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Optimization under Uncertainty

Decision making in an uncertain environment
I Crucial decisions made before uncertainty is realized.
I Two-stage decision making: here-and-now + wait-and-see.
I Key safety constraints.

Examples:

I Day-Ahead Unit Commitment

F Uncertainty: renewable.
F Decision: UC + economic dispatch.
F Safety: transmission dispatchable.

I Transmission Expansion Planning

F Uncertainty: load.
F Decision: expansion + economic dispatch.
F Safety: no load shedding.
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Two-Stage Stochastic Mixed Integer Programs (SMIP)

SMIP

min
y≥0

c>y + E ξ̃[Q(y, ξ̃)]

s.t. Ay = b

y ∈ Y.

Q(y, ξ̃) := min
x≥0

q>x

s.t. Wx = h(ξ̃) + Ty.

y: here-and-now (may be mixed-integer).
x: wait-and-see.
h(ξ̃): random right-hand-side.

Example: stochastic unit commitment

I y = UC, x = power flow, h(ξ̃) = renewable input.
I Inequality constraints recast as equalities WLOG.
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Two-Stage Stochastic Mixed Integer Programs (SMIP)

SMIP

min
y≥0

c>y +
1

S

S∑
i=1

θi

s.t. Ay = b

y ∈ Y.

θi := min
x≥0

q>x

s.t. Wx = hi + Ty.

Monte Carlo approximation, sample average approximation.
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Benders Decomposition (BD)

SMIP

(MP) : min
y≥0

c>y +
1

S

S∑
i=1

θi

s.t. Ay ≤ b
y ∈ Y.

(SPi) : θi := min
x≥0

q>x

s.t. Wx = hi + Ty.

Solve (MP) with an optimal solution (ŷ, θ̂); Plug ŷ into (SP)’s.

If an (SPi) infeasible, add a feasibility cut.

If ALL (SPi) feasible, add an optimality cut.

Iterate.
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Benders Decomposition (BD)

Challenge: slow; too many cuts needed to converge.

Example: SUC, IEEE-57, #Fea = 14,000, #Opt = 2,681.
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Very Brief Literature Review

Selectively cut adding: Rei et al. (2009), Yang and Lee (2012).

Avoid feasibility cuts through valid inequalities: Geoffrion and Graves
(1974), de Sá et al. (2013).

Generate stronger feasibility / optimality cuts: Codato and Fischetti
(2006), Contreras et al. (2011), Fischetti et al. (2010), Magnanti and
Wong (1981), Bodur et al. (2017), Bodur and Luedtke (2017), Rahmaniani
et al. (2018).

Much less attention on feasibility cuts.

Slack variables added and penalized; but not always desired.

Typically application-dependent.

Our focus: feasibility cuts, more general-purpose.
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Why So Many Feasibility Cuts?

Second-Stage Problem

θi := min
x≥0

q>x

s.t. Wx = hi + Ty.

Observations

1. The ith subproblem is feasible ⇐⇒ (hi + Ty) ∈ pos(W ).

2. Oftentimes, pos(W ) is “thin,” even a subspace.
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Why So Many Feasibility Cuts?
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Figure: Smallest singular values of W in IEEE-118 system

If not carefully guided, can take long for (hi + Ty) to enter pos(W ).

Idea: search for thin spreads and restrict (hi + Ty) accordingly.

How to find thin spreads? One approach: Principal Component Analysis.
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Principal Component Analysis (PCA) on pos(W )

Figure: PCA on a polyhedral cone

Blue lines: singular vectors;
Length ∝ singular value.

Theorem (Levin and Shashua, 2002)

The covariance matrix Cov(W ) of the
entire polytope is the same as the
covariance matrix over the vertices of W .
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Principal Component Analysis (PCA) on pos(W )

Figure: PCA on a polyhedral cone

Blue lines: singular vectors;
Length ∝ singular value.

Last k principal components of
pos(W ):

1. Normalize the polyhedral cone
{Wα | ‖Wα‖1 ≤ 1, α ≥ 0} and get
its extreme points.

2. Center these extreme points.
3. Perform PCA and get
U := {un−k+1, . . . , un}, along
which pos(W ) has thinnest spreads.
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Projection Cuts

For any u ∈ U , we hope that the projection of (hi + Ty) onto u is small in order
to stay in pos(W ):

ε ≤ u>(hi + Ty)

‖hi + Ty‖1
≤ ε̄, (7)

where ε̄ := max
λ
{u>Wλ | ‖Wλ‖1 ≤ 1, λ ≥ 0},

ε := min
λ
{u>Wλ | ‖Wλ‖1 ≤ 1, λ ≥ 0}.

ε̄, ε found by solving 2 LPs.
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Assumptions on SMIP

Assumptions

A1. The uncertainty and the hear-and-now decisions are separable, i.e., there
exist d(ξ̃) and T ′ such that

h(ξ̃) + Ty =

[
d(ξ̃)

0

]
+

[
0
T ′

]
y,

A2. All entries of T ′ are nonnegative.
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Assumptions on SMIP

Projection cuts can be linearized in more general ways.

Assumptions A1–A2: simple and exact linearization.

Valid for a wide range of SMIP counterparts:
I Unit commitment, transmission expansion planning.
I Multicommodity network design, production routing.
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Projection Cuts

For any u ∈ U , we hope that the projection of (hi + Ty) onto u is small in order
to stay in pos(W ):

ε ≤ u>(hi + Ty)

‖hi + Ty‖1
≤ ε̄

Linearization:

‖hi + Ty‖1 =

∥∥∥∥[di0
]

+

[
0
T ′

]
y

∥∥∥∥
1

(∵ Separable d(ξ̃) and y)

= ‖hi‖1 + ‖Ty‖1
= ‖hi‖1 + 1>Ty (∵ T ≥ 0)
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Projection Cuts

Projection Cuts

For any u in U , the following inequalities are valid for SMIP:

max
i∈[S]
{u>hi − ε̄ ‖hi‖1} ≤

(
u> − ε̄ 1>

)
Ty,(

u> − ε 1>
)
Ty ≤ min

i∈[S]
{u>hi − ε ‖hi‖1}.
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Two-Stage SUC

Unit commitment problem

1. Minimizes system operating costs.

2. Guarantees all system constraints are satisfied.

3. Needs to be solved day-ahead and every day.

4. System load is subject to uncertainty.

Two-stage decision-making

1. UC. (binary)

2. Economic dispatch. (continuous)
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Experimental Design

Compare vanilla Benders Decomposition (BD) and Benders Decomposition
equipped with Projection Cuts (ProjBD).

Testcases: standard IEEE testcases with 9, 14, 30, 57, 118 buses.

System demands: sampled from Gaussian distribution with 80% of the
nominal system demand and standard deviation is 0.1.

U : The shortest 5% principal component vectors of pos(W ).

Time limit: 3600 seconds.

ns : number of samples (realizations) of ξ̃.
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Experiment Results

Table: BD vs. ProjBD, ns=500

BD ProjBD

Testcases time (sec) gap #feascuts #optcuts time (sec) gap #feascuts #optcuts
9 bus 233.48 0.0 186408 176550 49.66 0.0 52256 90414
14 bus 299.70 0.0 86210 74197 59.53 0.0 24742 16020
30 bus 382.0 0.0 42920 14642 69.95 0.0 16598 9381
57 bus 826.18 0.0 106415 22082 118.91 0.0 22598 13677
118 bus NaN inf NaN NaN 430.57 0.0 140714 425786
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Experiment Results

Table: BD vs. ProjBD, ns=1000

BD ProjBD
Testcases time (sec) gap #feascuts #optcuts time (sec) gap #feascuts #optcuts
9 bus 505.04 0.0 259305 524608 271.75 0.0 102353 283946
14 bus 1102.58 0.0 74200 60675 76.43 0.0 20098 11466
30 bus 330.29 0.0 4170 4685 297 0.0 7890 4987
57 bus 957.33 0.0 99398 19164 208.21 0.0 21598 12740
118 bus NaN inf NaN NaN 807.805 0.0 134414 418954

The numbers of both feasibility and optimality cuts reduced.

Total time significantly reduced.

Similar observations from multicommodity network design and production
routing case studies.
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Revisit

Challenge: slow; too many cuts needed to converge.

BD: #Fea = 14,000, #Opt = 2,681.

ProjBD: #Fea = 2,000, #Opt = 1,198.
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Opt
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Iterations
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Root-Node Performance

Table: Root node performace of BD and ProjBD

Instances
ProjBD BD

lbd ratio
lbd gap ubd lbd gap ubd

9 bus 116,414.20 3.52% 100.00% 3,730.54 N/A 0.00% 32.73
14 bus 198,392.79 5.45% 100.00% 19,254.23 N/A 0.00% 214.40
30 bus 20,238.12 46.25% 100.00% 5,196.32 N/A 0.00% 4.85
57 bus 930,093.01 0.00% 100.00% 189,103.97 N/A 0.00% 205.71
118 bus 2,039,338.84 10.54% 100.00% 48,154.25 N/A 0.00% 1,596.91
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How Many Singular Values to Involve?
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Figure: # of Singular Values to Involve vs. Solving Time
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