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Abstract

A procedure is presented to untangle unstructured 2D meshes containing inverted elements by node repositioning.

The inverted elements may result from node movement in Arbitrary Lagrangian–Eulerian (ALE) simulations of

continuum mechanics problems with large shear deformation such as fluid flow and metal forming. Meshes with in-

verted elements may also be created due to the limitations of mesh generation algorithms particularly for non-simplicial

mesh generation. The untangling procedure uses a combination of direct node placement based on geometric com-

putation of the feasible set, and node repositioning driven by numerical optimization of an objective function that

achieves its minimum on a valid mesh. It is shown that a combination of the feasible set, based method and the op-

timization method achieves the best results in untangling complex 2D meshes. Preliminary results are also presented for

untangling of 3D unstructured meshes by the same approach.
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1. Introduction

Arbitrary Lagrangian–Eulerian or ALE methods are a popular class of methods for simulating con-

tinuum mechanics problems with large shear deformation such as fluid flow and metal forming [1,2]. ALE

methods consist of a Lagrangian step in which the mesh nodes move according to the flow of the material, a

rezone step in which the mesh is modified to improve its quality, and a remapping step in which the solution

is transferred from the old mesh to the new, improved mesh. In [3–5], methods were described to improve

the quality of the mesh while keeping it close to the original mesh. However, in order to improve the meshes

by the methods described in [3–5], all elements of the starting mesh must be valid or non-inverted.
Therefore, if the Lagrangian step of an ALE simulation causes the mesh to become tangled (i.e., it has some
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elements that are inverted), the mesh must be untangled before the mesh improvement procedures are

applied to it.

The need for untangling meshes also exists when a mesh generation procedure is unable to create all
valid elements in a mesh. This situation may be encountered in the generation of all hexahedral meshes and

general polyhedral meshes where there is no guaranteed method of directly generating a valid mesh [6]. It

may also be encountered in advancing front based mesh generation of tetrahedral and hexahedral meshes

[7–9] where it is possible to generate small cavities that cannot be filled with all positive volume elements. In

these cases, it is very useful to have a tool that can untangle the mesh after the initial generation assuming

that the right mesh connectivity has been generated.

Several researchers have recently begun focusing on the problem of untangling unstructured meshes by

node repositioning [10–13]. Freitag and Plassmann [11,14] untangle meshes by optimization of a local
function based on maximizing the minimum element area at each mesh vertex. Knupp [12] performs a

global optimization of the difference between the absolute and signed values of element volumes in order to

untangle the mesh. Kovalev et al. [13] visit each vertex connected to at least one invalid element and re-

position the vertex directly to a point in its feasible set (or ‘‘kernel’’) to make all connected elements valid.

They define the feasible set of a vertex to be the set of all locations of the vertex for which all elements

connected to the vertex will be valid. The new location of the vertex in the feasible set is found by a clever

use of the simplex method to find three corners of the feasible set and taking their mean. Most of these

procedures are capable of successfully untangling many tangled mesh configurations. However, there are
conditions under which they may fail to untangle the mesh or they may not be able to produce elements

with sufficient positive volume so as to provide a good starting point for mesh improvement procedures.

In this paper, a method is presented for untangling unstructured 2D meshes containing triangles and

quadrilaterals. The method uses a multi-step approach based on a combination of relocating vertices to

positions in their respective feasible sets, and on minimizing a function to untangle the mesh elements. The

untangling procedures only reposition nodes to untangle the mesh and do not perform any topological

modifications since solution transfer between meshes with different connectivity is complex and expensive.

Also in the interest of accurate solution transfer, the procedures endeavor to keep the mesh as close as
possible to the original mesh.

The methods described here focus only on ensuring that all elements of the mesh meet at least bare

minimum validity criteria as defined by the simulation procedures that will use them. However, the methods

can easily be combined with separate procedures for improving the quality of the untangled mesh like the

ones described in [4,5].

The rest of the paper is organized as follows. Section 2 discusses the definition of element validity and the

definition of the feasible set for a vertex. Section 3 describes the untangling of a mesh by the feasible set

method and untangling by optimization of an objective function is discussed in Section 4. Section 5 de-
scribes the multi-step untangling procedure that has achieved a greater success in untangling meshes than

each of the two untangling methods by themselves. Finally, several simple and complex examples of mesh

untangling and mesh optimization [4,5] are presented in Section 6 followed by conclusions.
2. Definitions

In this study, an element is considered valid if each corner of the element is considered valid. An element
corner is valid if the Jacobian determinant of its mapping to a right angle corner with unit sides is positive.

This requirement is more conservative than that required by some numerical methods [15] in which the

element or its ‘‘subcells’’ must only have a decomposition into any one set of simplices (triangles and

tetrahedra) with all positive areas/volumes (see Fig. 1). However, it is more relaxed than the requirements of

other methods such as having positive Jacobian determinants everywhere or at quadrature points.
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Fig. 1. Valid and invalid quadrilateral elements: (a, b) Valid quads with positive Jacobian everywhere, (c) Quad with valid decom-

position into positive area triangles ABC and ACD but negative Jacobian at reentrant corner, C (d) Quad with no valid decomposition

into positive area triangles, (e) Quad decomposition into valid subcells AEOH, BFOE, FCGO, GDHO but negative Jacobian at C, (f)

Quad with invalid subcells.
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Given the definition of element validity, the feasible set for a vertex can be defined as the set of all po-

sitions of the vertex for which each connected element is valid at the corners affected by the position of the

vertex. In other words, if a vertex is in its feasible set, then each connected element is valid at the vertex and

at the adjacent (edge-connected) neighbors of the vertex.

The feasible set for a vertex connected to a single triangle is a half-space as shown in the 2D example in

Fig. 2(a), assuming a ccw ordering of vertices of the triangle. For a vertex connected to a single quadri-

lateral or general polygonal element, the feasible set of a vertex is defined by the intersection of three half-

spaces as illustrated in Fig. 2(b). This is because the position of the vertex influences its own Jacobian and

the Jacobian at its two edge connected neighbors, V2 and V3, in the element. In the figure, if vertex V1 moves
past line AA0 in the opposite direction of the arrows, the Jacobian at V1 and the area of triangle V1V2V3
become negative. If it moves past line BB0, the Jacobian at V2 and the area of triangle V2V4V1 become

negative and if it moves past line CC0, the Jacobian at V3 and area of triangle V3V1V5 become negative.

Fig. 2(c) shows the feasible set for a vertex interior to a patch of elements. From the definition of the

feasible set, it is clear that the feasible set is always a convex polygon in 2D. Note that the feasible set for a

vertex can be empty depending on the geometry and configuration of the elements connected to the vertex.

This implies that given the positions of the boundary vertices of the patch, there is no location for the vertex

which will simultaneously make all the elements valid. Such an example is shown in Fig. 3 along with
configurations where the feasible set is a line and a point.
3. Untangling by finding the feasible set

The definition of a feasible set given above leads to a natural method of untangling meshes in which the

feasible set of a vertex is determined and the vertex is positioned inside it. This is referred to here as the



Fig. 2. Illustration of feasible sets: (a) feasible set for vertex connected to single element, (b) feasible set for vertex connected to a

pentagon, (c) polygonal feasible set for vertex connected to patch of triangular and quadrilateral elements.
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feasible set method. In this approach, each vertex of the mesh is visited and its connected elements examined

to see if any of them are invalid. If an invalid element exists among the elements connected to the vertex, the

feasible set of the vertex is computed and the vertex is placed in center of the feasible set. The method loops
over the mesh until all elements are valid or no invalid element can be fixed.

The feasible set of a vertex can be found by computing the intersection of half-spaces representing the

feasible region of the vertex with respect to each element. In 2D, this is accomplished by the intersection of

pairs of lines demarcating the feasibility half-planes. In this work, the feasible set is found by the chasing

algorithm described by O�Rourke [16] and has been found to work well on a number of test cases. In Fig. 4,

an example of mesh untangling by the intersection-based feasible set method is illustrated step by step. In

the figure, the invalid quadrilaterals are shown shaded and nodes connected to at least one invalid quad-

rilateral are shown in black.
While the intersection-based computation of the feasible set works well in 2D, finding the feasible set

polyhedron by intersection of half-spaces is impractically complex in 3D. Therefore, an alternate method
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Fig. 3. Boundary of patch (central node not shown) for which feasible set is (a) a line, (b) a point, (c) Null or empty.
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for positioning the vertex inside the feasible set is implemented based on the simplex method as described in

[13]. In [13], the idea is proposed that the boundary lines of the half-planes forming the feasible set in 2D

can be interpreted as inequality constraints on the minimization of an arbitrary function. If the function is a

linear function, then its minimum must occur at the intersection of two of these inequality constraints or in
other words the corner of the feasible set polygon. Therefore, the corners of the feasible set polygon can be

found by minimizing different linear functions along with the appropriate inequality constraints using the

simplex method [17,18].

This idea is further simplified by recognizing that for untangling, it is sufficient to find any one position

for the vertex inside its feasible set to make all connected elements valid. This implies that it is unnecessary

to find all corners of the feasible set polygon. Therefore, for untangling a patch of elements in 2D, it can be

inferred that it is sufficient to find three distinct corners of the feasible set polygon and reposition the vertex

to the center of the triangle formed by these corners. Therefore, the procedure minimizes simple linear
functions f ðx; yÞ ¼ x;�x; y;�y to find three distinct corners of the feasible set polygon. The vertex is then

repositioned to the center of the triangle formed by these corners. If only two distinct corners can be found,

then the feasible set is a line connecting the two and the vertex is repositioned to the mid-point of the line. If

only one distinct corner can be found, the feasible set is a point and the vertex is repositioned to this point.

Note that in the case when the feasible set is a line or a point, one or more elements connected to the vertex

will be of zero area.

The feasible set approach to untangling is very useful because it is a direct way of fixing inverted elements

affecting only those nodes connected to invalid elements. This characteristic can be useful for accurate
solution transfer in ALE methods from the old mesh to the new, untangled mesh. Also, if the feasible set is

not degenerate, fixing the mesh by this method results in elements that have substantial volume rather than



Fig. 4. Untangling of mesh by feasible set method with node placement at the center of the feasible set: (a) initial mesh, (b, c) in-

termediate meshes, (d) final mesh. The shaded quadrilaterals indicate invalid elements and vertices represented in black are connected

to at least one invalid quadrilateral.
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near zero volume. However, the shortcoming of this approach is that some elements cannot be fixed be-

cause the feasible set associated with each of their vertices is empty.
4. Optimization approach to untangling

Several researchers have proposed the use of numerical optimization for untangling meshes. In this ap-

proach, an appropriate objective function is minimized so as to make all the invalid elements valid. Freitag

and Plassmann [11] attempt to untangle meshes bymaximizing a local function at eachmesh vertex. The local

function at each vertex is taken to be the minimum volume of all connected elements. Knupp [12] proposed

optimization of a global objective function based on the difference between signed areas of elements and their

corresponding absolute values. Thus, the objective function has a contribution from an element only if it has

a negative area. If the area of the ith element in a mesh is ai, then the function to be minimized is

f ðxÞ ¼
Xn

i

ðjai j �aiÞ: ð1Þ
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Minimization of this function can only bring elements to a zero area state which is still considered unusable

in numerical simulations. Therefore, Knupp suggested the addition of a user controlled parameter b to the

function, modifying it to be

f ðxÞ ¼
Xn

i

ðjai � b j �ðai � bÞÞ: ð2Þ

The role of b is to force the function to reach a minimum when the elements have a small positive area

instead of zero area. The behavior of the objective function for one element without and with b is shown in
Fig. 5(a) and (b), respectively.

In using the optimization procedure for untangling meshes, the choice of b must be made carefully.

Making b > 0 can be advantageous since it drives the optimization to give a mesh with all positive elements.

On the other hand, using an indiscriminately high value for b can be quite detrimental, since the objective

function minimum can become non-zero and end up outside the feasible region for the patch. This lack of a

solution implies that for the given boundary configuration it is not possible for all elements to achieve a

volume equal to or greater than b. This undesirable effect of increasing b is illustrated in Fig. 7 using the

mesh patch shown in Fig. 6. In the figure, the minimum of the function (dotted line) is inside the feasible set
(solid line triangle) for small b but moves outside as b increases indicating that there is no valid solution.

Therefore, it is preferable to set b to the minimum acceptable area of the elements with respect to the mesh

optimization procedures that will improve the mesh quality following untangling.
Fig. 5. Objective function behavior with respect to area/volume a of one element: (a) linear function without b, (b) linear function with

b, (c) quadratic function with b.
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Fig. 6. Mesh patch used to illustrate the effect of increasing b on untangling by optimization. Dotted triangle shows feasible region for

vertex V.



Fig. 7. Effect of increasing b on the minimum of the function
P

i½jai � bj � ðai � bÞ�2 for a particular mesh patch. The solid triangle in

the interior indicates the feasible set and the dotted region indicates the minimum of the function which can be outside the feasible set

for a large b.
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The objective function in Eq. (2) is non-smooth and non-differentiable due to the presence of an absolute

value term in a linear form. Since gradient based methods assume differentiability, optimization of such

non-smooth functions requires modification of the gradient based methods or use of other methods of

optimization such as the subgradient method [19]. In this study, optimization of the linear function

sometimes failed to reach the minimum using a modified form of the non-linear conjugate gradient method

with restarts at gradient discontinuities. It is possible that more sophisticated methods might be able to
minimize the function and untangle the mesh successfully.

Due to the complications involved in optimizing a non-differentiable function, this study proposes

modifying Knupp�s objective function so that it is quadratic and smooth as shown for one element in

Fig. 5(c). Since the objective function for one element is smooth and convex, the global objective function

formed by the sum of such functions for all elements of the mesh (shown in Eq. (3)) is also smooth and convex

f ðxÞ ¼
Xn

i

jaið � b j � ðai � bÞÞ2: ð3Þ

This smooth function can then be minimized using a standard numerical optimization method for

smooth functions such as the conjugate gradient method [17,18]. It has been found in practice that mini-

mization of the quadratic form of the objective function always untangles the mesh successfully. It has also

been seen that optimization of the quadratic form of the function takes fewer conjugate gradient iterations

and about 20% lesser time than the linear form.
To see the difference between the optimization of linear and quadratic functions, a 1D mesh is first

considered with 4 points, x1, x2, x3 and x4, of which x1 and x4 are fixed boundary points, and x2 and x3 are
interior points as shown in Fig. 8. To make visualization of the mesh tangling easier, valid elements are

shown with their nodes on a single line or level while an invalid element is shown with one of its nodes on



Fig. 8. (a) Tangled 1D mesh, (b) one possible untangled mesh configuration.
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the next higher level. Going from left to right, element 1 is valid (x1 < x2) and therefore, points x1 and x2 are
shown on the same level. Element 2 is invalid and therefore, it is displayed as going from x2 to x3 at the next
upper level. Element 3 is valid and so its vertices x3 and x4 are at the upper level. Note that the mesh shown

in the figure cannot be fixed by the feasible set approach described earlier, since x3 < x1 making the feasible

set of x2 empty and the x2 > x4 making the feasible set of x3 empty.

The objective function formed from this mesh is a function of two variables and can be readily visu-

alized. Fig. 9(a) and (b) shows the linear and quadratic objective functions respectively for this mesh. The
interior of the central triangle represents the portion of the x2, x3 space in which the mesh is valid, i.e.,

xi < xiþ1 for all i ¼ 1; 4. The paths taken by the optimization from different starting points on the figure (i.e.

different tangled mesh configurations) are also shown in the figures. The mesh configuration shown in Fig. 8

is indicated as point P_1 in Fig. 9(a) and (b). The optimization is performed with a finite but small value for

b. It can be seen that the final valid configuration of the mesh depends on the starting invalid configuration

of the mesh since the solution is non-unique. Also, the optimization procedure gets stuck while using the

linear objective function (Eq. (2)) due to the presence of discontinuities, but successfully untangles the mesh

using the quadratic function (see point P_2).
Shown in Fig. 10, is a 2D mesh for which the optimizing the linear function does not untangle the mesh,

but the quadratic function does.

Since the optimization approach to untangling uses a global objective function, it can disturb elements

far away from the problem elements. The following example illustrates the possible non-local effect of the

optimization approach on the mesh. The example chosen is a 1D example with 11 points out of which one

point (x6) is well outside the domain as shown in Fig. 11(b). The placement of this point makes the element

between x6 and x7 invalid. The locations of the mesh vertices and the various configurations of the mesh as

the optimization procedure untangles the mesh are shown in Fig. 11(a) and (b). The optimization uses a b
of 0.2 in Eq. (3) for the untangling. It can be seen that the optimization procedure moves nodes x6, x7, x8, x9
Fig. 9. Contour plots of objective functions for mesh untangling on which paths followed by the mesh points x2 and x3 from various

starting configurations have been superimposed: (a) linear objective function f ðxÞ ¼
P

i jai � bj � ðai � bÞ, b ¼ 0:1, (b) quadratic

objective function f ðxÞ ¼
P

i½jai � bj � ðai � bÞ�2, b ¼ 0:1.



Fig. 10. (a) Original tangled mesh (nodes connected to invalid elements are marked by a black circle), (b) result of optimization with

linear function shows mesh is still tangled, (c) result of optimization with quadratic function shows untangled mesh.
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and x10 around to make the mesh untangled. In the process, several elements first become invalid and then

return to a valid state. In contrast, the feasible set approach could have fixed this mesh by simply placing x6
in between x5 and x7 in the initial mesh.

In practice, it is uncommon to encounter meshes entangled in such extreme ways and therefore, the

optimization procedure usually only affects a small number of nodes in the local neighborhood. Still, the

approach adopted in the context of rezoning for ALE simulations is to fix as much of the mesh as possible

with the feasible set approach before using optimization to untangle meshes so that fewer nodes are per-
turbed in the process.

In the above discussion, the optimization process was formulated as a global procedure in which all the

nodes are moved at once. However, for efficiency reasons, the procedure is actually carried out as a series of

local iterations over the mesh vertices that minimize local parts of the global objective function. It is im-

portant to note that at each local iteration at a vertex, all terms of the global function which are affected by

the movement of the vertex are grouped into a local objective function which is minimized. For simplex

elements, this just means that the area of the elements connected to the vertex are involved in the local

function. For more complex element types the local function includes the cross product of the edge vectors in
each connected element computed at the vertex itself and its edge connected neighbors. Computing the local

objective function this way ensures that global objective function is still minimized at each local iteration.

In a 2D mesh, untangling by optimization is performed first at boundary vertices followed by untangling

at interior vertices. The objective function at any boundary vertex is evaluated as it is for an interior vertex.

However, the optimization itself is performed with respect to a local parametrization of the mesh

vertex with respect to the boundary mesh edges it is connected to [5]. This ensures that boundary mesh

vertex remains on the original discrete boundary during its movement.

Fig. 12 shows example of the mesh shown in Fig. 4, untangled by the optimization procedure. Fig. 12(a)
shows the mesh optimized using the quadratic objective function without the use of b or b ¼ 0. The

procedure untangles the mesh but because b is zero, some of the valid elements are barely valid. The barely

valid elements and the interior vertices connected to these elements are shaded in the Fig. 12(b) shows the

same optimization but with a finite b, which is calculated as 10% of the problem size (diagonal of the

bounding box) normalized by the number of elements in either the x or y directions and has the value of

0.106. As seen from the figure, the mesh is better in this case since all the elements are positively valid.



Fig. 11. Optimization based untangling of 1D mesh with one node outside the domain. (a) Path followed by the mesh nodes as the

optimization progresses (from bottom to top), (b) mesh configuration at key stages in the optimization.
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5. Three-step procedure for mesh untangling

In the previous sections, it was seen that the feasible set approach had a local effect on the mesh but

could not always fix the mesh. On the other hand, the optimization approach, always fixed the mesh by
making all elements non-negative but could affect a larger number of nodes and resulted in barely valid



(a) (b)

Fig. 12. Invalid mesh of Fig. 4 optimized using optimization with quadratic objective function: (a) without b (barely valid elements

shown shaded), (b) with b ¼ 0:106 ¼ 10% of bounding box diagonal normalized by number of elements in x or y directions.
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elements. Therefore, the procedures have been combined here into a 3-step procedure for maximizing the

possibility of untangling the mesh with minimal impact on the mesh.

The first step of the procedure performs untangling by the feasible set method so as to fix as many

elements as possible with minimal impact to the valid part of the mesh.
The second step of the procedure performs a minimization of the quadratic objective function described

earlier (Eq. (3)) in order to fix any remaining invalid elements. The optimization procedure first performs a

local or vertex-by-vertex optimization loop over the boundary vertices in order to try and fix as many

elements as possible by their movement. The movement of the boundary vertices is constrained to the

original discrete boundary by a local parameterization technique [5]. This is followed by local optimization

loop over all interior vertices connected to invalid elements. The b used in the optimization is a very small

quantity such that the resulting mesh is suitable as input to mesh quality improvement procedures [4,5].
Fig. 13. Three step procedure involving feasible set method and optimization for fixing 1D mesh.
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The third step of the procedure picks elements with near zero volume resulting from the optimization

step and tries to increase their volume by relocating at least one of their nodes using the feasible set method.

Note that the inability of the third step to ‘‘fatten’’ all the barely valid elements does not leave the mesh in
an unusable state; it only makes the mesh quality improvement procedures work harder at a later stage.

Once the three steps are completed, the mesh may be optimized by suitable mesh quality improvement

procedures [4,5].

The effect of the 3-step procedure is illustrated below using a 1D example shown in Fig. 13. In the first

step, the feasible set approach is able to fix element x4x5 by moving x5 to the middle of x4 and x6. However, it

cannot fix element x8x9 because the feasible set for both x8 and x9 is empty. In the second step, the opti-

mization method fixes all the elements but nodes x8,x9 and x10 are too close to each other. In the third step,

the feasible set method achieves a better distribution of the nodes by placing nodes connected to the barely
valid elements, x8x9 and x9x10 in the middle of their respective feasible sets.
6. Results

The first example shown in Fig. 14 illustrates the untangling of a mesh arising from a Rayleigh–Taylor

simulation. The mesh is made invalid during the Lagrangian step of an ALE simulation of the problem and

must be fixed before the simulation can proceed. Fig. 14(a) shows a part of the overall domain, Fig. 14(b)
shows the tangled portion of the mesh (with squares marking nodes connected to invalid elements).

Fig. 14(c) shows the untangled mesh corresponding to the tangled meshes shown in Fig. 14(a) and (b). The

stages of untangling of this mesh are illustrated further in Fig. 15. Fig. 15(a) shows a zoom-in of the tangled

portion of the original mesh. Fig. 15(b) shows the mesh after the first untangling step by the feasible set
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Fig. 14. Untangling of Lagrangian mesh from Rayleigh–Taylor simulation: (a) Part of original tangled mesh, (b) zoom in of tangled

mesh (nodes shown by a square are connected to at least one invalid element), (c) zoom-in of untangled mesh.
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Fig. 15. Steps of untangling Rayleigh–Taylor simulation mesh: (a) Zoom-in of original mesh (nodes connected to invalid elements

shown as squares). (b) Mesh after feasible set approach, some elements remain with less than a minimum volume. (c) Mesh after

optimization, some elements remain with zero volume. (d) Mesh after second pass of the feasible set approach, all elements have

volume greater than required minimum. (e) Mesh improved with Reference Jacobian Matrix based optimization procedure [4,5] which

seeks to improve the mesh but keep it close to the original mesh.
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Fig. 16. (a) Valid mesh of horseshoe, (b) mesh tangled by simple Laplacian smoothing, (c) mesh untangled by 3-step untangling

procedure, (d) mesh after improvement by condition number based optimization [4,5] which improves the condition numbers of all

elements as much as possible.

(a) (b)

(c) (d)

Fig. 17. Untangling of triangular mesh of Texas outline: (a) Original valid mesh, (b) tangled mesh (random movement of interior

vertices), (c) untangled mesh with poor quality elements, (d) improved mesh obtained by condition number based optimization.
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method which is unable to fix all the elements. Fig. 15(c) shows the mesh after untangling by optimization

during which all elements were made at least barely valid. Fig. 15(d) shows the mesh after the second round

of untangling by the feasible set method during which all elements were brought to a positive volume state.
Finally, Fig. 15(e) shows the mesh after improvement by the Reference Jacobian Matrix based optimization

procedure [4,5]. This type of mesh optimization procedure, developed for ALE simulations, improves mesh

quality while keeping the mesh close to the original configuration as can be seen by comparing Fig. 15(d)

and (e).

The next example shows the untangling of a structured mesh, called the ‘‘horseshoe’’ mesh shown in

Fig. 16(b) obtained by simple Laplacian smoothing of the mesh shown in Fig. 16(a) [20]. The untangled

mesh after the 3-stage untangling procedure is shown in Fig. 16(c). Finally, Fig. 16(d) shows the untangled

mesh improved by the condition number based optimization procedure [4,5] which improves the condition
numbers of all the elements as much as possible.

Fig. 17 presents the example of untangling a mesh of the state of Texas [21]. An originally valid mesh

shown in Fig. 17(a) was tangled by a random perturbation of a subset of the interior vertices to result in the

mesh shown in Fig. 17(b). The maximum perturbation was 20% of the domain size. This mesh was then

successfully untangled using the 3-step procedure to give the mesh shown in Fig. 17(c). For this example,

the feasible set method alone left behind 17 patches with negative area triangles and the optimization

method alone left behind 6 zero area triangles. The value of b was zero for the optimization step. The result

of condition number based mesh optimization on the untangled mesh is presented in Fig. 17(d) to illustrate
Fig. 18. (a) Original tetrahedral mesh, (b) tangled mesh (minimum element volume )0.194), (c) untangled mesh (minimum element

volume 1.39E)07).
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that good quality meshes can be obtained when the untangling procedure is combined with mesh im-

provement procedures.

Finally, a untangling of a tetrahedral mesh is presented in Fig. 18 to illustrate that the principles pre-
sented in this paper can be extended easily to 3D. The original 3D mesh is shown in Fig. 18(a). The tangled

3D mesh obtained by perturbing the interior nodes is shown in Fig. 18(b) and the untangled mesh is shown

in Fig. 18(c). The minimum and maximum element volumes before untangling were )0.194 and 0.475. The

minimum and maximum volumes after the mesh was untangled were 1.39E)07 and 0.242. Therefore, the

untangled mesh is suitable for input to a mesh optimization procedure for improving mesh quality.
7. Conclusions

A multi-step method for successful untangling of unstructured 2D meshes has been presented in this

paper. The method uses a combination of the feasible set method and optimization method to achieve the

greatest degree of success in untangling the mesh while keeping the mesh close to the original mesh as

required for remapping in ALE simulations.

The method is guaranteed to untangle the mesh if the boundary of the mesh is untangled and zero area

elements are acceptable. The method generally succeeds, even if all mesh elements are required to be of

some minimum area; however, this cannot be guaranteed even if the minimum area required is very small.
In practice, the method has successfully untangled all 2D meshes given to it.

The formulation of the procedures allows easy extension to 3D problems and preliminary results are

promising. Work is in progress to apply the untangling procedure for general polygonal meshes.
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