
Multi-cellular Logic Circuits

Jonathan Yedidia

Mitsubishi Electric Research Laboratories

+ + +

Outline

• A model of the logic of multi-cellular organisms
• Example of the design strategy: a RAM circuit
• Discussion and future prospects
• Biology field trip

Cell

“Network” or “Circuit” or “Organism”

Cell

Cell

Cell
Cell

“Program”

or

“Genome”

A Simple Model

Key point: all cells have identical specifications

“Dynamic” or “Embryonic” phase

time

“Static” or “Adult” phase

Inside a Cell
Factor Signal

Inter-cellular Signal

Developmental Input Signal

Developmental
Output Signal

Logic
Unit

Logic
Unit

Logic
Unit

Logic
Unit

Logic
Unit

Logic
Unit

Brief Article

The Author

April 27, 2007

1

Out(t + ∆) = f (In1(t), ..., Ink(t)) (1)

1

Logic units compute:

Fertilized Egg Parent Child

Child

Parent

=

Developmental Phase

Cell Divisions Triggered by “Developmental Output Signals”

Testing the Adult Circuit

Input Node #1

Input Node #2

Output Node

More Details and Embellishments
• Reconciliation Functions: If a two or more logic units

produce the same output signal, or if a cell receives the
same inter-cellular signal from two or more neighboring
cells, the value of the signals must be reconciled. For
binary signals, an OR function is used.

• Digital, analog, or mixed signals can be used. If analog
signals are used, it makes sense to keep them in the range
[0, 1], and to use soft logic functions like

Brief Article

The Author

April 27, 2007

1

Out(t + ∆) = f (In1(t), ..., Ink(t)) (1)

Out(t + ∆) = f(In1 + In2 − In1In2) (2)

f(x) =
xk

xk + (1− x)k
(3)

1

• Logic units can be synchronized to a global clock that has
discrete time steps; or the cells can be asynchronous, and
the logic units could have arbitrary delays.

•

A Random-Access Memory

Load

Input

Address

Output

Brief Article

The Author

April 27, 2007

1

Out(t + ∆) = f (In1(t), ..., Ink(t)) (1)

Out(t + ∆) = f(In1 + In2 − In1In2) (2)

f(x) =
xk

xk + (1− x)k
(3)

Output(t) = RAMAddress(t)(t) (4)

1

Brief Article

The Author

April 27, 2007

1

Out(t + ∆) = f (In1(t), ..., Ink(t)) (1)

Out(t + ∆) = f(In1 + In2 − In1In2) (2)

f(x) =
xk

xk + (1− x)k
(3)

Output(t) = RAMAddress(t)(t) (4)

If Load(t) = 1,
RAMAddress(t)(t + 1) = In(t) (5)

1

Brief Article

The Author

April 27, 2007

1

Out(t + ∆) = f (In1(t), ..., Ink(t)) (1)

Out(t + ∆) = f(In1 + In2 − In1In2) (2)

f(x) =
xk

xk + (1− x)k
(3)

Output(t) = RAMAddress(t)(t) (4)

If Load(t) = 1,
RAMAddress(t)(t + 1) = Input(t) (5)

1

Standard Design (for Tiny-RAM)

MUX

DMUX

Input

Load

Address

Output

Register 0

Register 1

Input
 Node

Parent Cell

Child Cell

Output
 Node

Set-up for Adult Tiny-RAM

LU2

OR(DI_D, F_D)
=> F_D

LU3

OR(DI_P, F_P)
 => F_P

LU4

XOR(I_A, F_P)
 => F_T

LU5

AND(F_T, I_L)
 => F_L

LU6

TRUTH{01000111}
(I_I, F_L, F_R)

 => F_R

LU7

AND(F_T, F_R)
=> I_O

I_O

DI_D

F_P
F_L

F_D

DI_PDO_D

F_T

F_R

I_A I_I

I_L

LU1

NOT (F_D)
 => DO_D

Logic Units in One Tiny-RAM Cell

Input
 Node

Output
 Node

Scaling up the RAM

PPP

PPC

PCP

PCC

CPP

CPC

CCP

CCC

LU2

OR(DI_D, F_D)
=> F_D

LU3

OR(DI_P, F_P)
 => F_P

LU4

XOR(I_A, F_P)
 => F_T

LU5

AND(F_T, I_L)
 => F_L

LU6

TRUTH{01000111}
(I_I, F_L, F_R)

 => F_R

LU7

AND(F_T, F_R)
=> I_O

I_O

DI_D

F_P
F_L

F_D

DI_PDO_D

F_T

F_R

I_A I_I

I_L

LU1

NOT (F_D)
 => DO_D

Scaling Changes

Unchanged

LU2

OR(DI_D, F_D)
=> F_D

LU3

OR(DI_P, F_P)
 => F_P

LU4

XOR(I_A, F_P)
 => F_T

LU5

AND(F_T, I_L)
 => F_L

LU6

TRUTH{01000111}
(I_I, F_L, F_R)

 => F_R

LU7

AND(F_T, F_R)
=> I_O

I_O

DI_D

F_P
F_L

F_D

DI_PDO_D

F_T

F_R

I_A I_I

I_L

LU1

NOT (F_D)
 => DO_D

Scaling Changes

LU2: Or(DI_D, F_D) => F_D

•Or(DI_D, F_D1) => F_D1

•Or(And(DI_D, F_D1), F_D2) => F_D2

• ...

•Or(And(DI_D, F_D[K-1]), F_D) => F_D

replaced with

LU2

OR(DI_D, F_D)
=> F_D

LU3

OR(DI_P, F_P)
 => F_P

LU4

XOR(I_A, F_P)
 => F_T

LU5

AND(F_T, I_L)
 => F_L

LU6

TRUTH{01000111}
(I_I, F_L, F_R)

 => F_R

LU7

AND(F_T, F_R)
=> I_O

I_O

DI_D

F_P
F_L

F_D

DI_PDO_D

F_T

F_R

I_A I_I

I_L

LU1

NOT (F_D)
 => DO_D

Scaling Changes

LU3: Or(DI_P, F_P) => F_P

• Or(And(DI_P, Not(F_D1)), F_P1) => F_P1

• Or(And(DI_P, F_D1, Not(F_D2)), F_P2) => F_P2

•

• Or(And(DI_P, F_D[k-1], Not(F_D)), F_P[K]) => F_P[K]

replaced with

LU2

OR(DI_D, F_D)
=> F_D

LU3

OR(DI_P, F_P)
 => F_P

LU4

XOR(I_A, F_P)
 => F_T

LU5

AND(F_T, I_L)
 => F_L

LU6

TRUTH{01000111}
(I_I, F_L, F_R)

 => F_R

LU7

AND(F_T, F_R)
=> I_O

I_O

DI_D

F_P
F_L

F_D

DI_PDO_D

F_T

F_R

I_A I_I

I_L

LU1

NOT (F_D)
 => DO_D

Scaling Changes

LU4: XOR(I_A, F_P) => F_T

• XOR(I_A1, F_P1) => F_T1

• XOR(I_A2, F_P2) => F_T2

•

• XOR(I_A[k], F_P[k]) => F_T[K]

• And(F_T1, F_T2, , F_T[K]) => F_T

replaced with

plus

LU2

OR(DI_D, F_D)
=> F_D

LU3

OR(DI_P, F_P)
 => F_P

LU4

XOR(I_A, F_P)
 => F_T

LU5

AND(F_T, I_L)
 => F_L

LU6

TRUTH{01000111}
(I_I, F_L, F_R)

 => F_R

LU7

AND(F_T, F_R)
=> I_O

I_O

DI_D

F_P
F_L

F_D

DI_PDO_D

F_T

F_R

I_A I_I

I_L

LU1

NOT (F_D)
 => DO_D

Scaling Changes

Unchanged

LU2

OR(DI_D, F_D)
=> F_D

LU3

OR(DI_P, F_P)
 => F_P

LU4

XOR(I_A, F_P)
 => F_T

LU5

AND(F_T, I_L)
 => F_L

LU6

TRUTH{01000111}
(I_I, F_L, F_R)

 => F_R

LU7

AND(F_T, F_R)
=> I_O

I_O

DI_D

F_P
F_L

F_D

DI_PDO_D

F_T

F_R

I_A I_I

I_L

LU1

NOT (F_D)
 => DO_D

Scaling Changes

Unchanged

LU6: TRUTH{01000111}(I_I, F_L, F_R) => F_R

• TRUTH{01000111}(I_I1, F_L, F_R1) => F_R1

• TRUTH{01000111}(I_I2, F_L, F_R2) => F_R2

•

• TRUTH{01000111}(I_I[L], F_L, F_R[L]) => F_R[L]

replaced with

LU2

OR(DI_D, F_D)
=> F_D

LU3

OR(DI_P, F_P)
 => F_P

LU4

XOR(I_A, F_P)
 => F_T

LU5

AND(F_T, I_L)
 => F_L

LU6

TRUTH{01000111}
(I_I, F_L, F_R)

 => F_R

LU7

AND(F_T, F_R)
=> I_O

I_O

DI_D

F_P
F_L

F_D

DI_PDO_D

F_T

F_R

I_A I_I

I_L

LU1

NOT (F_D)
 => DO_D

Scaling Changes

Unchanged

LU7: And(F_T, F_R) => I_O

• And(F_T, F_R1) => I_O1

• And(F_T, F_R2) => I_O2

•

• And(F_T, F_R[L]) => I_O[L]

replaced with

Advantages of
multi-cellular logic circuits

• Can compactly specify a very large network
• Automatic code re-use
• Potentially convenient for mass-production
• Perhaps a compact specification is nice for genetic

algorithms, or other blind search strategies.

• Using many cells with identical specifications
seems to be a key part of nature’s design strategy
for building complex machines.

Future Directions

• Evolve multi-cellular logic circuits
• Design/Evolve more complex circuits (e.g. a CPU)
• Evolve circuits that perform inference
• All sorts of “biological” modeling possibilities:

“mating” circuits, an embryo circuit developing
inside a “mother” circuit, etc.

• Multi-cellular organisms with physical structure:
add motors and springs.

C. elegans: a favorite multi-cellular
“model organism”

Figure 10.1a The Biology of Cancer (© Garland Science 2007), R. Weinberg

from B. Goldstein lab, U.N.C.

First Stages of Embryonic
Development

Hannak, E., et.al., J. Cell Biology, 2001

Complete Embryonic Development

from B. Goldstein lab, U.N.C.

Portion of
the C. Elegans
Cell Lineage

Figure 6.3 The Biology of Cancer (© Garland Science 2007) R. Weinberg

Intra-cellular Signals

Figure 1.19 The Biology of Cancer (© Garland Science 2007) R. Weinberg

Transcription Control

Figure 5.1 The Biology of Cancer (© Garland Science 2007) R. Weinberg

Biological Signal Processing

designed to solve for the kinetic parameters which
determine the synthesis/turnover dynamics of the RNAs
and proteins that are produced by the genes in the network.
Examples of excellent kinetic network models that approach
that objective include Jaeger et al. (2004) and von Dassow
et al. (2000). Nor is it the intent of the kind of models with
which this paper is concerned to enable a naive observer (or
machine) to build a model automatically from data stored in
a computer. While this may be an interesting and indeed (in
a heuristic sense) important objective in its own right, it is
one that is always going to be ex post facto with respect to
the rapid, ongoing progress of scientific understanding of
living processes. This depends directly on the potency of
scientists’ sophisticated experimental research efforts, and
our models are directed explicitly toward providing an
essential aid in that respect, as above.

Computational representation requirements for
developmental GRNs

As discussed above, the unique architectural character-
istics of developmental GRNs require novel computa-
tional support capabilities. Given that novel computa-
tional tools have to be developed for the developmental
biology community, what other capabilities should these
tools support? In this section, we present a list of features
we consider essential for representing developmental
GRNs.

Network visualization

A number of existing tools have been designed for
modeling biochemical networks (for examples, see http://
www.sbml.org/). However, the requirements of GRN
modeling are distinct and not met by biochemical network
modeling software. Two examples of biochemical network
modeling tools are Cytoscape (http://www.cytoscape.org)
and CellDesigner (http://www.CellDesigner.org) (Shannon
et al., 2003; Oda et al., 2004). Fig. 3 shows examples in
which the two software packages only capture an over-
simplified representation of the Wnt8 signaling loop of the
sea urchin endomesoderm network (cf. Fig. 1 for our model
of the same network).

CellDesigner provides a wide range of interaction
symbols, as shown in Fig. 3A. These symbols have been
carefully chosen to provide specificity while at the same
time keeping the visual representation intuitively simple.
However, in common with most other current tools,
CellDesigner treats genes as simply another type of a
biomolecule. Transcriptional and post-transcriptional regu-
lation of a gene would need to be modeled as an explicit and
additional set of biochemical reactions, and any DNA
sequence-related information about genes would need to be
captured with other tools.

Instead of providing a pre-defined list of interaction
symbols, Cytoscape allows the user to customize the
thickness, color, and other properties of the interaction lines
between biochemical entities. In the example shown, blue
indicates protein–protein interactions, red protein–DNA
interactions, black an indirect multi-step linkage, and green
a ligand–receptor interaction. Note that, in Cytoscape,
component parts of an interaction and the interaction
product(s) are not distinguishable. For example, in Fig.
3C, Cytoscape indicates h-catenin:TCF dimer formation by
a blue interaction line connecting the two monomers. The
dimer itself is not represented as a separate entity. Thus,
scenarios such as catalytic activation of a transcription
factor or cooperative transcription regulation by multiple
transcription factors cannot be represented explicitly in
Cytoscape. As with CellDesigner, Cytoscape does not
capture/model DNA-sequence-related information directly,
but it does support hyperlinks to sequence analysis work-
benches and annotation browsers.

Given that all developmental control is ultimately
encoded in the DNA, a representation that specifically and
explicitly represents transcription factor interactions with
cis-regulatory DNA would be preferable for modeling
developmental GRNs. The simple cartoon representation
of a gene usually used by biologists provides an excellent,
intuitively clear starting point. Fig. 4 shows how this iconic
representation can be augmented with additional annotations
to provide more detailed information. Note how this
representation provides a substrate for very specific,
experimentally verifiable model description. For example,
in Fig. 4, factors T1–3 are specified as having DNA binding
targets upstream of the transcription start site of gene G.
This symbolic representation of DNA can be hyperlinked to

Fig. 4. Proposed DNA-based computational representation of a gene. The

red horizontal line represents DNA. The portion to the left of the bent red

arrow represents upstream (5V) sequence. The red box to the right of the bent
red arrow represents a DNA feature, such as the first exon. T1–3 are

transcription factors, which in this example bind the upstream sequence and

transcriptionally regulate the expression of G. The regulatory interactions of

the three transcription factors are represented symbolically by the two

circles labeled with the logical AND symbol. The bar at the end of the line

from T3 to the right hand circle indicates T3 activity acts as a repressor.

Since the other input to this interaction is the logical AND of T1 and T2, the

output of the second interaction (and hence gene G) can be seen to be ((T1

AND T2) AND NOT(T3)); that is, transcription of G is active if T1 and T2

are both active, repressed if T3 is active, and basal otherwise. The symbols

just below the line representing DNA are icons for hyperlinks to genome

browsers showing detailed sequence annotations such as exons (right-hand

curved arrow) known transcription factor binding sites (*) and results from

DNA search algorithms (triangle).

W.J.R. Longabaugh et al. / Developmental Biology 283 (2005) 1–16 7

Longabaugh, et.al., Developmental
Biology, 2005

