Loop Calculus and Belief Propagation for q-ary Alphabet: Loop Tower

Vladimir Chernyak and Michael Chertkov

Department of Chemistry, Wayne State University Theory Division, Los Alamos National Laboratory

Acknowledgements

Misha Stepanov (Tucson) John Klein (WSU)

Outline

- Forney-style graphical model formulation for statistical inference problem
- Traces and graphical traces
- Gauge-invariant formulation of loop calculus
- Loop towers for q-ary alphabet
- Relation to the Bethe free energy approach
- Continuous and supersymmetric cases
- Homotopy approach to loop decomposition

Statistical Inference

$\sigma_{ m orig}$	\Rightarrow	Х	\Rightarrow	σ
original $egin{arred} data \ \sigma_{orig} \in \mathcal{C} \ codeword \end{aligned}$	noisy channel $\mathcal{P}(\mathbf{x} \sigma)$	corrupted data: log-likelihood magnetic field	stat i stical inference	possible preimage $oldsymbol{\sigma} \in \mathcal{C}$
$\sigma = (\sigma_1, \cdots, \sigma_N), N \text{ finite}, \sigma_i = \pm 1 \text{ (example)}$				
Maximum Likelihood		symbol Maximum-a-Posteriori		
$ML = \arg \max_{\sigma}$	$\mathbf{x} \mathcal{P}(\mathbf{x} \sigma)$	$MAP_i = rg\max_{\sigma_i} \sum_{\pmb{\sigma} \setminus \sigma_i} \mathcal{P}(\pmb{x} \pmb{\sigma})$		
Exhaustive search is generally expensive: complexity $\sim 2^N$				

Forney-style graphical model formulation

$$C_0 = (\mathcal{V}_0, \mathcal{E}_0)$$

$$\mathcal{V}_0 = \{a\}$$

$$\mathcal{E}_0 = \{(ab)\}$$

q-ary variables reside on edges

$$\sigma_{ab} = \sigma_{ba} = 0, \cdots, (q-1)$$

Forney '01; Loeliger '01

Probability of a configuration

Partition function

$$p(\boldsymbol{\sigma}) = Z_{C_0}^{-1} \prod_a f_a(\boldsymbol{\sigma}_a), \quad Z_{C_0} = \sum_{\boldsymbol{\sigma}} \prod_a f_a(\boldsymbol{\sigma}_a)$$

Marginal probabilities

Reduced variables

$$p_a(\boldsymbol{\sigma}_a) \equiv \sum_{\boldsymbol{\sigma} \setminus \boldsymbol{\sigma}_a} p(\boldsymbol{\sigma}), \quad p_{ab}(\sigma_{ab}) \equiv \sum_{\boldsymbol{\sigma} \setminus \sigma_{ab}} p(\boldsymbol{\sigma}), \qquad \boldsymbol{\sigma}_a \equiv \{\sigma_{ab} | (ab) \in \mathcal{E}_0\}$$

can be expressed in terms of the derivatives of the free energy with respect to factor-functions

$$\mathcal{F}_{C_0} = -\ln Z_{C_0}$$

Loop calculus (binary alphabet)

Belief Propagation (BP) is exact on a tree

Loop Series: Chertkov, Chernyak '06 Exact (!!) expression in terms of BP $Z = \sum_{\boldsymbol{\sigma}_{\boldsymbol{\sigma}}} \prod_{\boldsymbol{\vartheta}} f_{\boldsymbol{\vartheta}}(\boldsymbol{\sigma}_{\boldsymbol{\vartheta}}) = Z_0 \left(1 + \sum_{\boldsymbol{C}} r(\boldsymbol{C}) \right)$ $r(C) = \frac{\prod_{a \in C} \mu_a}{\prod_{a \in C} (1 - m_{ab}^2)} = \prod_{a \in C} \tilde{\mu}_a$ The Loop Series is finite $C \in \text{Generalized Loops} = \text{Loops without loose ends}$ All terms in the series are calculated within BP BP is exact on a tree $m_{ab} = \int d\boldsymbol{\sigma}_{a} b_{a}^{(bp)}(\boldsymbol{\sigma}_{a}) \sigma_{ab}$ BP is a Gauge fixing condition. Other choices of Gauges would $\mu_{\mathfrak{d}} = \int d\boldsymbol{\sigma}_{\mathfrak{d}} b_{\mathfrak{d}}^{(b\rho)}(\boldsymbol{\sigma}_{\mathfrak{d}}) \prod_{b \in \mathfrak{d}, C} (\sigma_{\mathfrak{d}b} - m_{\mathfrak{d}b})$ lead to different representation.

Equivalent models: gauge fixing and transformations

Replace the model with an equivalent more convenient model

Invariant approach

- (i) Introduce an invariant object that describes partition function Z
- (ii) Different equivalent models correspond to different coordinate choices (gauge fixing)
- (iii) Gauge transformations are changing the basis sets

Coordinate approach

- (i) Introduce a set of gauge transformations that do not change Z
- (ii) Gauge transformations build new equivalent models

General strategy (based on linear algebra)

- (i) Replace q-ary alphabet with a q-dimensional vector space
- (ii) (letters are basis vectors)
- (ii) Represent Z by an invariant object graphical trace
- (iii) Gauge fixing is a basis set choice
- (iv) Gauge transformations are linear transformation of basis sets

Gauge invariance: matrix formulation

Gauge transformations of factor-functions

$$f_a(\boldsymbol{\sigma}_a = (\sigma_{ab}, \cdots)) \to \sum_{\sigma'_{ab}} G_{ab}(\sigma_{ab}, \sigma'_{ab}) f_a(\sigma'_{ab}, \cdots),$$

with orthogonality conditions

$$\sum_{\sigma_{ab}} G_{ab}(\sigma_{ab}, \sigma') G_{ba}(\sigma_{ab}, \sigma'') = \delta(\sigma', \sigma''),$$

do not change the partition function

$$Z_{C_0} = \sum_{\boldsymbol{\sigma}} \prod_a \left(\sum_{\boldsymbol{\sigma}'_a} f_a(\boldsymbol{\sigma}'_a) \prod_{b \in a} G_{ab}(\sigma_{ab}, \sigma'_{ab}) \right)$$
$$\equiv \sum_{\boldsymbol{\sigma}} \bar{p}\{\hat{G}|\boldsymbol{\sigma}\} \equiv \operatorname{Tr} \left(\bar{p}\{\hat{G}|\boldsymbol{\sigma}\} \right),$$

BP equations: matrix (coordinate) formulation

results in BP equations

$$G_{ba}^{(bp)}(0,\sigma_{ab}') = \rho_a^{-1} \sum_{\boldsymbol{\sigma}'_a \setminus \sigma_{ab}'} f_a(\boldsymbol{\sigma}') \prod_{c \in a}^{c \neq b} G_{ac}^{(bp)}(0,\sigma_{ac}').$$
 with

$$\rho_a = \sum_{\boldsymbol{\sigma'}_a} f_a(\boldsymbol{\sigma'}) \prod_{c \in a} G_{ac}^{(bp)}(0, \sigma'_{ac}).$$

BP equations: standard form

A standard form of BP equations

$$\frac{\exp\left(\eta_{ab}^{(bp)}(\sigma_{ab})\right)}{\sum_{\sigma_{ab}}\exp\left(\eta_{ab}^{(bp)}(\sigma_{ab})+\eta_{ba}^{(bp)}(\sigma_{ab})\right)}$$
$$=\frac{\sum_{\sigma_{a}\setminus\sigma_{ab}}f_{a}(\sigma_{a})\exp\left(\sum_{b\in a}\eta_{ab}^{(bp)}\sigma_{ab}\right)\right)}{\sum_{\sigma_{a}}f_{a}(\sigma_{a})\exp\left(\sum_{b\in a}\eta_{ab}^{(bp)}(\sigma_{ab})\right)}$$

is reproduced using the following representation for the ground state

$$\epsilon_{ab} = G_{ab}(0,\sigma) = \frac{\exp\left(\eta_{ab}(\sigma)\right)}{\sum_{\sigma} \exp\left(\eta_{ab}(\sigma) + \eta_{ba}(\sigma)\right)}$$

Side remark: relation to iterative BP

"Reduced Bethe free energy" (variational approach)

Reduced Bethe free energy $F_0(\varepsilon) = -\ln(Z_0(\varepsilon))$

is an attempt to approximate the partition function Z in terms of the ground-state contribution in a proper gauge

BP equations are recovered by the stationary point conditions

Not a standard variational scheme: corrections can be of either sign

What is the relation of the introduced functional to the Bethe free energy (Yedidia, Freeman, Weiss '01)?

Graphical representation of trace and cyclic trace

Summation over repeating subscripts/superscripts

$$Tr(f^{n}) = \sum f_{j_{1}}^{j_{2}} f_{j_{2}}^{j_{3}} \dots f_{j_{n}}^{j_{1}} = \sum f_{i_{1}j_{1}} g^{j_{1}i_{2}} f_{i_{2}j_{2}} g^{j_{2}i_{3}} \dots f_{i_{n}j_{n}} g^{j_{n}i_{1}}$$

Graphic trace and partition function

Scalar products

Orthogonality condition $u \cdot w = g_{ab}(u \otimes w)$ $g_{ab}^{ij} = g_{ab}(e_{ab}^{i} \otimes e_{ba}^{j}) = e_{ab}^{i} \cdot e_{ba}^{j} = \delta^{ij}$ $u \in W_{ab}$ $w \in W_{ba}$ Tensors and factor-functions $f^{a} = \sum f_{a}(\sigma_{1},...,\sigma_{n})e_{ab_{1}}^{\sigma_{1}} \otimes ... \otimes e_{ab_{n}}^{\sigma_{n}}$ $\sigma_1 \dots \sigma_n$

$$Z = Tr(f)$$

Partition function and graphic trace: gauge invariance

Graphic trace: Evaluate scalar products (reside on edges) on tensors (reside vertices)

$$Tr(f) = \sum_{\sigma\sigma'} f_a(\sigma_{ab}, \sigma_{ac}, \sigma_{ad}) f_b(\sigma_{ba}, \sigma_{bs}) \dots \underbrace{e_{ac}^{\sigma_{ac}}}_{e_{ad}^{\sigma_{ab}}} \underbrace{\xi_{ab,\sigma'_{ab}} \otimes \xi_{ba,\sigma'_{ab}}}_{e_{ba}^{\sigma_{bs}}} \underbrace{e_{bs}^{\sigma_{bs}}}_{e_{ba}^{\sigma_{ab}}} \underbrace{e_{bs}^{\sigma_{bs}}}_{e_{ba}^{\sigma_{ab}}} \underbrace{e_{bs}^{\sigma_{bs}}}_{e_{ba}^{\sigma_{bb}}} \underbrace{e_{bs}^{\sigma_{bs}}}_{e_{ba}^{\sigma_{bb}}} \underbrace{e_{bs}^{\sigma_{bs}}}_{e_{ba}^{\sigma_{bb}}} \underbrace{e_{bs}^{\sigma_{bs}}}_{e_{ba}^{\sigma_{bb}}} \underbrace{e_{bs}^{\sigma_{bb}}}_{e_{ba}^{\sigma_{bb}}} \underbrace{e_{bs}^{\sigma_{bb}}}_{e_{ba}^{\sigma_{bb}}} \underbrace{e_{bs}^{\sigma_{bb}}}_{e_{ba}^{\sigma_{bb}}} \underbrace{e_{bs}^{\sigma_{bb}}}_{e_{ba}^{\sigma_{bb}}} \underbrace{e_{bs}^{\sigma_{bb}}}_{e_{ba}^{\sigma_{bb}}} \underbrace{e_{bs}^{\sigma_{bb}}}_{e_{ba}^{\sigma_{bb}}} \underbrace{e_{bs}^{\sigma_{bb}}}_{e_{bb}^{\sigma_{bb}}} \underbrace$$

Gauge invariance: graphic trace is an invariant object, factor-functions are basis-set dependent

$$f_a(\sigma_1,...,\sigma_n) = \xi_{ab_1,\sigma_1} \otimes ... \otimes \xi_{ab_n,\sigma_n}(f^a)$$

"Gauge fixing" is a choice of an orthogonal basis set

Belief propagation gauge and BP equations

Introduce local ground $\mathcal{E}_{ab} \in W_{ab}^*$ and excited (painted) states $u_{ab} \in W_{ab}^*$ $\varepsilon_{ab} \cdot \varepsilon_{ba} = 1$ $u_{ab} \cdot \varepsilon_{ba} = 0$ BP gauge: painted structures with loose ends should be forbidden $\sum \mathcal{E}_{ab_{n-1}} \mathcal{U}_{ab}$ (in particular, no allowed painted structures in a tree case) \mathcal{E}_{ba} \mathcal{E}_{ab_1} b_{n-1} h $u_{ab} \otimes \mathcal{E}_{ab} \otimes \dots \otimes \mathcal{E}_{ab_{n-1}}(f^a) = u_{ab}(\mathcal{E}_{ab_1} \otimes \dots \otimes \mathcal{E}_{ab_{n-1}}(f^a)) = 0$ $\mathcal{E}_{ab} \otimes ... \otimes \mathcal{E}_{ab} (f^a) \in W_{ab}$

or, stated differently, results in BP equations in invariant form:

$$g_{ab}(\varepsilon_{ab_{1}} \otimes ... \otimes \varepsilon_{ab_{n-1}}(f^{a})) = \rho_{ab}\varepsilon_{ba}$$
$$g_{ab}(\varepsilon_{ab_{1}} \otimes ... \otimes \varepsilon_{ab_{n-1}}(f^{a})) \in W_{ba}^{*}$$

Loop decomposition: binary case

 $Z_{C_0} = Z_{0;C_0} (1 + \sum_{C_1} r(C_1)), \quad r(C_1) \equiv Z_{0;C_0}^{-1} \bar{p}(G|\boldsymbol{\sigma}_{C_1}),$ $Z_{0;C_0} \equiv \bar{p}(G|\boldsymbol{\sigma}_0), \quad \boldsymbol{\sigma}_0 \equiv \{\sigma_{ab} = 0 | \quad (ab) \in C_0\},$ $\boldsymbol{\sigma}_{C_1} \equiv \left\{ \begin{array}{c} \sigma_{ab} = 1 | & (ab) \in C_1 \\ \sigma_{ab} = 0 | & (ab) \in C_0 \setminus C_1. \end{array} \right\}.$

Beliefs (marginal probabilities)

$$b_{ab}^{(bp)}(\sigma_{ab}) = G_{ab}^{(bp)}(0, \sigma_{ab}),$$
$$b_{a}^{(bp)}(\boldsymbol{\sigma}_{a}) = \frac{f_a(\boldsymbol{\sigma}_a) \prod_{b \in a} G_{ab}^{(bp)}(0, \sigma_{ab})}{\sum_{\boldsymbol{\sigma}_a} f_a(\boldsymbol{\sigma}_a) \prod_{b \in a} G_{ab}^{(bp)}(0, \sigma_{ab})}.$$

$$\begin{split} r(C_1) &= \frac{\prod_{a \in C_1} \mu_a}{\prod_{(ab) \in C_1} (1 - m_{ab}^2)}, \ m_{ab} \equiv \sum_{\sigma_{ab}} \sigma_{ab} b_{ab}^{(bp)}(\sigma_{ab}), \\ \mu_a &\equiv \sum_{\sigma_a} \left(\prod_{b \in a, C_1} (\sigma_{ab} - m_{ab}) \right) b_a^{(bp)}(\sigma_a). \end{split}$$
 A generation of the states of th

A generalized loop visualizes a single-configuration contribution to the partition function in BP gauge

Loop towers for q-ary alphabet: first step

A generalized loop defines a vertex model on the corresponding subgraph with (q-1)-ary alphabet (first store above the ground store)

$$Z_{C_0} = Z_{0;C_0} + \sum_{C_1 \in \Omega(C_0)} Z_{C_1}, \ Z_{C_1} = \sum_{\boldsymbol{\sigma}_{C_1}} \bar{p}(G^{(bp)} | \boldsymbol{\sigma}_{C_1})$$

q>2 (non-binary case): more than one local excited state

Partition function for the subgraph model

$$Z_{C_{1}} = \sum_{\boldsymbol{\sigma}_{C_{1}}} \prod_{a \in C_{1}} f_{1;a}(\boldsymbol{\sigma}_{a;C_{1}}), \quad f_{1;a}(\boldsymbol{\sigma}_{a;C_{1}}) =$$
$$= \sum_{\boldsymbol{\sigma}_{a}'} f_{a}(\boldsymbol{\sigma}_{a}') \prod_{b \in a,C_{0}} G_{ab;C_{0}}^{(bp)}(\sigma_{ab},\sigma_{ab}') \prod_{b \in a,C_{0}}^{b \notin C_{1}} \delta(\sigma_{ab},0)$$

Loop-tower expansion for q-ary alphabet $j=1,\dots,q-2: Z_{C_j}=Z_{0;C_j}+\sum_{C_{j+1}\in\Omega(C_j)}Z_{C_{j+1}}.$

Building the next level (store)

$$Z_{C_j} = \sum_{\boldsymbol{\sigma}_{C_j}} \prod_{a \in C_j} f_{j;a}(\boldsymbol{\sigma}_{a;C_j}),$$

$$f_{j;a}(\boldsymbol{\sigma}_{a;C_j}) = \sum_{\boldsymbol{\sigma}'_{a;C_{j-1}}} f_{j-1;a}(\boldsymbol{\sigma}'_{a;C_{j-1}})$$

Loop tower

 $C_0 \supset C_1 \supset \cdots \supset C_{q-2}$

$$\times \prod_{b \in a, C_{j-1}} G_{ab; C_{j-1}}^{(bp)}(\sigma_{ab}, \sigma'_{ab}) \prod_{b \in a, C_{j-1}}^{b \notin C_j} \delta(\sigma_{ab}, j-1),$$

Bethe free energy for q-ary alphabet

BP equations can be obtained as stationary points of the Bethe free energy functional of beliefs

$$\Phi_{Bethe} = \sum_{a} \sum_{\boldsymbol{\sigma}_{a}} b_{a}(\boldsymbol{\sigma}_{a}) \ln\left(\frac{b_{a}(\boldsymbol{\sigma}_{a})}{f_{a}(\boldsymbol{\sigma}_{a})}\right) - \sum_{(ab)} \sum_{\boldsymbol{\sigma}_{ab}} b_{ab}(\boldsymbol{\sigma}_{ab}) \ln b_{ab}(\boldsymbol{\sigma}_{ab}).$$

with natural constraints

$$0 \leq b_{a}(\boldsymbol{\sigma}_{a}), b_{ac}(\boldsymbol{\sigma}_{ac}) \leq 1,$$

$$\sum_{\boldsymbol{\sigma}_{a}} b_{a}(\boldsymbol{\sigma}_{a}) = 1, \quad \sum_{\boldsymbol{\sigma}_{ab}} b_{ab}(\boldsymbol{\sigma}_{ab}) = 1,$$

$$b_{ac}(\boldsymbol{\sigma}_{ac}) = \sum_{\boldsymbol{\sigma}_{a} \setminus \boldsymbol{\sigma}_{ac}} b_{a}(\boldsymbol{\sigma}_{a}), \quad b_{ac}(\boldsymbol{\sigma}_{ca}) = \sum_{\boldsymbol{\sigma}_{c} \setminus \boldsymbol{\sigma}_{ca}} b_{c}(\boldsymbol{\sigma}_{c}).$$

Bethe effective Lagrangian

$$\begin{split} \mathcal{L}_{Bethe} &= \sum_{a} \sum_{\sigma_{a}} b_{a}(\sigma_{a}) \ln \left(\frac{b_{a}(\sigma_{a})}{f_{a}(\sigma_{a})} \right) - \sum_{(ab)} \sum_{\sigma_{ab}} b_{ab}(\sigma_{ab}) \ln b_{ab}(\sigma_{ab}) \\ &+ \sum_{(ab)} \left(\sum_{\sigma_{ab}} \ln(\varepsilon_{ab}(\sigma_{ab})) \left(b_{ab}(\sigma_{ab}) - \sum_{\sigma_{a} \setminus \sigma_{ab}} b_{a}(\sigma_{a}) \right) \right) \\ &+ \sum_{\sigma_{ba}} \ln(\varepsilon_{ba}(\sigma_{ba})) \left(b_{ab}(\sigma_{ba}) - \sum_{\sigma_{b} \setminus \sigma_{ba}} b_{b}(\sigma_{b}) \right) \right) \end{split}$$
Values of beliefs
$$b_{a}^{(*)}(\sigma_{a}) &= (\varrho_{a}(\varepsilon_{a}))^{-1} f_{a}(\sigma_{a}) \prod_{b \in a} \varepsilon_{ab}(\sigma_{ab}) \\ \rho_{ab}(\varepsilon_{ab}) &= \rho_{ab}^{-1}(\varepsilon_{ab}, \varepsilon_{ba})\varepsilon_{ab}(\sigma_{ab})\varepsilon_{ba}(\sigma_{ab}), \\ \rho_{a}(\varepsilon_{a}) &\equiv \sum_{\sigma_{a}} f_{a}(\varepsilon_{a}) \prod_{c \in a} \varepsilon_{ac}(\sigma_{ac}), \\ \rho_{ab}(\varepsilon_{ab}, \varepsilon_{ba}) &\equiv \sum_{\sigma_{ab}} \varepsilon_{ab}(\sigma_{ab})\varepsilon_{ba}(\sigma_{ab}), \\ \mathcal{F}_{B}(\hat{\varepsilon}) &= -\sum_{a} \ln \varrho_{a}(\varepsilon_{a}) + \sum_{(ab)} \ln \left(\varrho_{ab}(\varepsilon_{ab}, \varepsilon_{ba}) \right)) \end{split}$$

$$\begin{split} & \text{Relation to Bethe free energy} \\ \mathcal{L}_{Bethe} = \sum_{a} \sum_{\sigma_{a}} b_{a}(\sigma_{a}) \ln \left(\frac{b_{a}(\sigma_{a})}{f_{a}(\sigma_{a})}\right) - \sum_{(ab)} \sum_{\sigma_{ab}} b_{ab}(\sigma_{ab}) \ln b_{ab}(\sigma_{ab}) \\ & + \sum_{(ab)} \left(\sum_{\sigma_{ab}} \ln(\varepsilon_{ab}(\sigma_{ab})) \left(b_{ab}(\sigma_{ab}) - \sum_{\sigma_{a} \setminus \sigma_{ab}} b_{a}(\sigma_{a})\right) \right) \\ & + \sum_{\sigma_{ba}} \ln(\varepsilon_{ba}(\sigma_{ba})) \left(b_{ab}(\sigma_{ba}) - \sum_{\sigma_{b} \setminus \sigma_{ba}} b_{b}(\sigma_{b})\right) \right) \\ \text{Variation of the ground state} \\ & \mathcal{F}_{B}(\hat{\varepsilon}) = -\sum_{a} \ln \varrho_{a}(\varepsilon_{a}) + \sum_{(ab)} \ln (\varrho_{ab}(\varepsilon_{ab}, \varepsilon_{ba}))) \\ \Phi_{Bethe} = \sum_{a} \sum_{\sigma_{a}} b_{a}(\sigma_{a}) \ln \left(\frac{b_{a}(\sigma_{a})}{f_{a}(\sigma_{a})}\right) \\ - \sum_{(ab)} \sum_{\sigma_{ab}} b_{ab}(\sigma_{ab}) \ln b_{ab}(\sigma_{ab}). \\ \mathcal{F}_{0}(\hat{\epsilon}) \quad \text{Reduced Bethe free energy} \end{split}$$

Summary

- We have extended the loop expansion for general statistical inference problem to the case of general q-ary alphabet
- In the general case the loop decomposition goes over the loop towers
- We have formulated the statistical inference problem in terms of a graphical trace, which leads to the invariance of the partition function under a set of gauge transformations
- BP equations have been interpreted as a special choice of gauge
- The introduced Bethe effective Lagrangian establishes a connection between the gauge-invariant and Bethe free-energy approaches
- Generalization to the continuous and supersymmetric cases

Path forward: interplay of topological and geometrical equivalence

- + • improving BP
- quantum version
- etc

Bibliography

• V.Y. Chernyak, M. Chertkov, Loop Calculus and Belief Propagation for q-ary Alphabet: Loop Tower, proceeding of ISIT 2007, June2007, Nice, cs.IT/0701086

 M. Chertkov, V.Y. Chernyak, Loop Calculus Helps to Improve Belief Propagation and Linear Programming Decodings of Low-Density-Parity-Check Codes, 44th Allerton Conference (September 27-29, 2006, Allerton, IL); arXiv:cs.IT/0609154

 M. Chertkov, V.Y. Chernyak, *Loop Calculus in Statistical Physics and Information Science*, Phys. Rev. E 73, 065102(R)(2006); cond-mat/0601487

M. Chertkov, V.Y. Chernyak, Loop series for discrete statistical models on graphs, J. Stat. Mech. (2006) P06009,cond-mat/0603189

Continuous and supersymmetric case: graphical sigma-models $(\psi, \psi') = \int_{M} d\sigma \psi'(\sigma) \psi(\sigma)$ $M_a = \prod M_{ab}$ MМ \overline{M}_{ba} $b \in a$ M_{ab} М Scalar product: the space of states and its dual are equivalent $\hat{\varphi}(\psi) = \int_{M} d\sigma \varphi(\sigma) \psi(\sigma)$ Ind requirement $\psi_{ba}^{(0)} = \lambda_{ab} \int \prod_{c \in a}^{c \neq b} d\sigma_{ac} f_a(\sigma_a) \prod_{c \in a}^{c \neq b} \psi_{ac}^{(0)}(\sigma_{ac})$ No-loose-end requirement Continuous version of BP equations / 1 / 1

$$\psi_{ba}^{(j-1)} = \lambda_{ab} P_{C,ab} \int \prod_{c \in a}^{c \neq b} d\sigma_{ac} f_a(\boldsymbol{\sigma}_a) \prod_{c \in a}^{c \neq b} \psi_{ac}^{(j-1)}(\sigma_{ac}); \quad P_{C,ab} \psi_{ba}^{(j-1)} = 0$$

Supersymmetric sigma-models: supermanifolds

 \mathbb{Z}_2 -graded manifolds (supermanifolds)

substrate (usual) manifold $\overline{M} \subset M$

additional Grassman (anticommuting variables)

$$m = (m_+, m_-)$$

$$\theta_i \theta_j = -\theta_j \theta_i$$

Functions on a supermanifold

$$\psi(\sigma) = \psi(x,\theta) = \psi^{(0)}(x) + \sum_{i_1} \psi^{(1)}_{i_1}(x)\theta_{i_1} + \sum_{i_1i_2}^{i_1 < i_2} \psi^{(2)}_{i_1i_2}(x)\theta_{i_1}\theta_{i_2} + \dots$$

Berezin integral (measure in a supermanifold)

$$\int d\theta_i = 0; \quad \int \theta_i d\theta_i = 1; \quad d\theta_i d\theta_j = -d\theta_j d\theta_i; \quad d\theta_i \theta_j = -\theta_j d\theta_i$$

Any function on a supermanifold can be represented as a sum of its even and odd components

Supersymmetric sigma models: graphic supertrace I

 $B_1 - B_0 = card(E) - card(V)$

(number of connected components)

Supersymmetric sigma models: graphic supertrace II

Decompose the vector spaces $\mathcal{W}_{ab} = \mathcal{W}_{ab}^{(+)} \oplus \mathcal{W}_{ab}^{(-)}$

into reduced vector spaces $\mathcal{W}_{ab}^{(\alpha_{ab})}$ with $\alpha_{ab} = (-1)^{p_{ab}}$

Graphic supertrace decomposition (generalizes the supertrace)

$$Z = \sum_{p \in H_1(X;\mathbb{Z}_2)} Z_p; \qquad \text{Tr}\mathcal{F} = \sum_{p \in H_1(X;\mathbb{Z}_2)} \text{Tr}\mathcal{F}_p$$

results in a multi-reference loop expansion

 \mathcal{F}_p is the graphic trace (partition function) of a reduced model

Loop calculus for the bouquet model (independent loops) constitutes a resummation for the original model (generalized loops)