Jet and heavy-flavor measurements in pp collisions with ALICE

James Mulligan for the ALICE Collaboration

Santa Fe Jets and Heavy Flavor Workshop Feb 3 2020

Jets and heavy flavor in pp collisions

A landscape to test our fundamental understanding of QCD

Constrain FFs and small-x PDFs

Constrain non-perturbative effects: Hadronization

Reference for heavy-ion collisions: Which observables are under control in pp?

effects: Hadronization, UE

Constrain PDFs, α_{c}

Jets in ALICE

ALICE reconstructs jets at mid-rapidity ($|\eta| < 0.9$) with a high-precision tracking system (ITS+TPC) and EMCal

Charged particle jets

- Pro: High-precision spatial resolution to resolve particles; Experimentally simpler
- Con: Additional modeling to compare to theory

Full jets (charged tracks + EMCal π^0 , γ)

- Pro: Direct comparison to theory
- Con: Significant experimental complication;
 Limited EMCal coverage

EMCal φ acceptance: 107°

ALICE is very good for:

- Jet substructure
- Low- p_T tracks: 150 MeV/c
- Particle Identification

ALICE is not so good for:

- High statistics
- High $p_T > \sim 100 \text{ GeV}/c$
- Jets at forward/backward rapidity

Hadronization

The jet cross-section at different *R* can constrain the contributions from:

James Mulligan, UC Berkeley

2020 Santa Fe Jets and Heavy Flavor Workshop

James Mulligan, UC Berkeley

2020 Santa Fe Jets and Heavy Flavor Workshop

7

James Mulligan, UC Berkeley

Inclusive jet cross-section

New high- $p_{\rm T}$ reach for ALICE!

Enabled by EMCal jet trigger and validation of high- $p_{\rm T}$ tracking performance

2020 Santa Fe Jets and Heavy Flavor Workshop

arXiv:1909.09718

The jet cross-section at different R can constrain the contributions from:

ALI-DER-342244

Inclusive jet cross-section ratio

arXiv:1909.09718

The jet cross-section at different R can constrain the contributions from:

ALI-DER-342244

Inclusive jet cross-section ratio

arXiv:1909.09718

The jet cross-section at different *R* can constrain the contributions from:

Inclusive jet cross-section ratio

arXiv:1909.09718

The jet cross-section at different *R* can constrain the contributions from:

Systematic uncertainties in analytical calculation do not cancel... driven by sensitivity to non-perturbative scale. Can it be improved?

Groomed jet substructure

Jet reclustering

Recluster jet constituents to identify jet features (Lund plane, subjets, etc.)

Jet grooming

Preferentially remove non-perturbative contributions, NGLs Tag hard splitting

Well-controlled comparisons to pQCD calculations

Groomed jet radius

Goals of pp measurement

- 1. Test NLL pQCD calculations and role of non-perturbative effects Kang, Lee, Liu, Ringer ATLAS 1912.09837
- 2. Serve as baseline for Pb-Pb Ringer, Xiao, Yuan measurements 1907.12541

James Mulligan, UC Berkeley

2020 Santa Fe Jets and Heavy Flavor Workshop

Groomed jet radius

James Mulligan, UC Berkeley

2020 Santa Fe Jets and Heavy Flavor Workshop

Groomed jet momentum fraction

Goals of pp measurement

- 1. Test perturbative accuracy: z_g has only been calculated to LL
- 2. Serve as baseline for Pb—Pb measurements ALICE 1905.02512 CMS PRL 120, 142302 (2018)

Groomed jet momentum fraction

Heavy flavor in ALICE

ALICE reconstructs heavy-flavor several ways:

• Hadronic charm decays at mid-rapidity: Tracking system (ITS+TPC), TOF

Direct reconstruction of prompt and non-prompt open charm using Topology, PID, Invariant mass

 Semi-leptonic charm/beauty decays at mid-rapidity (electron) and forward rapidity (muon): Tracking system (ITS+TPC), TOF, EMCal, muon spectrometer

Inclusive or exclusive production

 Quarkonia at mid-rapidity (electrons) or forward rapidity (muons)

> Prompt and non-prompt at mid-rapidity Inclusive at forward rapidity

ALICE is very good for:

- Low- $p_{\rm T}$ open heavy flavor and quarkonium
- Vertexing, PID; Muon arm

ALICE is not so good for:

• High statistics (high- $p_{\rm T}$)

Heavy-flavor jets

 D^0 -tagged jets

D^0 reconstructed from hadronic decay and clustered in charged jet

Need more precise predictions!

b-tagged jets

Dead cone

DELPHI-2004-037 CONF 712

Dead cone in ALICE

 $\ln(k_{\uparrow})$

ALI-PREL-339746

Analysis strategy: Re-cluster jets and apply $k_{\rm T}$ cut to remove hadronization/UE/decay contamination in pp collisions L. Cunqueiro, M. Ploskon PRD 99, 074027 Jet substructure of D^0 -tagged jets Inclusive D^0 θ (rad) θ (rad) 0.37 0.30 0.25 0.20 0.17 0.14 0.11 0.09 0.07 0.06 0.05 0.37 0.30 0.25 0.20 0.17 0.14 0.11 0.09 0.07 0.06 0.05 ×10⁻³ ×10⁻³ $\ln(k_{\uparrow})$ $5 < p_{T i a}^{ch}$ ALICE Preliminary < 50 GeV/c $2 < p_{_{\rm T,D}} < 36 \; {\rm GeV}/c$ ALICE Preliminary 8 pp √s = 13 TeV $5 < p_{T,iet}^{ch} < 50 \text{ GeV}/c$ pp √s = 13 TeV charged jets, anti- k_{T} , R=0.4 D^0 in charged jets, anti- k_T , R=0.43 $|\eta_{\rm lab}| < 0.5$ $|\eta_{\rm lab}| < 0.5$ side-band subtracted 2 6 N. Zardoshti 0 Quark Matter $= 2 * \Lambda_{\text{OCD}} = 400 \text{ MeV}/c \ln(k_{\text{T}}) = -0.92$ 4 2019 3 2

ALI-PREL-339786

2.4

2.6

2.8

 $\ln(1/\theta)$

3

2.2 2.4 2.6 2.8 3

 $\ln(1/\theta)$

0

Suppression of small-angle splittings in D^0 -tagged jets relative to inclusive jets

First direct measurement of the dead cone effect in pp collisions

Suppression increases as $k_{\rm T}$ cut increases: Removal of contamination

James Mulligan, UC Berkeley

Dead cone in ALICE

Results are described reasonably well by PYTHIA6 at detector-level

Quarkonium: J/ψ

Production of $c\overline{c}$: perturbative Evolution of $c\overline{c} \rightarrow J/\psi$: non-perturbative

NRQCD approach: Combine perturbative expansion with Long-Distance Matrix Elements (LDME) extracted from data

Challenge: Describe both production cross-section and polarization

Remains an open question...

ALICE EPJ C78 (2018) 7, 562 CMS PLB 727 (2013) LHCb EPJ C73 (2013) 11, 2631

. . .

Prompt J/ψ production: Can be directly compared to theoretical models

NRQCD-based models describe the data at mid-rapidity — but uncertainties are large!

Quarkonium: J/ψ

Prompt J/ψ production: Can be directly compared to theoretical models

NRQCD-based models describe the data at mid-rapidity — but uncertainties are large!

FONLL successfully describes the non-prompt component

Quarkonium: J/ψ

Inclusive J/ψ production: Use FONLL to model B feed-down contribution

NRQCD-based models describe the data at both mid-rapidity and forward rapidity — but uncertainties are large!

2020 Santa Fe Jets and Heavy Flavor Workshop

Summary

ALICE has a rich jet and heavy-flavor program in pp collisions

Inclusive jets

R-dependence measured at low- $p_{\rm T}$ Extension of $p_{\rm T}$ reach to 300 GeV/*c*

Groomed jet substructure

Soft Drop θ_g, z_g measured as a function of grooming parameter β

Heavy-flavor jets

D-jets and b-jets First direct measurement of dead cone effect in pp collisions

 J/ψ production: mid- and forward-rapidity, prompt and non-prompt

And many more not covered!