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Goal of this Lecture Mini-Series

Accessible to broad audience.

— No prior knowledge of optimization required.
— Assume basic knowledge of multi-dimensional calculus.

Give overview of practical optimization algorithms for nonlinear
constrained optimization.

Concentrate on intuition of algorithmic ideas.

— No complicated proofs.
— Some “cheating” (ignoring some subtleties).

90 min reserved, but roughly targeting 60 min.

e | will make slides available after the lectures.
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Constrained Nonlinear Optimization Problems

min f(x) f:R" —R

XeRn )

s.t. ce(x) =0 ce :R"—RP
c(x)<0 c:R"—RY

e We assume that all functions are twice continuously
differentiable.

e Example applications:

Optimal operation of electricity or gas networks.
Optimal control of a chemical plant.

Transistor sizing in digital circuits.

Inverse problems (fit coefficients in PDESs).
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Book Recommendation

Numerical
Optimization
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Part 1 (Today+): Unconstrained Optimization

Optimality conditions for unconstrained optimization.

Basic algorithms:

— Gradient method

— Newton’s method

— Quasi-Newton methods

Strategies ensuring convergence:

— Line-search method
— Trust-region method

Will not cover stochastic gradient method (for machine learning
problems with large data sets).
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Later: Constrained Optimization

Optimality conditions for constrained optimization.

Solving quadratic programs

— with equality constraints
— with inequality constraints

Sequential Quadratic Programming (SQP) methods

Interior-point methods
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Unconstrained Optimization Problems

xrg]an” f(X)

e We assume that f is (twice) continuously differentiable.
e We deal with continuous variables in finite-dimensional space.

Examples:
¢ Nonlinear regression

— Fit model parameters to data.
¢ |nverse problems

— Fit PDE coefficients to observations.
— Determine initial conditions for weather prediction.
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Types of Minimizers

fip, 10

e Apoint x* € R" is a global minimizer of f, if f(x) > f(x*) for
all x e R".

e A point x* € R"is a local minimizer of f, if f(x) > f(x*) for
all x € N.(x*) = {x e R": [[x — x*|| < ¢} forsome ¢ > 0.

* The methods we will discuss try to find local minimizers.
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Main Tool: Taylor Expansions

(X +d) ~ f(X)+ F/(x) - d + 317(x) - d® + H"(%) - d® + ...

Example: f(x) = sin(x) with x = 0.
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Main Tool: Taylor Expansions

¢ Provide local models of functions around a reference point.
e Algorithms use them to figure out where to go next.

¢ Methods only need values and derivatives at specific points X.

¢ Do not need to assume particular representation of objective f.
— No analytical expression required.
— Could be result of complicated computational procedure.
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First-Order Taylor Expansion in Multiple

Dimensions

f(x+d)~ f(X)+VFfx)'d| Gradient: Vf(x) =

30
30
-

H
H

fix)
(xy

G

o ° \—f/’

303540 -
3 1520253 40 35 30 25 20 15 -
x 45 gpo0510 o > 10 05 00

Los Alamos National Laboratory UNCLASSIFIED Andreas Wachter | 11



UNCLASSIFIED

First-Order Optimality Conditions
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First-Order Optimality Conditions

f(x* +d) = f(x*) + VFf(x*)"d

Suppose x* is a local minimizer of f.
x* must be a minimizer along any direction d € R":

f(x* +t-d)~ g(t) .= f(x*)+ VFHx*)Td -t

So, t* = 0 must be a local minimizer of g(1).

From 1-dim calculus:
0=g'(t)=VFix*)"d

¢ Since this is true for every d € R", we must have Vf(x*) = 0.
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First-Order Optimality Conditions

Theorem (First-Order Necessary Condition)
Letf € C' and x* € R" be a local minimizer of f. Then

Vi(x*) = 0.

.....

Comments

e We call such a point a stationary point.

e This is not a sufficient condition.

¢ Also maximizers and saddle points are stationary points.
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Second-Order Optimality Conditions (1-dim)

iy

Theorem (Second Order Necessary Condition)
Letf € C? and x* € R be a local minimizer. Then

f(x*)=0 and f'(x*) > 0.

Theorem (Second Order Sufficient Condition)
Letf € C? and x* € R be such that

f(x*)=0 and f'(x*) > 0.

Then x* is a strict local minimizer.
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Second-Order Taylor Model in Higher

Dimensions

f(x + d) ~ (%) + Vi(x) d + 1d"V?f(x)d

Hessian matrix:

r O%f ?f 92f 7
dixf(x) 9X10% (x) - OX10Xn (x)
82f 82f Y
verg — | R ) ) mean()
azf. azf. . 82)‘.
L 0XnOx4 (x) OXnOXa (x) - X2 (x) ]

e If f € C?, then V?f(x) is symmetric.
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Second-Order Optimality Conditions

f(x* +d) = f(x*) + VI(x*)Td + 1d"V2f(x*)d

e [f x* is a local minimizer of f, then t* = 0 is a local minimizer of
fx* +t-d) = g(t) = f(x*) + VI(x*)Td -t + JdTV2f(x*)d -

forany d € R".
e This implies that for all d € R"™:

0=g'(0)=VFx*)Td
0 < g"(0) = d"V2f(x*)d

e So, Vi(x*) = 0 and V?f(x*) must be positive semi-definite.
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Second-Order Optimality Conditions (n-dim)

i ")

Theorem (Second Order Necessary Condition)
Let f € C? and x* € R" be a local minimizer. Then

VH(x*) =0 and V2f(x*) is positive semi-definite.
Theorem (Second Order Sufficient Condition)
Let f € C? and x* € R" be such that
Vi(x*) =0 and V?f(x*) is positive definite.

Then x* is a strict local minimizer.
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Special Case: Convex Functions

X A+ (1 =Ny

Definition (Convex Function)
A function f : R" — R is convex if

FOx + (1= \)y) < M) + (1= MA(y)]

for all points x,y € R” and all A € (0, 1).
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Special Case: Convex Problems

¢ All stationary points of a convex function are global minimizers!

e fis convex if and only if V2f(x) is positive semi-definite
everywhere.

e Recall: For symmetric matrix Q

Q is positive semi-definite [definite]

0

All eigenvalues of Q are > 0 [> 0]

e For convex quadratic function f(x) = ¢ + g"x + x” Qx:

Vix)=g+2x* =0 — x*=-1Q g

where Q € R™" is symmetric positive definite.
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First Algorithm: Going Downhill

Lt

-2, .

35 40
R 2.02.53.0
1 45 o050

f(xx 4+ d) ~ f(xk) + VF(xx)"d

e To go downhill, choose direction d such that V£(x,)"d < 0.
e d forms an acute angle with —Vf(x).
e Steepest descent direction: d = —Vf(x).

Los Alamos National Laboratory UNCLASSIFIED Andreas Wachter | 21



UNCLASSIFIED

Basic Gradient Method

Given: Stopping tolerance ¢ > 0.

1: Choose starting point xo € R"” and set k < 0.
: while ||Vf(xx)|| > ¢ do
3 Compute gradient step

N

| d = —VF(x). |

4: Take step

‘Xk+1 = Xk + dk-‘

a

Increase iteration counter k «— k + 1.
: end while

]
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Example Problem: Rosenbrock Function

f(xX)=2-(xa — x2)2 + (x4 — 1)? x = (1,07
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Step Size Parameter

Problem:
® di = —VIf(xx) gives a direction.
e But its length might be inappropriate to define a step.

Remedy:
¢ Introduce a step size parameter o > 0:

Xkiq = Xk + - dg |
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Gradient Method with Step Size

e Given:

— Stopping tolerance € > 0
— Step size parameter a > 0.

—_

: Choose starting point xy € R"” and set k < 0.
: while ||[Vf(xy)| > ¢ do
Compute gradient step

w N

| d = —VF(x). |

4: Take step

‘XK—H :Xk—l-()c'dk.‘

5: Increase iteration counter k < k + 1.
6: end while
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Convergence of Gradient Descent Method

¢ Choice of step size parameter «:

— Gradient method does not converge if « is too large.
— Can be tricky to tune.
— Converges if o € (0, 2), where L is Lipschitz constant of Vf(x).

® (Slow) linear rate of convergence:
f(Xki1) — f(x*) < c- (f(xx) — f(x¥))
for a constant c € (0, 1).

e Maybe we can do better if we utilize second-order Taylor
expansion?
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A Second-Order Method

e At an iterate xi, consider quadratic Taylor model:

Ok(xk + d) = f(xi) + VI(x)d + 1dTVf(x)d

Given: Stopping tolerance e > 0.
1: Choose starting point xo € R"” and set k < 0.
2: while ||Vf(xk)|| > ¢ do
3: Compute the minimizer dj of

min qk(xi + d).
4: Take step
Xk1 = X + k.

5: Increase iteration counter k < k + 1.
6: end while
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Second-Order Steps

q(xx + d) = f(xi) + VFH(x) T d + FdTV2f(xk)d

What is the minimizer of qx(xx + d)?
Use formula for quadratic functions:

dk = —[V2f(x0)] " VF(x)

This assumes that V2f(x,) is positive definite.
Computationally, NEVER compute the inverse!
Instead solve the linear system

V2f(xk) - d = —=VF(xk).

e Can be done for very large problems if V2f(xy) is structured.
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Alternative: Newton’s Method

¢ Recall: First-order optimality condition: Vf(x*) = 0.
e This is a nonlinear system of equations:

F(x*) =0 F:R"— R"

e Newton’s method is very efficient for solving those.

Los Alamos National Laboratory
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lllustration of Newton’s Method
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Newton’s Method For System of Equations

F(x*)=0
¢ First-order Taylor model:
F(xx 4+ d) = F(x¢) + VF(x)Td

where VF(x)" is Jacobian matrix of F.
e Compute step as root of linear model:

F(xk) + VF(x) dx =0
e So

dk = —[VF(x) "1 F(x0)
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Newton’s Method For Stationary Point

First-order optimality condition:

|F(x") = Vi(x") = 0

Newton step for F(x*) = 0:

dk = —[VF(x) ] F(x)

Newton step for Vf(x*) = 0:

dk = —[V*f(x0)] VF(x)

This is the second-order step from earlier!
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Two Perspectives

¢ Root-finding problem:

— We can use well-established Newton’s method and theory.
— Fast local quadratic convergence rate:
X1 = X" < M- [|x — x*|2
for some constant M > 0, starting xo close to x*.
— “Double the number of accurate digits in every iteration”
¢ Model minimization:

min q(xk + d) = f(x) + V(xk) d + 3d"V2f(x)d

— We keep in mind that we are not only looking for stationary points.
— We know we need to be careful if model does not have minimizer.
® Check if V2f(xx) is positive definite.
® Change steps to avoid moving towards a non-minimizer.
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Generalized Model

e Quadratic model:

Qk(xk + d) = f(xi) + VI(x)"d + 1d" Bed

where By is some symmetric positive definite matrix.
e Minimizer:
e = —[Bx] ™" VF(x).
¢ Variants:
Newton’s method: By = V2f(xk)
Gradient method: By = 1/
Other methods: By positive definite

e |s there a fast method that only uses gradient information?
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Secant Method in 1-Dim

f(x)=0 f:R—R

Newton step
d = — " ()" (x)
Suppose ’(xy) cannot be evaluated. Can we estimate it?

Derivative ; p,
f//(X) — lim (X) B (y)
y—X X—Yy

Let’s suppose we have x,, xx_1,...and '(xg), f'(xx_1), .. ..
In step computation, replace

fl/(Xk) with f/(Xk) 7 f/(Xk—1)
Xk — Xk—1
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Secant Method for n-Dim

e Secant step for f'(x*) =0

/ o
di =—B,'f'(xk)  where f"(x) =~ By = F(Xk) = '(Xi-1)
Xk — Xk—1

¢ Note: By satisfies the secant condition:
Bi(xk — xk—1) = '(xk) — '(Xk—1)

e \What can we do in n dimensions?

e Choose a matrix B, that satisfies the secant condition and
compute step
dk = —B,'VF(x)
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Secant Condition in Second-Order Method

¢ Quadratic model in algorithm:

k(X + d) = f(x¢) + Vi(x) d + 1d7 Bed

We would like to mimic Newton’s method: By ~ V2f(xy)
The Hessian approximation should satisfy the secant condition:

| B —X-1) = V() = V) |

There are @ independent entries in the symmetric matrix By.

The secant condition has only n equations.

For n > 1, By is not uniquely defined.
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Quasi-Newton Methods

k(X + d) = f(xk) + VF(x)"d + 1d" Bed

¢ |dea: Generate a sequence By, By, . .. of Hessian approximations
satisfying secant condition.

Given: Stopping tolerance ¢ > 0.

1: Choose xy and By, and set k < 0.

2: while ||Vf(xk)|| > ¢ do

3 Compute the minimizer dj of gx(xx + d).
4: Take step xx1 = Xk + di.

5 Compute By 1 from some update formula.
6 Increase iteration counter k < k + 1.

7: end while
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Quasi-Newton Update Formula

e Want By ¢ to satisfy secant condition:

By 1 Sk = Yk
where Sk = Xk4+1 — Xk and Yk = Vf(Xk_H) — Vf(Xk).
e Suppose we believe that By is a good approximation of Hessian.

¢ |dea: Choose symmetric matrix B that is closest to Bx and has
desired properties

s, 18 = Bl

st. B-sx=y, B=B"

e A variation of this leads to the BFGS formula.
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BFGS Formula

BiskSi Bk vy,

k+1 — - T T
B 1 Bk
Sy Bk Sk Yy Sk

e Named after Broyden, Fletcher, Goldfarb, and Shanno.

Properties:

* By .1 satisfies secant condition.

¢ |f B is symmetric, then By, 1 is symmetric.

* If By is pos. def. and s/ yx > 0, then By 4 is pos. def.

* In practice, use version that approximates Hy ~ [V2f(xx)]~".
— Then no need to solve linear system, just compute dx = —H Vf(xk).
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BFGS Formula

BiskSI Bk yky,!

Byy1 = By —
ST Bksk Y, s«

Most-used quasi-Newton update.

* Requires same amount of derivative evaluations as gradient
method.

e Converges typically much faster than gradient method.

— Can prove local superlinear convergence under (strong)
assumptions.
X =X

im —— =0
k—oo ||Xk — X*||

® B, is a dense matrix, not suitable for large n.
e There is a “limited-memory” version (L-BFGS) for large n.
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Our Algorithm So Far

Given: Stopping tolerance ¢ > 0.

1: Choose xp and set k + 0.

2: while ||Vf(xk)|| > ¢ do

3 Compute or update By.

4. Compute step dx = —B, 'Vf(x).

5 Take step X1 = Xk + dk.
6 Increase iteration counter k < k + 1.
7: end while

Concerns:
® Sometimes, this basic algorithm fails to converge.
® The iterates might cycle or diverge.
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