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Abstract

We construct a new mimetic tensor artificial viscosity on general polyhedral meshes. The tensor viscosity is
designed as a discretization of the differential operator div (1«Vu) with the full fourth-order tensor ;. We demonstrate

performance of the new artificial viscosity on a set of test problems.
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1. Introduction

We consider a system of hydrodynamic equations in Lagrangian coordinates describing motion of a compressible
gas [1]:

1D,
e —divu,
p Dt
Du
— = -_Vp, 1
PDi P 0
De
= = _pdivu,
th pdivu

where p, p, u and ¢ are the gas density, pressure, velocity and internal energy, respectively, and D/Dt denotes the
material derivative. The system of three equations has four unknowns; therefore, it is closed by an equation of state.

These equations come from three fundamental conservations laws for the mass, momentum, and energy. The aim
of any compatible (mimetic) discretization method is to develop a system of discrete equations that has three discrete
conservations laws. For a staggered discretization [2] considered here, the discrete velocity unknowns are defined at
mesh points (three numbers per point), while the discrete pressure, density and internal energy are defined on mesh
elements (one number per element).
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Modeling of high-speed flows with shocks using the staggered discretization requires introduction of an artificial
numerical viscosity [3, 4, 5]. This viscosity stabilizes the simulation by spreading the shock across a few mesh
elements. The basic requirements for design of the artificial viscosity, as well as overview of existing methods, can
be found in [6, 4]. In this paper, we extend the Tensor Artificial Viscosity (TAV) method developed in [7] for two-
dimensional problems to three dimensions.

The TAV proposed originally in [8] is designed as a discretization of the differential operator div (uVu). The
method in [8] is limited to the case of a scalar coeflicient iz and polygonal meshes with convex elements. In the recent
paper [9], the authors derived a high-order discretization for the tensor viscosity using the finite-element technique.
For quadrilateral meshes, they showed that the finite element method with the reduced quadrature rule reproduces the
mimetic formulation. A connection between two methods has been also proved in [10] for diffusion problems. To
some extend, the mimetic method can be considered as a natural extension of the finite element technique to general
meshes. In [9], the authors considered only non-degenerate quadrilateral and non-degenerate hexahedral meshes and
again only a scalar u. The aforementioned limitations were removed in [7] for two-dimensional problems in both the
Cartesian (x-y) and axisymmetric (r-z) coordinate systems.

One of the important features of the TAV is its ability to act only in the direction of a shock by exploiting the
flexibility provided by the full tensor u. Design of the appropriate fourth-order tensor u is the active research area.
Derivation of the mimetic discretization of the three-dimensional operator div («Vu) with the full tensor coefficient
pon a general polyhedral mesh, which is developed in this paper, is the foundation for future developments. This
discretization follows the new mimetic technology developed in [11, 12] for diffusion problems.

The paper outline is as follows. In Section 2, we describe a continuous analog of the TAV and recall how it enters
the equations of Lagrangian hydrodynamics. In Section 3, we develop the three-dimensional TAV method. A few
two-dimensional and three-dimensional experiments are presented in Section 4.

2. Artificial viscosity

For shock calculations, an artificial numerical viscosity has to be added to the discrete momentum equation. Being
artificial, the viscosity stress tensor does not need to be symmetric. Following [8, 9], we define the artificial viscosity
as an approximation of the elliptic operator:

£ = div (uVu). )

where, contrary to [8, 9], we allow u be a full fourth-order tensor. The continuous forms of the modified momentum
and internal energy equations are
Du

D
th = —Vp + div (uVu), pF(::—pdivu+(uVu):Vu.

The symbol *:> means the dot product of two tensors.

3. Mimetic tensor artificial viscosity method

We refer to [7] for a detailed derivation of semi-discrete equations and focus our attention on an approximation of
the last term in the modified momentum equation. Contrary to [7], the current derivation follows the finite element
framework to illustrate a close connection between the mimetic finite difference and finite element methods.

Let 77, be a partition of the computation domain into non-overlapping polyhedral elements E. This partition may
contain non-convex and degenerate (two adjoin faces are parallel) elements. We denote the volume of E by |E|, the
area of its face f by |f]|, the position vector of its vertex v by x,. Let & be the characteristic mesh size, the diameter of
the largest polyhedron.

We consider a staggered discretization. The degrees of freedom for the velocity are defined at mesh points. For a
smooth function v, we define the global vector V of degrees of freedom. The size of V is triple the number of mesh
points. We also need the restriction of this vector to element E that we denote by Vg. Similarly, Vg, denotes the
restriction of Vg to vertex v of E. This is a three-dimensional vector. Finally, let ng, be the size of vector Vg, i.e.
triple the number of vertices in E.
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Multiplying both sides of (2) by a test function v and integrating by parts, we get

ff"”-vdV:—f(uVu):VvdV+f (uVu)-n)-vds,
Q Q a0

where n is the exterior normal vector. For clarity, we assume that the boundary conditions are such that the last
integral is zero. We apply accurate quadrature rules to the other integrals. Each rule is written as a vector-matrix-
vector multiplication with vectors of degrees of freedom and an appropriate matrix, for instance:

f £ v dV = (F") MV + O(h),
Q

where the F"* is the global vector of point-based degrees of freedom of the vector function £**. The O(/) term must
be small for sufficiently smooth functions £"** and v. Similarly, the other quadrature gives

f(,uVu):VvdV:UTAV+O(h). 3)
Q

Given matrices M and A, we obtain the desired viscous forces at mesh points:
F'* = -M'AU

Note that the actual computations require only the vector MF"*. As in the finite element framework, both matrices
are assembled from local elemental matrices:

M= > N;MgNE, A= NpApNE,
EeTy, E€T,

where Ng is the assembling matrix with only zero and one entries. Clearly to guarantee (3), the elemental matrices
must also provide accurate quadrature rules:

f 5. v dV = (Fy*)" Mg Vg + [E|O(h), f uVu): VvdV = UL AL Vi +|E|Oh). 4)
E E

The first quadrature in (4) is trivial: the matrix Mg is diagonal with equal entries |E|/ng,. This quadrature rule is
exact for constant functions. To derive the second quadrature, we recall a few facts from linear algebra.

Let B be a full rank ng, X ng, matrix, representing a change of the basis in the linear space R"=*. The columns
of B are the new basis vectors. Change of the basis induces the following congruent transformation of the matrix
AEI R

Ar =Bl ArBg. %)

If somebody gives us the basis vectors and the matrix Az, we calculate immediately the matrix Az using (5). Unfor-
tunately, the reality is that only a partial information about the basis and the matrix A is available a priory. Assume
that (a) we know m basis vectors B;, i = 1,...,m and (b) we can calculate somehow m vectors R; = AgB; without
using the matrix Ag. Then, it is possible to complete the basis in such a way that the matrix A is block-diagonal.

Lemma 3.1. Let m basis vectors B; be given. Furthermore, let the vectors R; = AgB;, i = 1,...,m, be given. Let us
complete the basis by vectors B, j =m+1,...,ng,, such that
BIR; =0, 1<i<m<j<ng,. (6)
Then, we have the following identity:
AL 0
BLA:B; = .
0 A2

Proof. The proof is straightforward. By assumption, B} Az B; = B] R; = 0. O
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The lemma implies that the (i, k)-entry of matrix Ay is the dot-product B} Ry; therefore, this matrix can be
calculated easily.

Remark 3.1. Analysis of diffusion equations [11] reveals that the accuracy requirement (the right formula in (4))
alone is not sufficient to build a convergent numerical scheme for operator (2). What is needed are the orthogonality
conditions (6) and the relations between vectors R; and B;. The latter are related to existence of special discrete
Gauss-Green relations on element E.

We define m basis vectors B; using the degrees of freedom of linear vector-functions ¢;. Recall that the entries of
B, are the values of ¥; at vertices of polyhedron E. In three-dimensions, there are twelve linearly independent linear
vector-functions, which gives m = 12. In two-dimensions, m = 6. To define the vectors R; corresponding to the
selected basis vectors, we take the second formula in (4) and replace the tensor i by a constant tensor pg. This is the
order of & approximation. Then, replacing u by ¥; and integrating by parts, we get

|[E|O(h) + BiT Ap Vg f(pEV Y,):VvdV
E

= —fEdiV(ﬂEVl//i)'VdV+faE((IJEV'/ff)'nE)'VdS (7
= Z((,;va/,,.ynE)-fvds.
fedE f

The last integral over face f can be approximated using the degrees of freedom of v at vertices of f. Let x; be the
center of gravity of face f. There exist positive coefficients wy,, such that

Xy = Z WyyXy.

vef

Using this formula in (7), we get

IEIO() + B Ap Ve = ) eV -np)- Y @, Vi, + EIOM),

feoE vef

Finally, neglecting the O(h) terms and re-arranging the terms in the right-hand side, we obtain the following discrete
Gauss-Green relations:
B Ax Ve = (ueV) np) - Y ws Ve, =R Vi ®)
vef
Due to arbitrariness of Vg, we derive the desired relations Ag B; = R; without knowledge of the matrix Ag. It is
pertinent to note that the above derivations hold for arbitrary polyhedron E. This polyhedron may be non-convex and
degenerate.

No information is available to specify the matrix AZE; thus, it remains arbitrary. For a hexahedral element, this is
the matrix of size six. At the moment it is not clear how to use this flexibility to obtain additional properties from the
final scheme. In practice, we use a diagonal matrix, A% = aglg. A reasonable choice for the scaling parameter af is
the mean trace of the first diagonal block, ar = trace(A}f) /m.

Lemma 3.2. Let E be a tetrahedron and u be a constant tensor. Then, the matrix Ag coincides with the finite element
matrix for linear finite elements.

Proof. For a tetrahedron, m = ng, = 12. Thus, no room is left for the matrix A%. Note that the finite element
functions on E are linearly independent functions. Selecting ; as the finite element functions, we get that Bg is the
identity matrix and the (i, k)-th entry of A} is

ALy = BTR, = fE eV ) = V.

Thus, A‘E is the finite element stiffness matrix. The proof is completed by noting that this matrix coincides with
Ag. O
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4. Numerical experiments

The method derived above allows ug to be the fourth-order tensor. This flexibility is not yet used in the presented
numerical experiments. More precisely, we use the following expression for the scalar viscosity coeflicient g [13]:

+1 +1\
Ue = xepe Le cQ74 |Aul + \/CZQ(VT) |Aul? + 252 |,

where s is the sound speed, ¢, and cg are positive non-dimensional constants, Lg is the characteristic length, Au is
the measure of compressibility (a scalar, for instance, the velocity jump across the shock), and yg is a binary switch.

The binary switch ensures that the heating due to artificial viscosity occurs only for elements under compression.
We set yr = 0 when Au > 0 and yg = 1 otherwise. The measure of compression is defined as the mean divergence of
the velocity multiplied by the characteristic length.

In the numerical experiments, we set ¢; = co = 1. We use a simple estimates for the characteristic length Lg,
Lg = V[E|. This estimate is appropriate for meshes with mild variation of volumes of neighboring elements.

The TAV does not control hourglass distortion of the mesh. Therefore, additional numerical viscosity is added
to the discrete momentum equation using the temporal triangular subzoning (TTS) method [14]. We verified with
numerical experiments that both viscosities are required in the simulations described below.
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Figure 1: The three-dimensional Noh implosion problem in the r — z coordinate system. Left picture shows the logically square mesh at time
t = 0.6. Part of the mesh ahead of the shock has been removed for visualization clarity. Right picture shows density isolines.

The simulations were done using the code [2]. In the first experiment, we consider the three-dimensional Noh
implosion problem [15], where the ideal gas with y = 5/3, density p = 1.0, and pressure p = 0 is given an initial unit
inwards radial velocity. A spherical shock wave is generated at the origin and moves with constant speed 1/3. At time
t = 0.6, the shock wave has radial coordinate 0.2. The density behind shock is 64.

Using symmetry of the problem, we may solve it in two-dimensions. Results of the two-dimensional experiment
are shown in Fig. 1. The initial computational mesh is the 50 X 50 square mesh occupying the unit square. The final
mesh at time ¢ = 0.6 has high-quality quadrilateral elements. The gas heating near the origin is the well known intrinsic
feature of Lagrangian simulations. The density isolines indicates acceptable preservation of cylindrical symmetry. On
the top-left picture in Fig. 2, we plot density at centroids xg, E € 77, versus the distance to the origin. Around the
shock, we observe approximately 5% variation of density in the angular direction.
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Figure 2: The density at centroids of mesh elements (stars) versus the distance to the origin for the Noh (left column) and Sedov (right column)
problems. The top row shows results of two-dimensional simulations that exploit spherical symmetry of the problems. The bottom row shows
results of three-dimensional simulations.

Now, the same problem is solved in three-dimensions. The initial mesh is the 40 x 50 x 60 orthogonal mesh. The
trace of the final mesh at time # = 0.6 is shown in Fig. 3. We observe a high quality logically cubic mesh. We also
observe that the density behind the shock is smaller than the theoretical value of 64 but is approximately the same as
in the two-dimensional simulation. This may be related to the isotropic nature of the scalar viscosity coefficient p.
Finally, we note that violation of spherical symmetry is bounded again by 5%.

In the second experiment, we consider the Sedov explosion problem. The problem generates a strong diverging
shock wave [16, 17]. The initial density of the ideal gas with y = 1.4 is unity and the initial velocity is zero. Atz =0,
the total energy Ej is all internal and concentrated at the origin. The analytical solution gives the expanding shock of
radius r; with peak density of 6,

( E() lz )0.2
rs = s
@5 Po

where a3 = 0.850937. The total energy Ey is defined such that r; = 0.9 at time ¢ = 1.

We consider a 50 X 50 square mesh occupying initially the unit square. Only one element near the origin (the
biggest element in Fig. 4) is given a non-zero specific internal energy. The mesh elements are compressed in the
radial direction and have large obtuse angles. Note that only small angles (close to 0°) may reduce (theoretically)
the accuracy of the mimetic discretization. The right picture in Fig. 4 and the top-right picture in Fig. 2 show small
variation of density in the angular direction.

The same problem is solved in three-dimensions. The initial mesh is the 48 x 48 x 48 orthogonal mesh. The trace
of the final mesh at # = 1 is shown in Fig. 5. All hexahedra have high quality according to the mesh criteria formulated
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Figure 3: The three-dimensional Noh implosion problem on a logically cubic mesh. The mesh trace is shown on three sides of the computational
domain that are attached to the origin. Part of the mesh ahead of the shock has been removed for visualization clarity. The colors show density
distribution.

in [11] for polyhedral meshes. We recall that presence of large obtuse dihedral angles does not necessary affect the
mesh quality. In the bottom-right picture in Fig. 2, we observe slight reduction of the pike density compared to the
two-dimensional simulation (the top-right picture). On the other hand, position of the shock is more accurate in the
three-dimensional simulation.

5. Conclusion and future work

We derived a new mimetic tensor artificial viscosity on general polyhedral meshes. The tensor viscosity is de-
signed as the mimetic discretization of the differential operator div (uV u), where u is the full fourth-order tensor.
We demonstrated performance of the new viscosity with a few two-dimensional and three-dimensional Lagrangian
simulations.

In the future, we plan to develop and analyze tensorial viscosity coefficients . This will help to reduce dissipation
in directions transverse to the shock direction.
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Figure 4: The three-dimensional Sedov explosion problem in the r-z coordinate system. Left picture shows the logically square mesh a time ¢ = 1.
Right picture shows density isolines.
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Figure 5: The three-dimensional Sedov explosion problem on a logically cubic mesh. The mesh trace is shown on three sides of the computational
domain that are attached to the origin (the vertex of the biggest element). The colors show density distribution.
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