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• A model of the logic of multi-cellular organisms
• Example of the design strategy: a RAM circuit
• Discussion and future prospects
• Biology field trip
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Logic units compute:
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More Details and Embellishments
• Reconciliation Functions: If a two or more logic units 

produce the same output signal, or if a cell receives the 
same inter-cellular signal from two or more neighboring 
cells, the value of the signals must be reconciled. For 
binary signals, an OR function is used.

• Digital, analog, or mixed signals can be used. If analog 
signals are used, it makes sense to keep them in the range 
[0, 1], and to use soft logic functions like
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Out(t + ∆) = f (In1(t), ..., Ink(t)) (1)

Out(t + ∆) = f(In1 + In2 − In1In2) (2)

f(x) =
xk

xk + (1− x)k
(3)
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• Logic units can be synchronized to a global clock that has 
discrete time steps; or the cells can be asynchronous, and 
the logic units could have arbitrary delays. 

•  
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Standard Design (for Tiny-RAM)
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LU2:   Or(DI_D, F_D) => F_D

•Or(DI_D, F_D1) => F_D1

•Or(And(DI_D, F_D1), F_D2) => F_D2

•        ...

•Or(And(DI_D, F_D[K-1]), F_D) => F_D

replaced with
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LU3:   Or(DI_P, F_P) => F_P

• Or(And(DI_P,  Not(F_D1)), F_P1) => F_P1

• Or(And(DI_P, F_D1, Not(F_D2)), F_P2) => F_P2

•       ....

• Or(And(DI_P, F_D[k-1], Not(F_D)), F_P[K]) => F_P[K]

replaced with
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LU4:   XOR(I_A, F_P) => F_T

• XOR(I_A1, F_P1) => F_T1

• XOR(I_A2, F_P2) => F_T2

•      ....

• XOR(I_A[k], F_P[k]) => F_T[K]

• And(F_T1, F_T2, .... , F_T[K]) => F_T

replaced with

plus
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LU6:   TRUTH{01000111}(I_I, F_L, F_R) => F_R

• TRUTH{01000111}(I_I1, F_L, F_R1) => F_R1

• TRUTH{01000111}(I_I2, F_L, F_R2) => F_R2

•      ....

• TRUTH{01000111}(I_I[L], F_L, F_R[L]) => F_R[L]

replaced with
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LU7:    And(F_T, F_R) => I_O

• And(F_T, F_R1) => I_O1

• And(F_T, F_R2) => I_O2

•       ....

• And(F_T, F_R[L]) => I_O[L]

replaced with



Advantages of 
multi-cellular logic circuits

• Can compactly specify a very large network
• Automatic code re-use
• Potentially convenient for mass-production
• Perhaps a compact specification is nice for genetic 

algorithms, or other blind search strategies.

• Using many cells with identical specifications 
seems to be a key part of nature’s design strategy 
for building complex machines.



Future Directions

• Evolve multi-cellular logic circuits
• Design/Evolve more complex circuits (e.g. a CPU)
• Evolve circuits that perform inference
• All sorts of “biological” modeling possibilities: 

“mating” circuits, an embryo circuit developing 
inside a “mother” circuit, etc.

• Multi-cellular organisms with physical structure: 
add motors and springs.



C. elegans: a favorite multi-cellular 
“model organism”

Figure 10.1a  The Biology of Cancer (© Garland Science 2007), R. Weinberg



from B. Goldstein lab, U.N.C.



First Stages of Embryonic 
Development

Hannak, E., et.al., J. Cell Biology, 2001



Complete Embryonic Development

from B. Goldstein lab, U.N.C.
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Figure 6.3  The Biology of Cancer (© Garland Science 2007) R. Weinberg

Intra-cellular Signals



Figure 1.19  The Biology of Cancer (© Garland Science 2007) R. Weinberg

Transcription Control



Figure 5.1  The Biology of Cancer (© Garland Science 2007) R. Weinberg
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designed to solve for the kinetic parameters which
determine the synthesis/turnover dynamics of the RNAs
and proteins that are produced by the genes in the network.
Examples of excellent kinetic network models that approach
that objective include Jaeger et al. (2004) and von Dassow
et al. (2000). Nor is it the intent of the kind of models with
which this paper is concerned to enable a naive observer (or
machine) to build a model automatically from data stored in
a computer. While this may be an interesting and indeed (in
a heuristic sense) important objective in its own right, it is
one that is always going to be ex post facto with respect to
the rapid, ongoing progress of scientific understanding of
living processes. This depends directly on the potency of
scientists’ sophisticated experimental research efforts, and
our models are directed explicitly toward providing an
essential aid in that respect, as above.

Computational representation requirements for
developmental GRNs

As discussed above, the unique architectural character-
istics of developmental GRNs require novel computa-
tional support capabilities. Given that novel computa-
tional tools have to be developed for the developmental
biology community, what other capabilities should these
tools support? In this section, we present a list of features
we consider essential for representing developmental
GRNs.

Network visualization

A number of existing tools have been designed for
modeling biochemical networks (for examples, see http://
www.sbml.org/). However, the requirements of GRN
modeling are distinct and not met by biochemical network
modeling software. Two examples of biochemical network
modeling tools are Cytoscape (http://www.cytoscape.org)
and CellDesigner (http://www.CellDesigner.org) (Shannon
et al., 2003; Oda et al., 2004). Fig. 3 shows examples in
which the two software packages only capture an over-
simplified representation of the Wnt8 signaling loop of the
sea urchin endomesoderm network (cf. Fig. 1 for our model
of the same network).

CellDesigner provides a wide range of interaction
symbols, as shown in Fig. 3A. These symbols have been
carefully chosen to provide specificity while at the same
time keeping the visual representation intuitively simple.
However, in common with most other current tools,
CellDesigner treats genes as simply another type of a
biomolecule. Transcriptional and post-transcriptional regu-
lation of a gene would need to be modeled as an explicit and
additional set of biochemical reactions, and any DNA
sequence-related information about genes would need to be
captured with other tools.

Instead of providing a pre-defined list of interaction
symbols, Cytoscape allows the user to customize the
thickness, color, and other properties of the interaction lines
between biochemical entities. In the example shown, blue
indicates protein–protein interactions, red protein–DNA
interactions, black an indirect multi-step linkage, and green
a ligand–receptor interaction. Note that, in Cytoscape,
component parts of an interaction and the interaction
product(s) are not distinguishable. For example, in Fig.
3C, Cytoscape indicates h-catenin:TCF dimer formation by
a blue interaction line connecting the two monomers. The
dimer itself is not represented as a separate entity. Thus,
scenarios such as catalytic activation of a transcription
factor or cooperative transcription regulation by multiple
transcription factors cannot be represented explicitly in
Cytoscape. As with CellDesigner, Cytoscape does not
capture/model DNA-sequence-related information directly,
but it does support hyperlinks to sequence analysis work-
benches and annotation browsers.

Given that all developmental control is ultimately
encoded in the DNA, a representation that specifically and
explicitly represents transcription factor interactions with
cis-regulatory DNA would be preferable for modeling
developmental GRNs. The simple cartoon representation
of a gene usually used by biologists provides an excellent,
intuitively clear starting point. Fig. 4 shows how this iconic
representation can be augmented with additional annotations
to provide more detailed information. Note how this
representation provides a substrate for very specific,
experimentally verifiable model description. For example,
in Fig. 4, factors T1–3 are specified as having DNA binding
targets upstream of the transcription start site of gene G.
This symbolic representation of DNA can be hyperlinked to

Fig. 4. Proposed DNA-based computational representation of a gene. The

red horizontal line represents DNA. The portion to the left of the bent red

arrow represents upstream (5V) sequence. The red box to the right of the bent
red arrow represents a DNA feature, such as the first exon. T1–3 are

transcription factors, which in this example bind the upstream sequence and

transcriptionally regulate the expression of G. The regulatory interactions of

the three transcription factors are represented symbolically by the two

circles labeled with the logical AND symbol. The bar at the end of the line

from T3 to the right hand circle indicates T3 activity acts as a repressor.

Since the other input to this interaction is the logical AND of T1 and T2, the

output of the second interaction (and hence gene G) can be seen to be ((T1

AND T2) AND NOT(T3)); that is, transcription of G is active if T1 and T2

are both active, repressed if T3 is active, and basal otherwise. The symbols

just below the line representing DNA are icons for hyperlinks to genome

browsers showing detailed sequence annotations such as exons (right-hand

curved arrow) known transcription factor binding sites (*) and results from

DNA search algorithms (triangle).

W.J.R. Longabaugh et al. / Developmental Biology 283 (2005) 1–16 7

Longabaugh, et.al.,  Developmental 
Biology, 2005


