

Tunable Correlated Phenomena in Trilayer Graphene on hBN Moiré Superlattice

Guorui Chen

Lawrence Berkeley National Laboratory Department of Physics, UC Berkeley

5/2/2019, Santa Fe

Van der Waals heterostructures

Atomically thin layers: Electrons exposed at interface

Van der Waals stacking: clean interface, no lattice matching requirement.

Van der Waals heterostructures

-- Novel materials and emerging phenomena

• Integrating vastly different materials together:

2D semiconductors, metals, superconductors, magnet (no constraint of lattice matching)

	MoS ₂	NbSe ₂	TaS ₂	FeSe	Crl3	
MoS ₂	S	S/M	S/CDW	S/S.C.	S/MA	
NbSe ₂	ME/S	М	M/CDW	M/S.C	M/MA	
TaS ₂	CDW/S	CDW/M	CDW	CDW/S.C	CDW/ MA	
FeSe	S.C./S	S.C./M	S.C./CDW	S.C.	S.C./M A	
Crl3	MA/S	MA/M	MA/CDW	MA/S.C	MA	

Tremendous new opportunities!

Tunable band structure

heterostructure

Engineer correlated electron phenomena in 2D materials?

Mott insulator: Hubbard model

Real space

One electron per unit cell.

Hubbard model:

$$\hat{H} = -t\sum_{\langle i,j
angle,\sigma}(\hat{c}^{\dagger}_{i,\sigma}\hat{c}_{j,\sigma}+\hat{c}^{\dagger}_{j,\sigma}\hat{c}_{i,\sigma}) + U\sum_{i=1}^{N}\hat{n}_{i\uparrow}\hat{n}_{i\downarrow}$$

Two competing energies:inter-site hopping t vs. on-site repulsion U(Kinetic energy)(Coulomb energy)

Strong correlation:

U > W

Mott insulator: Hubbard model

Many mysteries around Mott insulator

Metal-Insulator transitions:

High T_c superconductor: Doped Mott insulator

Challenging describe to the MIT region

Unconventional cooper pairs Quantum critical point Strange metal, quantum spin liquid ...

Many outstanding questions after many decades!

Theoretically challenging. Systematic experimental studies needed.

Create model correlated systems in 2D

Strong correlation: Coulomb energy U > Bandwidth W

A 2D crystal with lattice constant *L*:

$$U \sim \frac{e^2}{\varepsilon L} \qquad \qquad W \sim \frac{\hbar^2 k^2}{2m_e} \propto \frac{1}{m_e} \cdot \frac{1}{L^2}$$
$$\frac{U}{W} \propto m_e \cdot L$$

Correlated 2D system: Large effective mass + large lattice constant

$$\frac{U}{W}$$
 ~ 1 at m_e= 1 m₀, L~ 1nm
m_e= 0.1 m₀, L~ 10nm

Flatband engineering in 2D heterostructures (U>W)

ABC trilayer graphene/hBN

TMD heterostructure

L ~ 15 nm

 $m_{e} \sim 0.1 m_{0}$

Outline

Outline

Monolayer graphene

Linear band at low energy. Zero mass like photons!

ABC trilayer graphene: larger $m_{\rm e}$

Trilayer graphene: tunable band gap

Moiré superlattice: large lattice constant

L ~ 15nm at zero twisting angle

Band folding in periodic potential

U > W

Bandwidth *W* is much reduced by band folding of superlattice.

Trilayer graphene/hBN heterostructure

Berkeley

Transport in trilayer graphene/hBN heterostructure

 $\Delta = 0$

Hole band: W ~ 20 meV U ~ 20 meV

Electrical control of the bandwidth

 Δ = 20 meV

Hole band: W ~ 13 meV U ~ 20 meV

U > W: Mott insulator at 1/2 and 1/4 filling

It's a Mott insulator!

Outline

Amazing tunable Mott insulator

An ideal model system: excellent control of both doping and bandwidth

Outline

Doped Mott insulators - high T_c superconductor

Doped Mott insulator: superconductor

Where is superconductivity in TLG/hBN?

Emerging superconductivity

Close to 1/4 filling, at D = 0.5 V/nm

Residue resistance may be due to non-ideal contact.

Superconductivity critical current

Close to 1/4 filling, at D = 0.5 V/nm

Nonlinear IV curve

Superconductivity suppression in magnetic field

Close to 1/4 filling, at D = 0.5 V/nm

Anomalous resistance peak at zero bias in in-plane magnetic field

Phase diagram of TLG superconductivity

- 1. Two superconducting domes near 1/4 filling.
- 2. Phase diagram can be obtained in one TLG/hBN sample.

D dependent phase diagram in TLG/hBN

Engineering correlation in 2D heterostructures

correlation in 2D materials.

G Chen et al. arXiv:1901.04621 (2019)

Correlated insulator and superconductivity

Y Cao et al. Nature (2018)

Acknowledgement

<u>UC Berkeley</u> Lili Jiang Shuang Wu Patrick Gallagher Prof. Feng Wang

Fudan University Prof. Yuanbo Zhang

Stanford University Aaron Sharpe Eli Fox Ilan Rosen Prof. David Goldhaber-Gordon

Shanghai Jiao Tong University Bosai Lyu Hongyuan Li Prof. Zhiwen Shi

National Institute for Materials Science

<u>University of Seoul</u> Bheema Lingam Chittari Prof. Jeil Jung

Kenji Watanabe Takashi Taniguchi

Discussion with Mike Zaletal (Berkeley), Ehud Altman (Berkeley), Senthil (MIT) and Ashvin (Harvard).

Engineering correlation in 2D heterostructures

correlation in 2D materials.

G Chen et al. arXiv:1901.04621 (2019)

Correlated insulator and superconductivity

Y Cao et al. Nature (2018)

