Improving Belief Propagation via Graphical Model Transformation

Thomas R. Halford Communication Sciences Institute University of Southern California

May 1, 2007

Algorithms, Inference, and Statistical Physics

- Work supported in part by: US Army Research Office, MURI Contract DAAD19-01-1-0477
 - TrellisWare Technologies, Inc.
 - Powell Foundation

Improving Belief Propagation

Generalized Belief Propagation

- → regions of nodes pass messages
- regions may overlap

Loop Calculus

- → view BP as a truncation of a series expansion for exact inference
- improve performance by including more terms

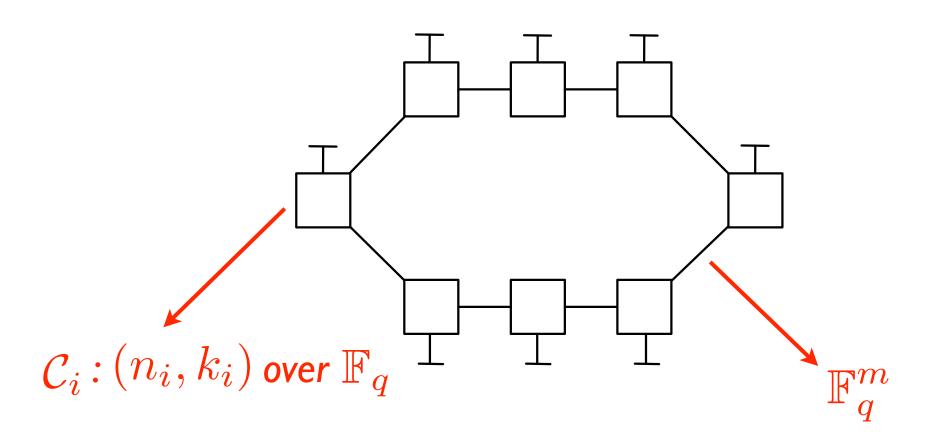
standard model, non-standard BP

Graphical Model Transformation

non-standard model, standard BP

Graphical Models for Codes: Normal Realizations

 \mathcal{C} :(n,k) over \mathbb{F}_q



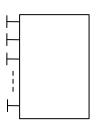
Graphical Model Extraction - One Code Many Models

Code Definition

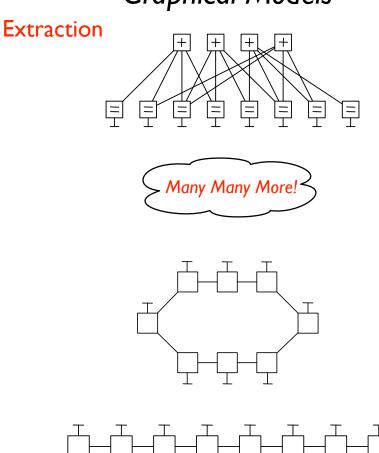
Graphical Models

Decoding Algorithms

Increasing Performance



$$H = egin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \ 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \ 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}$$



Increasing Complexity

Question I: Can the space of graphical models for a code be searched?

Question I: Can the space of graphical models for a code be searched?

YES - We'll show how

Question I: Can the space of graphical models for a code be searched?

YES - We'll show how

Question 2: What are meaningful optimization constraint functions?

Question I: Can the space of graphical models for a code be searched?

YES - We'll show how

Question 2: What are meaningful optimization constraint functions? Inclusion in some model complexity class

Question I: Can the space of graphical models for a code be searched?

YES - We'll show how

Question 2: What are meaningful optimization constraint functions? Inclusion in some model complexity class

Question 3: What are meaningful optimization cost functions?

- Question I: Can the space of graphical models for a code be searched?

 YES We'll show how
- Question 2: What are meaningful optimization constraint functions? Inclusion in some model complexity class
- Question 3: What are meaningful optimization cost functions?

 Cost function ⇔ good graphical model

- Question I: Can the space of graphical models for a code be searched?

 YES We'll show how
- Question 2: What are meaningful optimization constraint functions? Inclusion in some model complexity class
- Question 3: What are meaningful optimization cost functions?

Cost function \Leftrightarrow good graphical model

Difficult and open problem in general...

Our Approach - Short Cycle Structure

- Question I: Can the space of graphical models for a code be searched?

 YES We'll show how
- Question 2: What are meaningful optimization constraint functions? Inclusion in some model complexity class
- Question 3: What are meaningful optimization cost functions?

 Cost function ⇔ good graphical model

Difficult and open problem in general...

Our Approach - Short Cycle Structure

Question 4: What are good heuristics for this hard combinatorial optimization?

- Question I: Can the space of graphical models for a code be searched?

 YES We'll show how
- Question 2: What are meaningful optimization constraint functions? Inclusion in some model complexity class
- Question 3: What are meaningful optimization cost functions?

 Cost function ⇔ good graphical model
 - Our Approach Short Cycle Structure
- Question 4: What are good heuristics for this hard combinatorial optimization?

 Difficult and open problem in general...

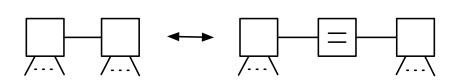
 Our Approach Greedy Extraction Heuristic

Searching the Model Space: Basic Operations

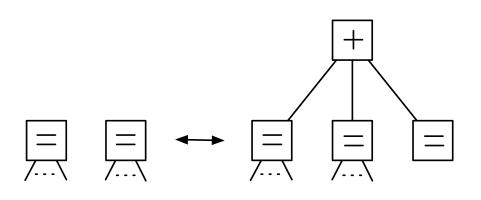
Constraint Merging / Splitting

[Pe88], [Fo01], [KsFrLo01]

Inserting / Removing Degree-2 Repetition Constraint



Inserting / Removing Isolated Partial Parity Constraints



Generalized Parity-Check Matrices

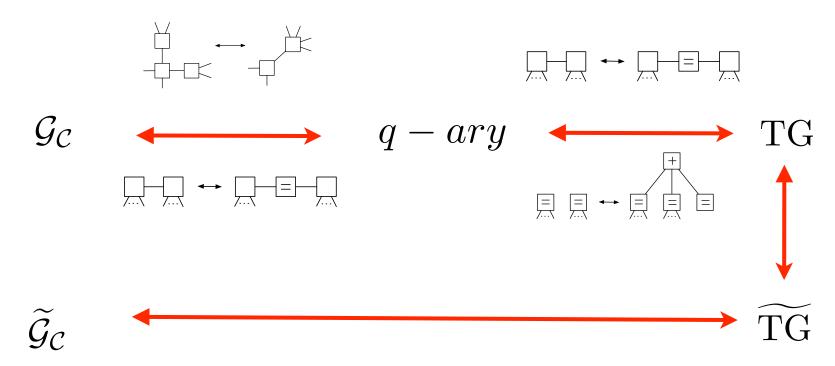
Inserting / Removing
Trivial Constraints

Redundant Parity-Check Matrices

Searching the Model Space: Main Result

Theorem: Let $\mathcal{G}_{\mathcal{C}}$ and $\widetilde{\mathcal{G}}_{\mathcal{C}}$ be two graphical models for \mathcal{C} . Then $\mathcal{G}_{\mathcal{C}}$ can be transformed into $\widetilde{\mathcal{G}}_{\mathcal{C}}$ via a *finite* number of basic operations.

Proof:



Constraint Functions - qm-ary Graphical Models

- I) Maximum hidden variable alphabet size: q^m .
- 2) Each local constraint C_i satisfies:

(or is a direct product of codes which do).

- stopping sets
- trapping / absorbing sets
- pseudo-codewords
- short cycles

- stopping sets
- trapping / absorbing sets
- pseudo-codewords
- short cycles

- stopping sets
- trapping / absorbing sets 🗶
- pseudo-codewords
- short cycles

- stopping sets
- trapping / absorbing sets 🗶
- pseudo-codewords
- short cycles

Candidate Proxies:

- stopping sets
- trapping / absorbing sets 🗶
- pseudo-codewords
- short cycles
 - \sim Can count cycles of length g, g+2 and g+4 in time $O(gn^3)$.

(Halford & Chugg, "An algorithm for counting short cycles in bipartite graphs", *IEEE Trans. IT*, 52(1) 2006.)

A Greedy Heuristic for Model Extraction

Motivation: Tanner graphs for many block codes necessarily contain

many short cycles

Halford, Grant & Chugg, "Which codes contain 4-cycle-free

Tanner graphs?", IEEE Trans. IT, 52(9) 2006.

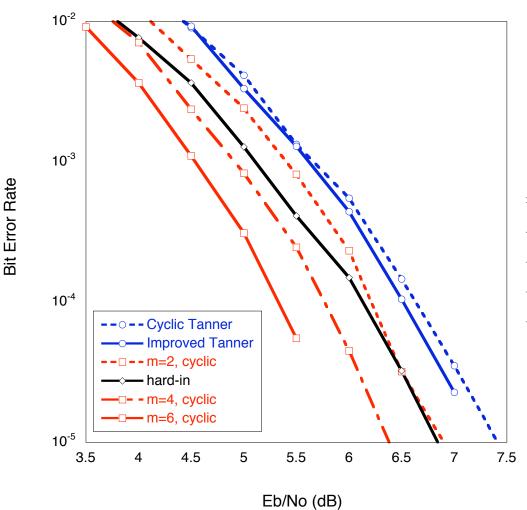
Idea: Greedily reduce cycles via model transformation

Allowed Moves: I) Tanner graph search - row operations

2) 2^m-ary search - local constraint merging

Cost Function: Short cycle structure (N_4, N_6, N_8)

Greedy Heuristic: Experimental Results



Model	N_4	N_6	N_8
Cyclic Tanner	7251	717 K	74 M
Improved Tanner	5415	466 K	43 M
m=2, cyclic	3465	230 K	15 M
m=4, cyclic	706	16 K	292 K
m = 6, cyclic	126	657	0

(63,45) BCH Code

Synthesis & Open Problems

GBP vs. Model Tx:

- similar if GBP regions don't overlap
- model transformation allows redundancy

Loop Calculus vs. Model Tx:

- similar problem of how to transform / what loop terms to use
- model transformation improves dense models, loop calculus improves sparse models

Major Open Problems:

- better cost functions & search heuristics
- model transformation + GBP / loop calculus