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Motivation

* Random Walk: visiting the nodes of a graph G

in some sequential random order; Message e O

moves randomly in the network. o—O v

: : : ® O O u
* Random walks in networking setting:

[SB02, BE02, DSWO02, AB04, GMS04, SKHO05, ASS06]

v Searching, routing, query mechanism, self-stabilization.

v Sensor networks, P2P, distributed systems, the Web.

* Why to use random-walk-based applications?

* How efficient is this process?



Cover Time

* Cover time C(G): the expected time (messages) to visit all
nodes in a graph G in a simple random walk. (starting at the
worst node).

* Hitting time: h(u,v). hpax = maxh(u,v)

U,V

* Mixing time.

* Cover time, Known results:

v Best cases: highly connected graphs. @(n - log n).
v Worst cases: bottlenecks exist. @(n3).

v Random geometric graphs (random WSN). @(n - log n).



Cover Time of RGG

* What is the minimum radius rop: that will guarantee w.h.p.
that the random geometric graph has an optimal cover time
of O(n - log n) and optimal partial cover time of O(n)?

* Main Result: Theorem [AEO05]:
Topt = O(Tcon)

Pr(opt)

0

0 Tcon

*Diameter is long, 1/r = O((n/log n)*), the 2-dimensional grid is not optimal



The Speed Up Question

*+ Random walk is a sequential process, imply long delay in
some applications.

* Can multiple walks reduce the latency?
v A similar question was first asked in [BKRU, FOCS 89].

v What is the cover time, C¥G), of k parallel random walks, all
starting at the same location?

* What is the speed-up of k-random walks on a graph G?

_ ¢(G)
F o

S*(G)



The Answer 1s not Obvious

* First, easy case, Clique K, of size n.

B e
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The Answer 1s not Obvious

* What happens on the barbell B, of size n?
@ B13 % g

* The cover time is @(n?).

* k=0(log n) walks starting at v.: w.h.p each clique will have
O(log n) walks after the first step.

+ w.h.p each clique is covered in O(n) steps so, C2°'°¢"(B,,) = O(n)

+ This leads to an exponential speed up: Sy (B,,) = (2")



The Answer 1s not Obvious

*+ What happened on the path L, of length n?

* The cover time is known to be O(n?).

* The probability for a single walk to cover the line in n
stepsis 2.

* 50, 29" walks are needed for a linear speed up.

* Generalize for &, the speed up SKL,)=O(log k).



The Answer 1s not Obvious

* What happens on the 2-dimensional grid G,?

Vn
S o S Logarithmic ?
O O 3
Vn Exponential?
@, O
R Linear?

* The cover time is O(n log? n).

+ We show that for € >0, k£ < (logn)' ¢

S )k o1
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Main Results

* Theorem: For a large collection of graphs, as long as k is
not too big there is a speed up of k-o(1).

*+ The collection includes all graphs for which there is a gap
between the cover time C and Auqcand & such:

C

hmax

» 00 b (Olh )

* d-dimensional grids for d =2

k
* d-regular balanced trees for d>2 5. — kol
* Erd6s-Rényi random graphs k < (logn)'—*

* random geometric graphs



Proof for linear speed-up

* Matthews’ bound [MATSS]: for any graph G
C(G) S hma:c : Hn

* Theorem: For any graph G and k <log n

Ck(G) S . —I_]:(l) : hma:c : Hn

*+ Corollary: when Matthews’ bound is tight there is a
linear speed up



Proof

1
Priu ~ v > € hpax] £ - (Markov inequality) - a trial

L :
Prlu~ v > er - hpay| < = (independent r trials)
1 1
=

Prik walks: 4~ v > €r - Apax] < [
€ f i

2
nln“n

r=[(Inn+2Inlnn)/k]

1

In’n

Prlk walks of erhy,.x from u covers the graph| > 1 —

GG - evh . GG Litn

il ool b H Tk



The Result 1s Tight

* For the 2-dimensional grid (torus)

ki (logn)l_E gives Sk =k — o(1)

i
k= Q(10g3 n) gives Sk — o(k) T
* On the grid could, clog’n — /logn? 3
* On the cycle could, Clog’n — /logn ? Q_o:o_;_o
Vn

* Fore a more restricted families of graphs we can have
linear speed up for a larger «.



Expanders

* Theorem: For expanders there is a linear speed up
for k <n.

*+ Proof idea: having a much stronger bound on the hitting
probability (instead of markov inequality we used
earlier).

* The cover time is O(n log n), diameter O(log n).

* The result is tight: for k =w(n) the k cover time cannot be
Ck = o(log n).



Part I: Open Problems

* What is the graph property that captures the speed up of
k random walks?

* [s speed-up always $Xlog k)?
* [s speed-up always O(k)?

* L N
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Talk Overview

* Motivation
* Part I: Many Random Walks are Faster Than One.

* Part II: The Power of Choice in Random Walks
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The Power of Choice

* “Balls in Bins” (n balls, n bins)

Ll Jla]l

*+ The most loaded bin is

logn

loglogn
*+ “Balanced Allocation” [ABKU94]: Adding Choice of d.

*+ The most loaded bin with choice of d >1:

loglogn |91_“31|L_||!_H_|L_HT|

log d

* n — co. unbounded improvement! diminishing returns.




RWC (d): Random Walk with Choice

* Observation: “Balls in Bins” is a random walk on the
complete graph!

* Idea: add choice for RW on arbitrary graph

* Algorithm:

RWC(d)

1. update the number of visits

2. select d neighbors independently and
uniformly with replacement.

3. step to the node that minimizes
(# visits)/( node degree)




Theoretical results

* Lemma: On a complete graph RWC(d) gives
improvement of order d:

cover time of SRW —
cover time of RWC(d)

* Question: Can we get unbounded improvement for other

graphs ?

* We present simulation results on Random Geometric
Graphs (RGG) and Grids. e S
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SRW

RWC(2)

RWC(3)

Random Wireless Network:
Cover time distribution
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Random Wireless Network: - @
Number of visits at cover e
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O

2D grids of different sizes: |

improvement ratio in cover time |
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Part II: Open Problems

* Prove the power of choice in random walks.

* What is the cover time speed-up in RWC(d)?

* What is the mixing time of RWC(d)?

* What is the stationary (empirical) distribution of RWC?

* What is the decrease in the most visited node in RWC(d)?

* o000
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