# Enhancing Random Walks Efficiency

Chen Avin
Department of Communication Systems Engineering
Ben Gurion University

### Talk Overview

- \* Motivation
- \* Part I: Many Random Walks are Faster Than One. [FOCS]
  - ✓ Noga Alon, Michal Koucky, Gady Kozma, Zvi Lotker and Mark Tuttle
- \* Part II: The Power of Choice in Random Walks. [MSWiM06]
  - ✓ Bhaskar Krishnamachari

### Motivation

- \* Random Walk: visiting the nodes of a graph G in some sequential random order; Message moves randomly in the network.
- \* Random walks in networking setting: [SB02, BE02, DSW02, AB04, GMS04, SKH05, ASS06]
  - ✓ Searching, routing, query mechanism, self-stabilization.
  - ✓ Sensor networks, P2P, distributed systems, the Web.
- \* Why to use random-walk-based applications?
- \* How efficient is this process?

### Cover Time

- \* Cover time C(G): the expected time (messages) to visit all nodes in a graph G in a simple random walk. (starting at the worst node).
- \* Hitting time: h(u,v).  $h_{\max} = \max_{u,v} h(u,v)$
- \* Mixing time.
- \* Cover time, Known results:
  - ✓ Best cases: highly connected graphs.  $\Theta(n \cdot log n)$ .
  - ✓ Worst cases: bottlenecks exist.  $\Theta(n^3)$ .
  - ✓ Random geometric graphs (random WSN).  $\Theta(n \cdot log n)$ .

### Cover Time of RGG

- \* What is the minimum radius  $r_{opt}$  that will guarantee w.h.p. that the random geometric graph has an optimal cover time of  $\Theta(n \cdot \log n)$  and optimal partial cover time of  $\Theta(n)$ ?
- \* Main Result: Theorem [AE05]:

$$r_{opt} = \Theta(r_{con})$$



<sup>\*</sup>Diameter is long,  $1/r = \Theta((n/\log n)^{\frac{1}{2}})$ , the 2-dimensional grid is not optimal

### The Speed Up Question

- \* Random walk is a sequential process, imply long delay in some applications.
- \* Can multiple walks reduce the latency?
  - ✓ A similar question was first asked in [BKRU, FOCS 89].
  - ✓ What is the cover time,  $C^k(G)$ , of k parallel random walks, all starting at the same location?
- \* What is the speed-up of k-random walks on a graph G?

$$S^{k}(G) = \frac{C(G)}{C^{k}(G)}$$

\* First, easy case, Clique  $K_n$  of size n.



$$S^k(K_n) = k$$

\* What happens on the barbell  $B_n$  of size n?



- \* The cover time is  $\Theta(n^2)$ .
- \*  $k=O(\log n)$  walks starting at  $v_c$ : w.h.p each clique will have  $O(\log n)$  walks after the first step.
- \* w.h.p each clique is covered in O(n) steps so,  $C_{v_c}^{20 \log n}(B_n) = O(n)$
- \* This leads to an exponential speed up:  $S_{v_c}^k(B_n) = \Omega(2^k)$

\* What happened on the path  $L_n$  of length n?



- \* The cover time is known to be  $O(n^2)$ .
- \* The probability for a single walk to cover the line in n steps is  $2^{-n}$ .
- \* So,  $2^{\Omega(n)}$  walks are needed for a linear speed up.
- \* Generalize for k, the speed up  $S^k(L_n) = \Theta(\log k)$ .

\* What happens on the 2-dimensional grid  $G_n$ ?



Logarithmic?

**Exponential?** 

Linear?

- \* The cover time is  $O(n \log^2 n)$ .
- \* We show that for  $\epsilon > 0$ ,  $k \le (\log n)^{1-\epsilon}$

$$S^k(G_n) = k - o(1)$$

#### Main Results

- \* **Theorem**: For a large collection of graphs, as long as k is not too big there is a speed up of k-o(1).
- \* The collection includes all graphs for which there is a gap between the cover time C and  $h_{max}$  and k such:

$$\frac{C}{h_{\text{max}}} \to \infty$$
  $k \le (C/h_{\text{max}})^{1-\epsilon}$ 

- \* d-dimensional grids for  $d \ge 2$
- \* d-regular balanced trees for d≥2
- Erdős-Rényi random graphs
- \* random geometric graphs

$$S^k = k - o(1)$$

$$k \le (\log n)^{1-\epsilon}$$

### Proof for linear speed-up

\* Matthews' bound [MAT88]: for any graph *G* 

$$C(G) \le h_{max} \cdot H_n$$

\* Theorem: For any graph G and  $k \le log n$ 

$$C^{k}(G) \le \frac{e + o(1)}{k} \cdot h_{max} \cdot H_{n}$$

\* Corollary: when Matthews' bound is tight there is a linear speed up

### Proof

- $\Pr[u \leadsto v \ge e \cdot h_{\max}] \le \frac{1}{e}$  (Markov inequality) a trial
- $\Pr[u \leadsto v \ge er \cdot h_{\max}] \le \frac{1}{e^r}$  (independent *r* trials)
- $\Pr[k \text{ walks: } u \leadsto v \ge er \cdot h_{\max}] \le \frac{1}{e^{kr}} \le \frac{1}{n \ln^2 n}$
- $r = \lceil (\ln n + 2 \ln \ln n)/k \rceil$
- $\Pr[k \text{ walks of } erh_{\max} \text{ from u covers the graph}] \ge 1 \frac{1}{\ln^2 n}$
- $C^k(G) \le erh_{\max} + C(G)/\ln^2 n$
- $C^k(G) \le (e + o(1))h_{\max}H_n/k$

### The Result is Tight

\* For the 2-dimensional grid (torus)

$$\checkmark \quad k \le (\log n)^{1-\epsilon}$$

gives

$$S^k = k - o(1)$$

$$\checkmark$$
  $k \ge \Omega(\log^3 n)$  gives

$$S^k = o(k)$$







\* Fore a more restricted families of graphs we can have linear speed up for a larger k.

### Expanders

- \* Theorem: For expanders there is a linear speed up for  $k \le n$ .
- \* Proof idea: having a much stronger bound on the hitting probability (instead of markov inequality we used earlier).
- \* The cover time is  $O(n \log n)$ , diameter  $O(\log n)$ .
- \* The result is tight: for  $k = \omega(n)$  the k cover time cannot be  $C^k = o(\log n)$ .

### Part I: Open Problems

- \* What is the graph property that captures the speed up of *k* random walks?
- \* Is speed-up always  $\Omega(\log k)$ ?
- \* Is speed-up always O(k)?

\* ....

### Talk Overview

- \* Motivation
- \* Part I: Many Random Walks are Faster Than One.
- \* Part II: The Power of Choice in Random Walks

#### The Power of Choice

- "Balls in Bins" (n balls, n bins)
- \* The most loaded bin is



$$\frac{\log n}{\log \log n}$$

- \* "Balanced Allocation" [ABKU94]: Adding Choice of d.
- \* The most loaded bin with choice of d >1:

$$\frac{\log \log n}{\log d}$$



\*  $n \rightarrow \infty$ . unbounded improvement! diminishing returns.

### RWC(d): Random Walk with Choice

- \* Observation: "Balls in Bins" is a random walk on the complete graph!
- \* Idea: add choice for RW on arbitrary graph
- \* Algorithm:

#### RWC(d)

- 1. update the number of visits
- 2. select d neighbors independently and uniformly with replacement.
- 3. step to the node that minimizes (# visits)/( node degree)

### Theoretical results

\* Lemma: On a complete graph RWC(d) gives improvement of order d:

$$\frac{\text{cover time of SRW}}{\text{cover time of RWC(d)}} \approx d$$

- \* Question: Can we get unbounded improvement for other graphs?
- \* We present simulation results on Random Geometric Graphs (RGG) and Grids.

#### Random Wireless Network: Cover time distribution





#### Random Wireless Network: Number of visits at cover







Nodes

## 2D grids of different sizes: improvement ratio in cover time



### Part II: Open Problems

- \* Prove the power of choice in random walks.
- \* What is the cover time speed-up in RWC(d)?
- \* What is the mixing time of RWC(d)?
- \* What is the stationary (empirical) distribution of RWC?
- \* What is the decrease in the most visited node in RWC(d)?

\* ....

### Thank You