field

Field effect devices

Layer-Layer
interactions

Number of layers

Superlattice

Graphene/Boron Nitride 
heterostructure

Tunable band structure



Engineer correlated electron phenomena 
in 2D materials?



Mott insulator: Hubbard model

Two competing energies:
inter-site hopping t vs.  on-site repulsion U

Hubbard model:

(Kinetic energy) (Coulomb energy)

Strong correlation:

U  > W

Real space

One electron per unit cell.

t U



Mott insulator: Hubbard model

Two competing energies:
inter-site hopping t vs.  on-site repulsion U

Hubbard model:

(Kinetic energy) (Coulomb energy)

Strong correlation:

U  > W

Mott insulator

Interaction U

Mott gap opens at 1/2 filling.
Correlated phenomena. 

 ~ U - W

NiO, V2O3



Many mysteries around Mott insulator
Metal-Insulator transitions:   High Tc  superconductor:

Doped Mott insulator

Unconventional cooper pairs
Quantum critical point
Strange metal, quantum spin liquid …

Many outstanding questions after many decades!

Theoretically challenging.    Systematic experimental studies needed.

Challenging describe to the MIT region



Create model correlated systems in 2D

Strong correlation: Coulomb energy U > Bandwidth W
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Correlated 2D system:
Large effective mass + large lattice constant

A 2D crystal with lattice constant L:

~ 1 at  me= 1 m0 ,     L~ 1nm 
me= 0.1 m0 ,   L~ 10nm 



( U > W )

L ~ 15 nm
me ~ 0.1 m0

ABC trilayer graphene/hBN TMD heterostructure

L ~ 10 nm
me ~ 0.5 m0

Flatband engineering in 2D heterostructures
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 Tunable Mott insulator 
in TLG/hBN

 Signatures of 
superconductivity

 Correlated quantum 
transport
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Monolayer graphene

KK’

Linear band at low energy.
Zero mass like photons!
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ABC trilayer graphene: larger me

Large mass

ABA trilayer ABC trilayer

E ~ k3





Lui et al, Nature Physics 7, 944 (2011)

Trilayer graphene: tunable band gap



L ~ 15nm at zero twisting angle

hBN

Graphene

Moiré superlattice: large lattice constant



Band folding in periodic potential

1D free electron
Periodic potential of 

atomic lattice 
Periodic potential of 

superlattice
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Bandwidth W is much reduced by band folding of superlattice.
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Scanning near-field infrared nanoscopy.
Long Ju et al, Nature (2015).

Trilayer graphene/hBN heterostructure

L Wang, Science (2013). 



W ~ 20 meV
U ~ 20 meV

Significant electron and hole asymmetry

Hole band:
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W ~ 13 meV
U ~ 20 meV

U > W : Mott insulator at 1/2 and1/4 fillingHole band:
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Electrical control of the bandwidth
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W ~ 13 meV
U ~ 20 meV

U > W : Mott insulator at 1/2 and1/4 fillingHole band:

 = 20 meV

It’s a Mott insulator!
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Amazing tunable Mott insulator

Rxx ( 10 100k

doping

An ideal model system:  excellent control of both doping and bandwidth
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Doped Mott insulators - high Tc superconductor

Anti-Ferromagnetic 
Mott Insulator

Doped Mott insulator: superconductor



Where is superconductivity in TLG/hBN?

T = 5 K T = 0.05 K



Emerging superconductivity

Close to 1/4 filling, at D = 0.5 V/nm

Residue resistance may be due to non-ideal contact.



Superconductivity critical current

Close to 1/4 filling, at D = 0.5 V/nm

Nonlinear IV curve



Superconductivity suppression in magnetic field

Close to 1/4 filling, at D = 0.5 V/nm

Anomalous resistance peak at 
zero bias in in-plane magnetic field



Phase diagram of TLG superconductivity

1. Two superconducting domes near 1/4 filling.

2. Phase diagram can be obtained in one TLG/hBN sample.

1/4 filling

SC



D dependent phase diagram in TLG/hBN

7.7Rxx (k) 0.25

SC

MetalCorrelated
resistive state

Correlated
resistive state

Strongest Mott



Engineering correlation in 2D heterostructures

Trilayer graphene Magic angle twisted bilayer

L ~ 15 nm
me ~ 0.1m0

Strong hybridization 
+ 

large disperse

Correlated insulator and 
superconductivity

Large ࢋ materials 
+

Moiré

Correlated 2D 
system

A general route to strong 
correlation in 2D materials.

Y Cao et al. Nature (2018)

G Chen et al. Nature Physics (2019)
G Chen et al. arXiv:1901.04621 (2019)
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