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Goal of this Lecture Mini-Series

• Accessible to broad audience.
– No prior knowledge of optimization required.
– Assume basic knowledge of multi-dimensional calculus.

• Give overview of practical optimization algorithms for nonlinear
constrained optimization.

• Concentrate on intuition of algorithmic ideas.
– No complicated proofs.
– Some “cheating” (ignoring some subtleties).

• 90 min reserved, but roughly targeting 60 min.

• I will make slides available after the lectures.
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Constrained Nonlinear Optimization Problems

min
x∈Rn

f (x)

s.t. cE(x) = 0
cI(x) ≤ 0

f : Rn −→ R
cE : Rn −→ Rp

cI : Rn −→ Rq

• We assume that all functions are twice continuously
differentiable.

• Example applications:
– Optimal operation of electricity or gas networks.
– Optimal control of a chemical plant.
– Transistor sizing in digital circuits.
– Inverse problems (fit coefficients in PDEs).
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Book Recommendation

Los Alamos National Laboratory UNCLASSIFIED Andreas Wächter | 4
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Part 1 (Today+): Unconstrained Optimization

• Optimality conditions for unconstrained optimization.

• Basic algorithms:
– Gradient method
– Newton’s method
– Quasi-Newton methods

• Strategies ensuring convergence:
– Line-search method
– Trust-region method

• Will not cover stochastic gradient method (for machine learning
problems with large data sets).
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UNCLASSIFIED

Later: Constrained Optimization

• Optimality conditions for constrained optimization.

• Solving quadratic programs
– with equality constraints
– with inequality constraints

• Sequential Quadratic Programming (SQP) methods

• Interior-point methods
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Unconstrained Optimization Problems

min
x∈Rn

f (x)

• We assume that f is (twice) continuously differentiable.
• We deal with continuous variables in finite-dimensional space.

Examples:
• Nonlinear regression

– Fit model parameters to data.
• Inverse problems

– Fit PDE coefficients to observations.
– Determine initial conditions for weather prediction.
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Types of Minimizers

min
x∈Rn

f (x)

• A point x∗ ∈ Rn is a global minimizer of f , if f (x) ≥ f (x∗) for
all x ∈ Rn.

• A point x∗ ∈ Rn is a local minimizer of f , if f (x) ≥ f (x∗) for
all x ∈ N�(x∗) = {x ∈ Rn : �x − x∗� ≤ �} for some � > 0.

• The methods we will discuss try to find local minimizers.
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Main Tool: Taylor Expansions

f (x̄ + d) ≈ f (x̄) + f �(x̄) · d + 1
2 f ��(x̄) · d2 + 1

3! f
���(x̄) · d3 + . . .

Example: f (x) = sin(x) with x̄ = 0.

Los Alamos National Laboratory UNCLASSIFIED Andreas Wächter | 9
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Main Tool: Taylor Expansions

• Provide local models of functions around a reference point.
• Algorithms use them to figure out where to go next.

• Methods only need values and derivatives at specific points x̄ .
• Do not need to assume particular representation of objective f .

– No analytical expression required.
– Could be result of complicated computational procedure.
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First-Order Taylor Expansion in Multiple
Dimensions

f (x̄ + d) ≈ f (x̄) +∇f (x̄)T d Gradient: ∇f (x) =




∂f
∂x1

(x)
∂f
∂x2

(x)
...

∂f
∂xn

(x)



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First-Order Optimality Conditions
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First-Order Optimality Conditions

f (x∗ + d) ≈ f (x∗) +∇f (x∗)T d

• Suppose x∗ is a local minimizer of f .
• x∗ must be a minimizer along any direction d ∈ Rn:

f (x∗ + t · d) ≈ g(t) := f (x∗) +∇f (x∗)T d · t

• So, t∗ = 0 must be a local minimizer of g(t).
• From 1-dim calculus:

0 = g�(t) = ∇f (x∗)T d

• Since this is true for every d ∈ Rn, we must have ∇f (x∗) = 0.
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First-Order Optimality Conditions

Theorem (First-Order Necessary Condition)
Let f ∈ C1 and x∗ ∈ Rn be a local minimizer of f . Then

∇f (x∗) = 0.

Comments
• We call such a point a stationary point.
• This is not a sufficient condition.
• Also maximizers and saddle points are stationary points.
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Second-Order Optimality Conditions (1-dim)

min
x∈R

f (x)

Theorem (Second Order Necessary Condition)
Let f ∈ C2 and x∗ ∈ R be a local minimizer. Then

f �(x∗) = 0 and f ��(x∗) ≥ 0.

Theorem (Second Order Sufficient Condition)
Let f ∈ C2 and x∗ ∈ R be such that

f �(x∗) = 0 and f ��(x∗) > 0.

Then x∗ is a strict local minimizer.
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Second-Order Taylor Model in Higher
Dimensions

f (x̄ + d) ≈ f (x̄) +∇f (x̄)T d + 1
2dT∇2f (x̄)d

Hessian matrix:

∇2f (x) =




∂2f
∂x2

1
(x) ∂2f

∂x1∂x2
(x) · · · ∂2f

∂x1∂xn
(x)

∂2f
∂x2∂x1

(x) ∂2f
∂x2

2
(x) · · · ∂2f

∂x2∂xn
(x)

...
...

. . .
...

∂2f
∂xn∂x1

(x) ∂2f
∂xn∂x2

(x) · · · ∂2f
∂x2

n
(x)




• If f ∈ C2, then ∇2f (x) is symmetric.
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Second-Order Optimality Conditions

f (x∗ + d) ≈ f (x∗) +∇f (x∗)T d + 1
2dT∇2f (x∗)d

• If x∗ is a local minimizer of f , then t∗ = 0 is a local minimizer of

f (x∗ + t · d) ≈ g(t) = f (x∗) +∇f (x∗)T d · t + 1
2dT∇2f (x∗)d · t2

for any d ∈ Rn.
• This implies that for all d ∈ Rn:

0 = g�(0) = ∇f (x∗)T d

0 ≤ g��(0) = dT∇2f (x∗)d

• So, ∇f (x∗) = 0 and ∇2f (x∗) must be positive semi-definite.
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Second-Order Optimality Conditions (n-dim)

min
x∈Rn

f (x)

Theorem (Second Order Necessary Condition)
Let f ∈ C2 and x∗ ∈ Rn be a local minimizer. Then

∇f (x∗) = 0 and ∇2f (x∗) is positive semi-definite.

Theorem (Second Order Sufficient Condition)
Let f ∈ C2 and x∗ ∈ Rn be such that

∇f (x∗) = 0 and ∇2f (x∗) is positive definite.

Then x∗ is a strict local minimizer.
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Special Case: Convex Functions

f (x)

x y
λx + (1 − λ)y

Definition (Convex Function)
A function f : Rn −→ R is convex if

f (λx + (1 − λ)y) ≤ λf (x) + (1 − λ)f (y)

for all points x , y ∈ Rn and all λ ∈ (0, 1).
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Special Case: Convex Problems

• All stationary points of a convex function are global minimizers!
• f is convex if and only if ∇2f (x) is positive semi-definite

everywhere.

• Recall: For symmetric matrix Q

Q is positive semi-definite [definite]
�

All eigenvalues of Q are ≥ 0 [> 0]

• For convex quadratic function f (x) = c + gT x + xT Qx :

∇f (x∗) = g + 2Qx∗ = 0 =⇒ x∗ = −1
2Q−1g

where Q ∈ Rn×n is symmetric positive definite.
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First Algorithm: Going Downhill

f (xk + d) ≈ f (xk ) +∇f (xk )
T d

• To go downhill, choose direction d such that ∇f (xk )
T d < 0.

• d forms an acute angle with −∇f (xk ).
• Steepest descent direction: d = −∇f (xk ).
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Basic Gradient Method

Given: Stopping tolerance � > 0.
1: Choose starting point x0 ∈ Rn and set k ← 0.
2: while �∇f (xk )� > � do
3: Compute gradient step

dk = −∇f (xk ).

4: Take step
xk+1 = xk + dk .

5: Increase iteration counter k ← k + 1.
6: end while

Los Alamos National Laboratory UNCLASSIFIED Andreas Wächter | 22
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Example Problem: Rosenbrock Function

f (x) = 2 · (x2 − x2
1 )

2 + (x1 − 1)2 x∗ = (1, 1)T
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Step Size Parameter

Problem:
• dk = −∇f (xk ) gives a direction.
• But its length might be inappropriate to define a step.

Remedy:
• Introduce a step size parameter α > 0:

xk+1 = xk + α · dk .
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Gradient Method with Step Size

• Given:
– Stopping tolerance � > 0
– Step size parameter α > 0.

1: Choose starting point x0 ∈ Rn and set k ← 0.
2: while �∇f (xk )� > � do
3: Compute gradient step

dk = −∇f (xk ).

4: Take step
xk+1 = xk + α · dk .

5: Increase iteration counter k ← k + 1.
6: end while
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Convergence of Gradient Descent Method

• Choice of step size parameter α:
– Gradient method does not converge if α is too large.
– Can be tricky to tune.
– Converges if α ∈ (0, 2

L ), where L is Lipschitz constant of ∇f (x).

• (Slow) linear rate of convergence:

f (xk+1)− f (x∗) ≤ c · (f (xk )− f (x∗))

for a constant c ∈ (0, 1).

• Maybe we can do better if we utilize second-order Taylor
expansion?
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A Second-Order Method

• At an iterate xk , consider quadratic Taylor model:

qk (xk + d) = f (xk ) +∇f (xk )
T d + 1

2dT∇2f (xk )d

Given: Stopping tolerance � > 0.
1: Choose starting point x0 ∈ Rn and set k ← 0.
2: while �∇f (xk )� > � do
3: Compute the minimizer dk of

min
d∈Rn

qk (xk + d).
4: Take step

xk+1 = xk + dk .

5: Increase iteration counter k ← k + 1.
6: end while
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Second-Order Steps

q(xk + d) = f (xk ) +∇f (xk )
T d + 1

2dT∇2f (xk )d

• What is the minimizer of qk (xk + d)?
• Use formula for quadratic functions:

dk = −[∇2f (xk )]
−1∇f (xk )

• This assumes that ∇2f (xk ) is positive definite.
• Computationally, NEVER compute the inverse!
• Instead solve the linear system

∇2f (xk ) · d = −∇f (xk ).

• Can be done for very large problems if ∇2f (xk ) is structured.
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Alternative: Newton’s Method

• Recall: First-order optimality condition: ∇f (x∗) = 0.
• This is a nonlinear system of equations:

F (x∗) = 0 F : Rn −→ Rn

• Newton’s method is very efficient for solving those.
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Illustration of Newton’s Method
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Newton’s Method For System of Equations

F (x∗) = 0

• First-order Taylor model:

F (xk + d) ≈ F (xk ) +∇F (xk )
T d

where ∇F (xk )
T is Jacobian matrix of F .

• Compute step as root of linear model:

F (xk ) +∇F (xk )
T dk = 0

• So
dk = −[∇F (xk )

T ]−1F (xk )
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Newton’s Method For Stationary Point

• First-order optimality condition:

F (x∗) = ∇f (x∗) = 0

• Newton step for F (x∗) = 0:

dk = −[∇F (xk )
T ]−1F (xk )

• Newton step for ∇f (x∗) = 0:

dk = −[∇2f (xk )]
−1∇f (xk )

• This is the second-order step from earlier!
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Two Perspectives

• Root-finding problem:
– We can use well-established Newton’s method and theory.
– Fast local quadratic convergence rate:

�xk+1 − x∗� ≤ M · �xk − x∗�2

for some constant M > 0, starting x0 close to x∗.
– “Double the number of accurate digits in every iteration”

• Model minimization:

min q(xk + d) = f (xk ) +∇f (xk )
T d + 1

2dT∇2f (xk )d

– We keep in mind that we are not only looking for stationary points.
– We know we need to be careful if model does not have minimizer.

• Check if ∇2f (xk ) is positive definite.
• Change steps to avoid moving towards a non-minimizer.
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Generalized Model

• Quadratic model:

qk (xk + d) = f (xk ) +∇f (xk )
T d + 1

2dT Bkd

where Bk is some symmetric positive definite matrix.
• Minimizer:

dk = −[Bk ]
−1 ·∇f (xk ).

• Variants:
Newton’s method: Bk = ∇2f (xk )

Gradient method: Bk = 1
α I

Other methods: Bk positive definite

• Is there a fast method that only uses gradient information?
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Secant Method in 1-Dim

f �(x∗) = 0 f : R −→ R

• Newton step
dk = −f ��(xk )

−1f �(xk )

• Suppose f ��(xk ) cannot be evaluated. Can we estimate it?

• Derivative

f ��(x) = lim
y→x

f �(x)− f �(y)
x − y

• Let’s suppose we have xk , xk−1, . . . and f �(xk ), f �(xk−1), . . ..
• In step computation, replace

f ��(xk ) with
f �(xk )− f �(xk−1)

xk − xk−1
.
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Secant Method for n-Dim

• Secant step for f �(x∗) = 0

dk = −B−1
k f �(xk ) where f ��(xk ) ≈ Bk =

f �(xk )− f �(xk−1)

xk − xk−1

• Note: Bk satisfies the secant condition:

Bk (xk − xk−1) = f �(xk )− f �(xk−1)

• What can we do in n dimensions?

• Choose a matrix Bk that satisfies the secant condition and
compute step

dk = −B−1
k ∇f (xk )
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Secant Condition in Second-Order Method

• Quadratic model in algorithm:

qk (xk + d) = f (xk ) +∇f (xk )
T d + 1

2dT Bkd

• We would like to mimic Newton’s method: Bk ≈ ∇2f (xk )

• The Hessian approximation should satisfy the secant condition:

Bk (xk − xk−1) = ∇f (xk )−∇f (xk−1)

• There are n(n+1)
2 independent entries in the symmetric matrix Bk .

• The secant condition has only n equations.
• For n > 1, Bk is not uniquely defined.
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Quasi-Newton Methods

qk (xk + d) = f (xk ) +∇f (xk )
T d + 1

2dT Bkd

• Idea: Generate a sequence B0,B1, . . . of Hessian approximations
satisfying secant condition.

Given: Stopping tolerance � > 0.
1: Choose x0 and B0, and set k ← 0.
2: while �∇f (xk )� > � do
3: Compute the minimizer dk of qk (xk + d).
4: Take step xk+1 = xk + dk .
5: Compute Bk+1 from some update formula.
6: Increase iteration counter k ← k + 1.
7: end while
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UNCLASSIFIED

Quasi-Newton Update Formula

• Want Bk+1 to satisfy secant condition:

Bk+1 · sk = yk

where sk = xk+1 − xk and yk = ∇f (xk+1)−∇f (xk ).
• Suppose we believe that Bk is a good approximation of Hessian.
• Idea: Choose symmetric matrix B that is closest to Bk and has

desired properties

min
B∈Rn×n

�B − Bk�

s.t. B · sk = yk , B = BT

• A variation of this leads to the BFGS formula.
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BFGS Formula

Bk+1 = Bk − BksksT
k Bk

sT
k Bksk

+
ykyT

k

yT
k sk

• Named after Broyden, Fletcher, Goldfarb, and Shanno.

Properties:
• Bk+1 satisfies secant condition.
• If Bk is symmetric, then Bk+1 is symmetric.
• If Bk is pos. def. and sT

k yk > 0, then Bk+1 is pos. def.
• In practice, use version that approximates Hk ≈ [∇2f (xk )]

−1.
– Then no need to solve linear system, just compute dk = −Hk∇f (xk ).
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BFGS Formula

Bk+1 = Bk − BksksT
k Bk

sT
k Bksk

+
ykyT

k

yT
k sk

• Most-used quasi-Newton update.
• Requires same amount of derivative evaluations as gradient

method.
• Converges typically much faster than gradient method.

– Can prove local superlinear convergence under (strong)
assumptions.

lim
k→∞

�xk+1 − x∗�
�xk − x∗� = 0

• Bk is a dense matrix, not suitable for large n.
• There is a “limited-memory” version (L-BFGS) for large n.
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Our Algorithm So Far

Given: Stopping tolerance � > 0.
1: Choose x0 and set k ← 0.
2: while �∇f (xk )� > � do
3: Compute or update Bk .
4: Compute step dk = −B−1

k ∇f (xk ).
5: Take step xk+1 = xk + dk .
6: Increase iteration counter k ← k + 1.
7: end while

Concerns:
• Sometimes, this basic algorithm fails to converge.
• The iterates might cycle or diverge.
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