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Autonomous Coordination of Distributed Energy Resources (DERs) 

Scalable Data-Driven Control and Optimization



Electricity Grid Transportation Manufacturing Buildings

Motivation: Complex Human-Cyber-Physical Systems
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Unknown physical system models Hard-to-model human behaviors+



Motivation: Complex Human-Cyber-Physical Systems
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Data-Driven / Model-Free Control and Optimization

DER power injections 𝒑 Nodal voltages 𝒗 ∈ [𝒗, 𝒗]
𝒗 = 𝒇(𝒑)

DER (Distributed Energy Resource)

Explosion of Data: real-time measurements / observations 

Unknown physical system models Hard-to-model human behaviors+

Voltage Control



• Bandit learning

• Reinforcement learning

• Simulation-based control

• Black-box optimization

• Adversarial training

• Parameter tunning

• · · ·

❖ (First-Order) Gradient Descent

◆ Gradient information is unknown

◆ Only function evaluation is available ?

❖ Zeroth-Order Methods

solve using only function evaluations

Zeroth-order Optimization (ZO)

Extremum Seeking Control (ESC)
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Zeroth-Order 

Optimization (ZO)

Extremum Seeking 

Control (ESC) 

Preliminaries on Zeroth-Order Methods

Single-Point Gradient Estimator:

Two-Point Gradient Estimator:

Random perturbation Sampling

[Flaxman et al. 2005] [Nesterov & Spokoiny 2017]

Lemma 1. 

Stochastic gradient estimation 
with nonzero (but controllable) bias.

smoothing radius random perturbation
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Zeroth-Order 

Optimization (ZO)

Preliminaries on Zeroth-Order Methods

Single-Point Gradient Estimator:

Two-Point Gradient Estimator:

smoothing radius random perturbation

[Flaxman et al. 2005] [Nesterov & Spokoiny 2017]

×+
small probing 

signal ESC System
state

Lemma 2. 

Using only output feedback, ES system drives the state x to an optimum. 

integrator

Extremum Seeking 

Control (ESC) 
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Zeroth-Order 

Optimization (ZO)

Preliminaries on Zeroth-Order Methods [Flaxman et al. 2005] [Nesterov & Spokoiny 2017]

Extremum Seeking 

Control (ESC) 

Estimate unknown gradients using perturbed 
function evaluations (or system measurements)
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(Discrete-Time & Random Perturbation)

(Continuous-Time & Deterministic Perturbation)



I.  Model-free Optimal Voltage Control 

in Power Distribution Systems

II.  Improve Single-point Zeroth-order 

Optimization Using Filters

This Talk
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Real-Time Optimal Voltage Control (OVC)

DER Units

DER-1

DER-i

DER-N

. . .

. . .

nodal voltage 
measurement disturbance
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Distribution System

DER 
power

injection

Control

OVC

decision

converge

control cost 

DER power 
capacity set 

✓ Control Optimality 

✓ Voltage Safety



Real-Time Optimal Voltage Control (OVC)

DER Units

DER-1

DER-i

DER-N

. . .

. . .

nodal voltage 
measurement 
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Distribution System

DER 
power

injection

Control

OVC

decision

converge

✓ Control Optimality 

✓ Voltage Safety
disturbance

Unknown Model

Scalability



Optimal Voltage Control Design

disturbance

Distribution System

DER i 

voltage 
measurement

power 
injection
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Control Law

OVC

dual variable   

Saddle Point Problem

P-PDGD

solved by

Projected Primal-Dual Gradient Dynamics 

(P-PDGD)

converge



Projected Primal-Dual Gradient Dynamics 

(P-PDGD)

Optimal Voltage Control Design

disturbance

Distribution System

DER i 

voltage 
measurement

power 
injection

OVC

13

Control LawP-PDGD

not implementable 
due to unknown system model

converge



Our Solution:

• Replace                by real-time measurement

Projected Primal-Dual Gradient Dynamics 

(P-PDGD)

Optimal Voltage Control Design

disturbance

Distribution System

DER i 

voltage 
measurement

power 
injection

OVC
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Control LawP-PDGD

not implementable 
due to unknown system model

• Zeroth-order method to estimate gradient

converge



Projected Primal-Dual Gradient Dynamics 

(P-PDGD)

Optimal Voltage Control Design
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not implementable 
due to unknown system model

Zeroth-order Method:

Zeroth-order estimation 

≈

First-order gradient

real-time measurement

Our Solution:

• Replace                by real-time measurement

• Zeroth-order method to estimate gradient



Dynamic Average Consensus

Zeroth-Order Gradient Estimation

Projected Primal-Dual Dynamics 

Projected Primal-Dual Zeroth-Order Dynamics (P-PDZD)
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Each DER unit

✓ Optimality & Safety

✓ Model-Free

✓ Distributed Control



Projected Primal-Dual Zeroth-Order Dynamics (P-PDZD)
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local voltage
measurement

local communi. 
with neighbors

Each DER unit

power injection setpoint

disturbance

DER i 

voltage 
measure.

power 
injection

Control Law

Distribution System

Projected Primal-Dual Dynamics 

Zeroth-Order Gradient Estimation

Dynamic Average Consensus



Projected Primal-Dual Zeroth-Order Dynamics (P-PDZD)
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local voltage
measurement

local communi. 
with neighbors

Each DER unit

disturbance

DER i 

voltage 
measure.

Control Law

Distribution System

P-PDZD

Projected Primal-Dual Dynamics 

Zeroth-Order Gradient Estimation

Dynamic Average Consensus

power injection setpoint

power 
injection



Physical System

Cyber Layer

Control Process Illustration

local measurement
local action

: IBR Unit : Micro-controller 

✓ Optimality

✓ Model-Free

✓ Distributed

✓ Safety

✓ Self-adaptive

Real-time physical system feedback  +  Zeroth-order gradient learning
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Theoretical Guarantees

Theorem 2. (informal) Under the same conditions in Theorem 1, there exists               such that for any 

measurement noise      with                                      , the trajectory         of the P-PDZD with additive 

measurement noise satisfies

➢ (Structural Robustness to Small Measurement Noise)

Theorem 1. (informal) Under assumptions of convexity, with feasible initial condition in a compact set, there 

exists a class-KL function      such that for any precision             , with sufficiently small                        , the 

trajectory         of the P-PDZD satisfies

➢ (Semi-Global Practical Asymptotical Stability)

[Chen, et al, arXiv 2023] [Chen, et al, CDC 2021]
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Simulation

3-Phase IEEE 69-Bus Distribution System
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Matlab Simulink Model

high-fidelity EMT inverter model

control P_ref, Q_ref
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Case 1. Step Power Disturbance

Bus Voltage Magnitude (p.u.)

Time (s)0 100 200 300 400 500

lower limit 0.95

0.96

1.00

0.94

0.92

0.90

0.98

Flexible DER Power Outputs (MW/Mvar)

Time (s)0 100 200 300 400 500

0

-0.5

0.5

1

1.5 power limit

Case 2. Continuous Power Disturbance

Real time-varying solar generation  

0 4 8 12 16 20 24
Time (hour)



[1] X. Chen, J. I. Poveda, N. Li, “Continuous-Time Zeroth-Order Dynamics with Projection Maps: Model-Free 
Feedback Optimization with Safety Guarantees”, 2024. (accepted by IEEE Trans. Automatic Control)

Projected Primal-Dual Zeroth-Order Method

(Physical System Feedback  +  Control Law = Optimization Algorithm)

Zeroth-order Gradient EstimationFeedback Optimization

✓ Unknown system model

✓ Safety

Building Energy Control

Source Seeking Resource Allocation

✓ Scalability

Wind Farm Control

➢ Real-time model-free optimal control of complex (multi-agent) physical systems

✓ Performance guarantees
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I.  Model-free Optimal Voltage Control 

in Power Distribution Systems

II.  Improve Single-point Zeroth-order 

Optimization Using Filters

This Talk
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Zeroth-Order 

Optimization 

(ZO)

Extremum 

Seeking 

Control (ESC) 

Two-Point ZOSingle-Point ZO

single-point gradient estimator two-point gradient estimator

one function evaluation → online problems

large variance and slow convergence.

continuous-time dynamics

Close connection between ES control and Single-point ZO

How to Improve Single-point ZO?

impractical for online or dynamic settings.
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random perturbation direction

Single-Point ZOExtremum Seeking Control

probing magnitude

continuous-time discrete time

deterministic probing signal

smoothing radius

control gain step size
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ES Control

Single-point ZO (SZO)

×+

×+

high-pass 
filter

low-pass filter

wash out the useless DC component from output 

wash out high-frequency oscillations for cleaner gradient estimation 

+ Filters
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ES Control

Single-point ZO (SZO)

×+

×+

high-pass 
filter

low-pass filter

wash out the useless DC component from output 

wash out high-frequency oscillations for cleaner gradient estimation 
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+ Filters
ES Control + Filters

no filter

with filter



ES Control

Single-point ZO (SZO)

×+

×+

high-pass 
filter

low-pass filter
Can we borrow the idea of 

high-pass and low-pass filters 
to improve SZO?

?
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+ Filters



“Can we borrow the idea of high-pass and low-pass filters to improve SZO?”

YES!

Our proposed HLF-SZO [1]

=

Vanilla SZO Low-pass FilterHigh-pass Filter

&+

[2] Yan Zhang, et al. A new one-point residual-feedback oracle for black-box learning and control. Automatica, 2021. 

residual feedback “momentum”

recycled 

from last iteration

30

[2]

[1] X. Chen, Y. Tang, N. Li, “Improve Single-Point Zeroth-Order Optimization Using High-Pass and Low-Pass Filters”, ICML, 2022.



Derivation Process

Vanilla SZO High-pass Filter

+ =

×

high-pass filter

HF-SZO

vanilla SZOresidual-feedback SZO

time discretization
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Derivation Process

Vanilla SZO High-pass Filter

+ =
HF-SZO

Low-pass Filter

+ =
LF-SZO momentum term

vanilla SZOresidual-feedback SZO

+ Low-pass Filter+High-pass Filter = HLF-SZOVanilla SZO

residual-feedback momentum

(variance reduction) (acceleration)
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Performance Comparison

[2] X. Chen, Y. Tang, N. Li, “Improve Single-Point Zeroth-Order Optimization Using High-Pass and Low-Pass Filters”, ICML, 2022.

under the Lipchitz and smooth conditions

Convex Nonconvex

Vanilla SZO
Gasnikov, Krymova, et al. 

(2017)
/

Residual-

Feedback SZO
Zhang, Zhou, et al (2021)

HLF-SZO Chen, Tang, Li (2022)

Two-Point ZO Nesterov, Spokoiny (2017)
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Numerical Tests

➢ Logistic Regression: (d=2, N=200)

Vanilla SZO HLF-SZO
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+ Filters



Case Studies (Residual SZO, HLF-SZO, Two-Point ZO)

➢ Logistic Regression (d=50, N=1000) ➢ Minimize Beale function➢ Ridge Regression (d=50, N=1000)
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Takeaways

▪ Borrow the idea of high-pass and low-pass filters from ESC, which significantly 
improves the convergence of SZO

Vanilla SZO: HLF-SZO:

▪ Close connection between Single-point Zeroth-order Optimization (SZO) and 
Extremum Seeking Control (ESC)

36[2] X. Chen, Y. Tang, N. Li, “Improve Single-Point Zeroth-Order Optimization Using High-Pass and Low-Pass Filters”, ICML, 2022.

Control Optimization
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